厄米算符的本征值与本征函数

合集下载

【原子物理与量子力学】第4章 力学量用厄米算符表达

【原子物理与量子力学】第4章 力学量用厄米算符表达

本章小结
谢 谢!
本节内容结束
例6:在坐标表象中
pˆ * (i)* i pˆ
定义11:厄米共轭算符
算符 的厄米共轭算符定义为
*Aˆ d ( Aˆ )*d
( , Aˆ ) ( Aˆ ,)
实际上,算符的厄米共轭算符等价于共轭转置算符,即
证明:
Aˆ ( Aˆ T )*
于是,有
Aˆ ( Aˆ T )*
推论4:
1. 量子力学的基本对易式
下面以第一个式子为例证明,设ψ为任意波函数则 由ψ的任意性得
以上对易式概括为
2.角动量对易式
角动量算符 在直角坐标系下
运用算符运算
角动量分量与坐标分量之间的对易关系
记忆方法:从左至右以 x y z x依次循环指标为正,任何一
个指标错位即为负,相同指标则为零。
在量子力学中常把它称为是把算符“作用”到波函数上,作用 的结果是得到了另外一个波函数.
(二) 算符的运算规则
如果量子力学的力学量F在经典力学中有对应的力学量,则
表示这个力学量的算符 Fˆ ,将 pˆ 代入由经典表示式 F(r, p) ,即
F F (r, p) Fˆ F (r,i)
例如,角动量算符
不确定度关系推导
若K 算是符一个Fˆ 力和学量Gˆ算不符对或易普时通,的常数记。为首F先ˆGˆ定义GˆFˆ [Fˆ ,Gˆ ] iKˆ
F F F , G G G
[ F,G] [F,G] i K
注意,
F,G
仍为厄米算符,若巧妙设计积分
I ( ) | ΔFˆ iΔGˆ |2 d 0
某一测量值Ai的次数mi与总测量次数的M之比mi/M称为Ai 的概率,记为Pi。因此上式可用测量概率来表示

量子力学——算符

量子力学——算符

换另一种方法,设定
其中,
是狄拉克δ函数。
这性质不是普通的正交归一性。称这性质为狄拉克正交归一性。因为这性质,动量算符的 本征函数是完备的。也就是说,任意波函数 都可以表达为本征函数的线性组合:
其中,系数

返回目录
12/52
三、角动量算符
在量子力学里,角动量算符(angular momentum operator) 是一种算符,类比于经典的角动量。在原子物理学涉及旋 转对称性(rotational symmetry)的理论里,角动量算符占有 中心的角色。角动量,动量,与能量是物体运动的三个基 本特性
返回目录
9/52
2.1动量算符 导引 (3)
将上述两个方程代入方程 (1),可以得到
使用分部积分法,
(2) (3)
方程 (2) 与 (3) 的减差是
所以, 对于任意波函数 ,这方程都成立。 为
返回目录
因此,我们可以认定动量算符

10/52
2.2 (动量算符)本征值与本征函数 (1)
假设,动量算符 的本征值为 的本征函数是 :
采用球坐标。展开角动量算符的方程:
其中, 转换回直角坐标,
,分别为径向单位矢量、天顶角单位矢量、与方位角单位矢量。
其中, 所以,
,分别为 x-单位矢量、y-单位矢量、与 z-单位矢量。 分别是
返回目录
23/52
3.5 (角动量) 本征值与本征函数 (2)
角动量平方算符是 其中,
返回目录
24/52
3.5 (角动量) 本征值与本征函数 (3)
思考

的交换算符,
由于两者的对易关系不等于 0 , 与 同的基底量子态。一般而言,

厄米算符的本征值和本征函数

厄米算符的本征值和本征函数

厄米算符的本征值和本征函数厄米算符的本征值和本征函数是一种量子力学中非常重要的概念,它们可用于解释原子、分子和其他微观物体上的各种物理性质。

它们也是量子力学方程中最重要的部分,因为它们可以用来描述物体在不同情况下的行为。

厄米算符本征值(eigenvalue)是一个复数值,它代表了对应算符作用在相应状态上得到的实际结果。

这个数值由施加到物体上的力或能量决定,而不同的力和能量会产生不同的本征值。

厄米算符本征函数(eigenfunction)是一个复数函数,它代表了对应的状态的形式,它包含了物体的物理性质,比如其位置、运动和能量等信息。

它们可以用来描述物体在不同情况下的行为,并且可以用来解释物理系统的演化和发展。

比如,厄米算符本征函数可以用来描述原子核的结构,以及电子在量子力学中的行为等。

厄米算符本征值和本征函数之间具有密切的关系,它们是相互依赖的。

它们可以用来解释一个物理系统的行为,以及相关物理性质的变化。

比如,厄米算符本征值可以用来表示量子力学系统中电子所处的能量状态,而本征函数则可以用来描述这些状态的形式,从而可以解释该系统的物理性质和行为。

厄米算符本征值和本征函数的计算通常需要解决复杂的方程,这些方程的形式取决于描述原子、分子等物体的力学模型。

比如,如果要求解原子核的本征值和本征函数,就需要解决相应的核力学方程。

厄米算符本征值和本征函数在量子力学中有着重要的作用,它们可以用来解释原子、分子和其他微观物体的物理性质和行为。

它们可以用来识别物体的能量状态,从而可以解释物理系统的演化和发展。

此外,厄米算符本征值和本征函数的计算也是量子力学的重要组成部分,它们可以用来描述物理系统的行为。

量子力学第三章-1

量子力学第三章-1
1、 力学量算符本征函数组成完全系(完备系) 2、 力学量的可能值和相应几率 3、 力学量有确定值的条件
二、力学量的平均值 三、例题
一、力学量的可能值
1、力学量算符本征函数组成完全系(完备系) (1) 函数的(完全性)完备性 有一组函数φn(x) (n=1,2,...),如果任意函数ψ(x)可以按这组函 数展开: ψ ( x) = c φ ( x)
n
n

c n = ∫ φ ( x )ψ ( x )dx
∗ n
证明:当 ψ (x)已归一时,cn 也是归一的。
证: 1 = ∫ ψ ( x)ψ ( x)dx = ∫ ∑ cnφn ∑ cmφm dx n m * = ∑ ∑ cn * cm ∫ φnφmdx = cn * cmδ nm

n
n n
则称这组函数φn(x) 是完全(完备)的。 例如:动量本征函数组成完备系
r r r r Ψ ( r , t ) = ∫ c( p, t )ψ p ( r )d 3 p r r r r 或 ψ ( r ) = ∫ c( p )ψ p ( r )d 3 p
(2) 力学量算符的本征函数组成完备系 I、 数学中已经证明某些满足一定条件的厄密算符其本征函数组成 完备系(参看:梁昆淼,《数学物理方法》P324),即若: ˆ Fφ = λ φ
ˆ 2、角动量算符 Lz 本征函数
φm (ϕ ) =
1 imϕ e m=0, ± 1, ± 2... 2π
组成正交归一系

π

0
* φm (ϕ )φm′ (ϕ )dϕ = δ mm′
ˆ 3、角动量算符 L2 本征函数
Ylm (θ , ϕ ) = N lm Pl m (cos θ )eimϕ

厄米算符本征值和本征函数

厄米算符本征值和本征函数

AB BA
(3.3.8)
d.任何算符总可分解为
i
(3.3.9)

1


米算符。2
、 1


2i
,则 和 均为厄
3.3 厄米算符的本征值和本征函数
厄米算符的平均值、本征值、本征函数具有下列性质:
① 厄米算符的平均值是实数,因为
*
O
*
m

Om
*
m

O m n Om m n
及O的厄米性质,O m n m O n ,及
m O n On m n
3.3 厄米算符的本征值和本征函数

(Om On ) m n 0
又因 On Om

m n 0
得证。若本征函数是正交归一化的,则有
* dr
*
dr
* dr
*

*
(3.3.10)
② 在任何状态下平均值均为实数的算符必为厄米算符。
③ 厄米算符的本征值为实数。厄米算符在本征态中的平均 值就是本征值。
④ 厄米算符属于不同本征值的本征函数正交。
⑤ 厄米算符的简并的本征函数可以经过重新组合后使它正 交归一化。
成立,而且 1 、 2 为任意波函数。为此令 1 2 ,利
用(1)式得
(1 2 ) O(1 2 ) O(1 2 ) (1 2 )
(2)
因为 O在 1、 2 中的平均值也是实数,所以上式又写为
1 O 2 2 O1 O1 2 O 2 1
(3)
3.3 厄米算符的本征值和本征函数
对 1和 2作变换,令

第三章-量子力学中的力学量(下)

第三章-量子力学中的力学量(下)
2 2 2 2 2 2 2 2 A h k A h k A 4h k A 4h k A 0× + × + × + × − + × − 2 2µ 4 2µ 4 2µ 4 2µ 4 5h2k2 平均动能 = = 2 2 2 2 2 8µ (2× A/ 4) + ( A/ 4) + ( A/ 4) + (− A/ 4) + (− A/ 4)
1= ∫ψ ψdV = ∑∑c c ∫ψ ψ dV =∑∑c c δ =∑cn
* * n m * n m * n m nm n m n m n
2
第5(6)节 算符与力学量的关系 5(6
ˆ 量子力学基本假定:力学量 对应厄米算符 对应厄米算符, 量子力学基本假定:力学量F对应厄米算符 算符F的本征函数构成 描述时, 完全系。当系统由归一化 归一化波函数 完全系。当系统由归一化波函数 ψ = ∑ cnψ n 描述时,测量力学
角动量算符本征函数
* Y lm (θ , ϕ )Y l ' m ' (θ , ϕ )d Ω ≡ ∫ 2π
波函数 ψ
r p
r (r ) =
1 e ( 2πh )3 / 2
r r ip⋅ r h
波函数 Ylm (θ , ϕ ) = N lm Pl|m| (cosθ )e imϕ
* d ϕ ∫ sin θ d θ Y lm (θ , ϕ )Y l 'm ' (θ , ϕ ) = δ ll 'δ mm ' ∫ 0 0
的结果必定是对应算符的本征值, 量F的结果必定是对应算符的本征值,测量到本征值 f n 的几率 的结果必定是对应算符的本征值 是 cn 2。 ˆ 如果测量F的结果为 如果测量 的结果为 fn, 波函数塌缩为ψ = ∑cnψn →ψn (Fψ n = f nψ n ) 。

力学量和算符

力学量和算符

第三章 力学量和算符内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数 。

用波函数描述粒子的运动状态。

本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。

然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。

我们将证实算符的运动方程中含有对易子,出现 。

§ 3.1 力学量算符的引入 § 3.2 算符的运算规则§ 3.3 厄米算符的本征值和本征函数 § 3.4 连续谱本征函数§ 3.5 量子力学中力学量的测量 § 3.6 不确定关系 § 3.7 守恒与对称在量子力学中。

微观粒子的运动状态用波函数描述。

一旦给出了波函数,就确定了微观粒子的运动状态。

在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。

一般说来。

当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。

当给定描述这一运动状态的波函数 后,力学量出现各种可能值的相应的概率就完全确定。

利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。

既然一切力学量的平均值原则上可由 给出,而且这些平均值就是在 所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。

力学量的平均值对以波函数(,)r t ψ 描述的状态,按照波函数的统计解释,2(,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是:()2*(,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞∞-∞-∞==⎰⎰坐标r 的函数()f r的平均值是:()()()*(,)(,) 3.1.2f r r t f r r t dr ψψ∞-∞=⎰现在讨论动量的平均值。

第四章 力学量用厄米算符表达

第四章 力学量用厄米算符表达

ˆ ˆ ˆ Fψ = Aψ + Bψ
ˆ ˆ ˆ ˆ ˆ ˆ 称算符 F 等于 A 与 B 之和。写作 F = A + B

ˆ ˆ ˆ ˆ ˆ 例3:哈密顿算符 H = T + V 就是动能算符 T 与势能算符 V
之和。算符求和满足交换律与结合律,
ˆ ˆ ˆ ˆ A+ B = B + A
ˆ ˆ ˆ ˆ ˆ ˆ A + ( B + C ) = ( A + B) + C
ˆ ˆ ˆ ˆ ˆ l = r × p = r × (−i ∇) = −i r × ∇
如果没有经典力学表达式的量子力学力学量,比如电子的自旋, 它的算符由量子力学独立建立。
Atomic physics and quantum mechanics
9

算符运算的基本性质
定义1:线性算符
由于态叠加原理,在量子力学中的力学量算符应是线性算符, 所谓线性算符,即是具有如下性质
式中c1、c2为任意常数。
Atomic physics and quantum mechanics
20
定义9:转置算符
ˆ ˆ 算符 A 的转置算符 AT 定义为
ˆ Tφ = dτφ Aψ ∗ ˆ dτψ ∗ A ∫ ∫ ˆ ˆ (ψ , ATφ ) = (φ ∗, Aψ ∗)
式中 ψ 与 例5:证明

+∞ −∞
⎡⎛ ∂ ⎞ T ∂ ⎤ dxψ ∗ ⎢⎜ ⎟ + ⎥ φ = 0 ∂x ⎥ ⎢ ⎝ ∂x ⎠ ⎣ ⎦
ψ ∗, φ 任意
∂ ⎛ ∂ ⎞ + =0 ⎜ ⎟ ∂x ⎝ ∂x ⎠
21
T
Atomic physics and quantum mechanics
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即属于动量算符不同本征值的两个本征函数ψ pv′ 与ψ pv 相互正交。这是所有厄密算符的本征函数所共
有的。
2). 线性谐振子能量本征函数组成正交归一系
ቤተ መጻሕፍቲ ባይዱ
线性谐振子的能量本征函数
−1α 2x2
ψ n = N ne 2 H n (αx)
∫ 组成正交归一系:
∞ψ
−∞
n*ψ
n′ dx
=
δ
nn′
3). 角动量本征函数组成正交归一系
综合上述讨论可得如下结论:既然厄米算符本征函数总可以取为正交归一化的,所以以后凡是
提到厄米算符的本征函数时,都是正交归一化的,即组成正交归一系。
6. 实例
1). 动量本征函数组成正交归一系
∫ψ *pv′ (rv)ψ pv (rv)drv = δ ( pv − pv ′)
当 pv ≠ pv ′ 时,
∫ψ *pv′ (rv)ψ pv (rv)drv = 0
1). 正交性的定义
∫ 如果两函数ψ1和ψ2满足关系式 ψ 1*ψ 2dτ = 0 ,则称ψ1和ψ2相互正交。
2). 定理 III:厄米算符属于不同本征值的本征函数彼此正交。(证明)
∫ ∫ ( Aˆψ m )*ψ ndτ = Am ψ m*ψ ndτ
∫ ∫ ∫ ( Aˆψ m )*ψ ndτ =
ψ
* m
2. 厄米算符的本征方程 1) . 涨落
涨落定义为 (ΔA)2 = ( Aˆ − A)2
证明: (ΔA)2 = ( Aˆ − A)2 ≥ 0
2) . 力学量的本征方程 若体系处于一种特殊状态,在此状态下测量 A 所得结果是唯一确定的,即:
(ΔA)2 = 0
则称这种状态为力学量 A 的本征态。
( Aˆ − A)ψ = 0 或 Aˆψ = 常数×ψ
§3.5 厄米算符的本征值与本征函数
1. 厄米算符的平均值 定理 I:体系任何状态ψ下,其厄米算符的平均值必为实数。(证明) 逆定理:在任何状态下,平均值均为实数的算符必为厄米算符。(证明) 推论:设 Â 为厄米算符,则在任意态ψ之下
∫ ∫ A2 = dτψ * Aˆ 2ψ = dτ ( Aˆψ )* Aˆψ ≥ 0
∫ ∫ 组成正交归一系:
π 0
2π 0
Ylm*


)Yl′m

,
ϕ
)
sin
θdθdϕ
=
δ ll′
(8)
(7)和(8)可合写为
∫ ∫π 0
2π 0
Ylm*

,
ϕ
)Yl′m′

,
ϕ
)
sin
θdθdϕ
=
δ δll′ mm′
(9)
4
①. lz 本征函数
角动量算符 lˆz 的本征函数
ψ m (ϕ) =
1 eimϕ 2π
(m = 0,±1,±2,K)
组成正交归一系:
∫ 2πψ 0
* m


m′ (ϕ)dϕ
=
δ mm′
(7)
②. lˆ2 本征函数
3
角动量平方算符 lˆ2 属于本征值 l(l + 1)h 2 的本征函数 Ylm
Ylm (θ ,ϕ ) = Nlm Pl m (cosθ )eimϕ
Aˆψ
n

= An
ψ m*ψ ndτ
3). 分立谱、连续谱正交归一表示式 ①. 分立谱正交归一条件分别为:
∫ψ n*ψ ndτ = 1
归一化条件
∫ψ m*ψ ndτ = 0 (m ≠ n)
正交性
引用δmn称为克朗内克(Kronecker)符号,它具有如下性质:
δ mn
=
⎧⎪0 ⎨ ⎪⎩ 1
m≠n m=n
∫ ∫ 例 1: ∞ ψ * xφdx = ∞ (xψ )*φdx (Q x 为实数)
−∞
−∞
∫ ∫ 例 2:
∞ψ
−∞
*
pˆ xφdx
=
∞ −∞
(
pˆ xψ
)*φ
dx
例 3:证明 Hˆ = pˆ x2 + V (x) 为厄密算符 2m
综上所述:表示力学量的算符必为线性、厄密算符,线性厄密算符不一定是力学量算符。
可把常数记为An,把状态记为ψn,于是得:
Aˆψ n = Anψ n
(1)
其中An,ψn分别称为算符Â的本征值和相应的本征态,式(1)即算符Â的本征方程。 定理 II:厄米算符的本征值必为实。(证明)
3. 量子力学中的力学量用线性厄米算符表示
1). 表示力学量的算符必为线性算符;
2). 表示力学量的算符必为厄密算符。
1
3). 力学量算符和力学量之间的关系 测量力学量A时所有可能出现的值,都对应于线性厄米算符Â的本征值An(即测量值是本征值之
一),该本征值由力学量算符Â的本征方程
Aˆψ n = Anψ n
n = 1, 2,L
当体系处于Â的本征态ψn时,则每次测量所得结果都是完全确定的,即An。
4. 厄米算符的本征函数的正交性
把(3)与(4)式合写为
∫ψ m*ψ ndτ = δmn
②. 连续谱正交归一条件表示为:
∫ψ λ*ψ λ′dτ = δ (λ − λ′)
③. 正交归一系 满足上式的函数系ψn或ψλ称为正交归一(函数)系
5. 简并情况 如果Â的本征值An是fn度简并的,则属于本征值An的本征态有fn个:ψnα,α=1,2,…, fn
满足本征方程:
2
Aˆψ nα = Anψ nα
α = 1, 2,L, fn
一般说来,这些函数并不一定正交。但是可以证明由这 fn 个函数可以线性组合成fn 个独立的新函 数,它们仍属于本征值An且满足正交归一化条件。
算符Â本征值An简并的本质是:当An确定后还不能唯一的确定状态,要想唯一的确定状态还得寻 找另外一个或几个力学量算符,Â算符与这些算符两两对易,其本征值与An一起共同确定状态。
相关文档
最新文档