最新2019-2020四川省中考数学模拟试卷
2019年四川省巴中市恩阳区茶坝中学中考数学模拟试卷(解析版)

2019年四川省巴中市恩阳区茶坝中学中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列说法:①如果a=﹣4,那么﹣a=4;②倒数等于它本身的有理数是1;③如果a是非正数,那么﹣a是负数;④如果a是负数,那么|a|+1是正数,其中正确的有()A.1个B.2个C.3个D.4个2.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.3.下列运算正确的是()A.2a+a=3a2B.C.(3a2)3=9a6D.a2•a3=a54.如图,直线AB、CD相交于点O,∠BOE=90°,OF平分∠AOE,∠1=15°30′,则下列结论不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD+∠1=180°D.∠EOD=75°30'5.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球6.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A.B.C.D.7.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:则该班学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分8.下列各题估算正确的是()A.B.C.D.9.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°10.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个B.3个C.4个D.5个二.填空题(共10小题,满分30分,每小题3分)11.分解因式:x3y﹣2x2y+xy=.12.在函数y=+中,自变量x的取值范围是.13.将201800000用科学记数法表示为.14.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.15.如图,已知抛物线l1:y=(x﹣2)2﹣2与x轴分别交于O、A两点,将抛物线L1向上平移得到L2,过点A作AB⊥x轴交抛物线L2于点B,如果由抛物线L1、L2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线L2的函数表达式为.16.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,过E点作EH⊥CD于H,则EH的长为.17.已知扇形所在圆半径为4,弧长为6π,则扇形面积为18.若关于x的方程无解,则m的值是.19.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=2,则⊙O的半径为.20.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是.三.解答题(共11小题,满分90分)21.(5分)计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣122.(5分)解方程组(1)(2).23.(6分)方程与计算:(1)+1=;(2)先化简:÷(),然后再从﹣2<x≤2的范围内选取一个合适的x的整数值代入求值.24.(6分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.(1)画出△A1OB1;(2)直接写出点A1和点B1的坐标;(3)求线段OB1的长度.25.(8分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?26.(8分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.27.(10分)随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)28.(10分)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为i=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).29.(10分)如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G、H.(1)求证:△BAE∽△BCF;(2)若BG=BH,求证:四边形ABCD是菱形.30.(10分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.31.(12分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年四川省巴中市恩阳区茶坝中学中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用绝对值的性质以及非负数的定义分别分析得出即可.【解答】解:①如果a=﹣4,那么﹣a=﹣(﹣4)=4,故此说法正确;②倒数等于它本身的有理数是±1,故此说法错误;③如果a是非正数,那么么﹣a是非负数,故此说法错误;④如果a是负数,那么|a|+1是正数,故此说法正确;故选:B.【点评】此题主要考查了相反数的定义以及绝对值得性质,正确把握语句的意思是解题关键.2.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选:D.【点评】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.3.【分析】根据合并同类项、同底数幂的乘法和除法、幂的乘方与积的乘方、二次根式的乘法法则.【解答】解:A、错误,∵2a+a=3a;B、错误,∵=×,被开方数不能是负数;C、错误,∵(3a2)3=27a6;D、正确,符合底数幂的乘法法则.故选:D.【点评】(1)本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法和除法、幂的乘方与积的乘方、二次根式的化简,需熟练掌握且区分清楚,才不容易出错.(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.4.【分析】根据角平分线性质、对顶角性质、互余、互补角的定义,逐一判断.【解答】解:A、由OE⊥AB,可知∠AOE=90°,OF平分∠AOE,则∠2=45°,正确;B、∠1与∠3互为对顶角,因而相等,正确;C、∠AOD与∠1互为邻补角,正确;D、∠EOD=180°﹣15°30'﹣45°≠75°30',错误;故选:D.【点评】本题主要考查邻补角以及对顶角的概念,和为180°的两角互补,和为90°的两角互余.5.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.6.【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【解答】解:设小正方形的边长为1,则其面积为1.∵圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为,即圆的直径为,∴大正方形的边长为,则大正方形的面积为×=2,则小球停在小正方形内部(阴影)区域的概率为.故选:C.【点评】用到的知识点为:概率=相应的面积与总面积之比;难点是得到两个正方形的边长的关系.7.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列,最中间的两个数都是80分,则这组数据的中位数是80分;80分出现了12次,出现的次数最多,则众数是80分.故选:B.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.【分析】A、被开方数0.35接近于0.36,所以算术平方根接近于0.6,由此即可判定;B、2.6的立方为17.576,大于被开方数10很多,由此即可判定;C、35.1的平方约为1232.01,接近于被开方数,由此即可判定;D、26900接近于27000,立方根应接近于30,由此即可判定.【解答】解:A、∵0.35接近0.36,∴应接近0.6,故选项错误;B、∵2.53=>10,∴ 2.5,故选项错误;C、∵35.1的平方约为1232.01,接近于被开方数,故选项正确;D、∵26900<27000,∴<30,故选项错误;故选:C.【点评】此题主要考查了无理数的估算能力,应先算出算术平方根的平方立方根的立方,与所给的被开方数进行比较,得到相应的答案.注意区分开平方还是开立方.9.【分析】由⊙O是△ABC的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【解答】解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正方形的性质就可以得出∠AEB=75°;设EC=x,由勾股定理得到EF,表示出BE,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AE sin60°=EF sin60°=2×CG sin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE ═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二.填空题(共10小题,满分30分,每小题3分)11.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】根据二次根式的性质和的意义知,被开方数大于等于0.【解答】解:根据二次根式有意义得:x﹣1≥0且2﹣x≥0,解得:2≥x≥1.故答案为:2≥x≥1.【点评】考查了分式和根号有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:201800000用科学记数法表示为:2.018×108,故答案为:2.018×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 的关系是解答此题的关键.15.【分析】利用二次函数图象上点的坐标特征求出抛物线与x轴交点的横坐标,由阴影部分的面积等于矩形OABC的面积可求出AB的长度,再利用平移的性质“左加右减,上加下减”,即可求出抛物线L2的函数表达式.【解答】解:当y=0时,有(x﹣2)2﹣2=0,解得:x1=0,x2=4,∴OA=4.=OA•AB=16,∵S阴影∴AB=4,∴抛物线L2的函数表达式为y=(x﹣2)2﹣2+4=(x﹣2)2+2.故答案为:y=(x﹣2)2+2.【点评】本题考查了抛物线与x轴的交点、矩形的面积以及二次函数图形与几何变换,观察图形,找出阴影部分的面积等于矩形OABC的面积是解题的关键.16.【分析】先利用等边三角形的性质得到∠BAC=60°,AB=AC,再利用旋转的性质得∴∠DAE =∠BAC=60°,AD=AE=5,CE=BD=6,则可判断△ADE为等边三角形得到DE=AD=5,设DH=x,则CH=CD﹣DH=4﹣x,于是根据勾股定理得到EH2+x2=52①,EH2+(4﹣x)2=62②,然后利用加减消元法先求出x,再计算EH即可.【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,∴∠DAE=∠BAC=60°,AD=AE=5,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,设DH=x,则CH=CD﹣DH=4﹣x,在Rt△DHE中,EH2+x2=52,①在Rt△CHE中,EH2+(4﹣x)2=62,②②﹣①得16﹣8x=11,解得x=,∴EH==.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.17.【分析】直接根据扇形的面积公式S=lR进行计算即可.扇形【解答】解:根据扇形的面积公式,得S=lR=×6π×4=12π.扇形故答案为:12π.【点评】本题考查了扇形面积的计算.熟记公式是解题的关键.18.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x﹣5=m+2x﹣6,解得:x=1﹣m,由分式方程无解,得到x=3,即1﹣m=3,解得:m=﹣2,故答案为:﹣2【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.19.【分析】连接OC,由垂径定理知,点E是CD的中点,CE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣2,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣2)2,解得:x=,∴⊙O的半径为,故答案为:.【点评】本题考查了垂径定理和勾股定理,熟练掌握并应用定理是解题的关键.20.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由题意可知:k﹣2>0,∴k>2,故答案为:k>2.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.三.解答题(共11小题,满分90分)21.【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.【点评】本题主要考查实数的运算,解题的关键是熟练掌握特殊锐角三角函数值、绝对值性质及零指数幂和负整数指数幂的运算法则.22.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.【分析】(1)两边都乘以x(x﹣1)化分式方程为整式方程,解整式方程求得x的值,再检验即可得答案;(2)先根据分式混合运算顺序和运算法则化简原式,再根据分式有意义的条件得出x的值,代入计算可得.【解答】解:(1)两边都乘以x(x﹣1),得:3+x(x﹣1)=x2,解得:x=3,检验:x=3时,x(x﹣1)=6≠0,所以分式方程的解为x=3;(2)原式=÷[﹣]=÷=•=,∵x≠0且x≠±1,∴x=2,则原式==4.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解分式方程的步骤.24.【分析】(1)分别作出点A和点B绕点O逆时针旋转90°所得对应点,再与点O首尾顺次连接即可得;(2)由所得图形可得点的坐标;(3)利用勾股定理可得答案.【解答】解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.【点评】本题主要考查作图﹣旋转变换,解题的关键是掌握旋转变换的定义和性质,并据此得出变换后的对应点.25.【分析】(1)根据条形图的意义,将各组人数依次相加可得答案;(2)根据表中的数据计算可得答案;(3)用样本估计总体,按比例计算可得.【解答】解:(1)4﹢8﹢10﹢18﹢10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×=720(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.26.【分析】(1)把A(﹣1,n)代入y=﹣2x,可得A(﹣1,2),把A(﹣1,2)代入y=,可得反比例函数的表达式为y =﹣,再根据点B 与点A 关于原点对称,即可得到B 的坐标; (2)观察函数图象即可求解;(3)设P (m ,﹣),根据S 梯形MBPN =S △POB =1,可得方程(2+)(m ﹣1)=1或(2+)(1﹣m )=1,求得m 的值,即可得到点P 的横坐标.【解答】解:(1)把A (﹣1,n )代入y =﹣2x ,可得n =2,∴A (﹣1,2),把A (﹣1,2)代入y =,可得k =﹣2,∴反比例函数的表达式为y =﹣,∵点B 与点A 关于原点对称,∴B (1,﹣2).(2)∵A (﹣1,2),∴y ≤2的取值范围是x <﹣1或x >0;(3)作BM ⊥x 轴于M ,PN ⊥x 轴于N ,∵S 梯形MBPN =S △POB =1,设P (m ,﹣),则(2+)(m ﹣1)=1或(2+)(1﹣m )=1整理得,m 2﹣m ﹣1=0或m 2+m +1=0,解得m =或m =,∴P 点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.27.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.28.【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题;【解答】解:作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=100(米),∴BC=BE+EC=100+100(米).【点评】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.29.【分析】(1)先利用已知里的两个垂直,可证一对角相等,都等于90°,再利用平行四边形的性质,对角相等,那么可证△BAE∽△BCF;(2)由BG=BH,可得∠3=∠4,那么∠AGE=∠CHF,利用等量减等量差相等,可证∠DAC=∠DCA,等角对等边,那么AD=DC,那么▱是菱形.【解答】证明:(1)∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°.又ABCD是平行四边形,∴∠BAE=∠BCF.∴△BAE∽△BCF.(2)∵△BAE∽△BCF,∴∠1=∠2.又BG=BH,∴∠3=∠4.∴∠BGA=∠BHC,BG=BH.∴△BGA≌△BHC(ASA).∴AB=BC.∴▱ABCD为菱形.【点评】本题利用了平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、菱形的判定等知识.30.【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O 上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【解答】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.则AC=15(cm).∴⊙O的半径是7.5cm.【点评】本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.31.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3), 设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =,当t =时,﹣t 2+2t +3=,当t =时,﹣t 2+2t +3=,∴Q 点坐标为(,)或(,);综上可知Q 点坐标为(1,4)或(,)或(,). 【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
四川省绵阳市 中考数学模拟试卷(三)(解析版)

四川省绵阳市中考数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.222.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×10113.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣25.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,39.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:311.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<012.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为cm.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B点左侧),与y轴交于点C,对称轴为直线x=,OA=2,OD平分∠BOC交抛物线于点D(点D在第一象限);(1)求抛物线的解析式和点D的坐标;(2)点M是抛物线上的动点,在x轴上存在一点N,使得A、D、M、N四个点为顶点的四边形是平行四边形,求出点M的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.25.已知△ABC,AC=BC,CD⊥AB于点D,点F在BD上,连接CF,AM⊥CF于点M,AM交CD于点E.(1)如图1,当∠ACB=90°时,求证:DE=DF;(2)如图2,当∠ACB=60°时,DE与DF的数量关系是(3)在2的条件若tan∠EAF=,EM=,连接EF,将∠DEF绕点E逆时针旋转,旋转后角的两边交线段CF于N、G两点,交线段BC于P、T两点(如图3),若CN=3FN,求线段GT的长.四川省绵阳市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作()A.﹣0.15 B.+0.22 C.+0.15 D.﹣0.22【考点】正数和负数.【分析】根据高于标准记为正,可得低于标准记为负.【解答】解:∵以4.00米为标准,若小东跳出了4.22米,可记做+0.22,∴小东跳出了3.85米,记作﹣0.15米,故选:A.【点评】本题考查了正数和负数,注意高于标准用正数表示,低于标准用负数表示.2.”造林见林,见林见效”这是退耕还林、造林的基本要求,更是农民的朴实愿望,四川省林业厅副厅长包建华说,退耕还林直补给退耕农户带来实惠,累计兑现政策性补助资金331.92亿元,户均5500元.将331.92亿用科学记数法表示为()A.3.3192×108B.3.3192×109C.3.3192×1010D.3.3192×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:331.92亿=331 9200 0000=3.3192×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列事件中是随机事件的是()A.一星期有7天B.袋中有三个红球,摸出一个球是红球C.字母M、N都轴对称图形D.任意买一张车票,座位刚好靠窗口【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、一星期有7天是必然事件,故A错误;B、袋中有三个红球,摸出一个球是红球是必然事件,故B错误;C、字母M是轴对称图形,字母N不是轴对称图形,故C错误;D、任意买一张车票,座位刚好靠窗口是随机事件,故D正确;故选:D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.在函数y=中,自变量x的取值范围是()A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣2【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+2≥0且3x≠0,解得:x≥﹣2且x≠0.故选A.【点评】考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选:A.【点评】本题考查了三视图的知识,关键是掌握三视图所看的位置.6.已知四边形ABCD,则下列说法中正确的是()A.若AB∥CD,AB=CD,则四边形ABCD是平行四边形B.若AC⊥BD,AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AB=AD,CB=CD则四边形ABCD是菱形D.若AB=BC=CD=AD,则四边形ABCD是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】分别利用平行四边形以及矩形、菱形和正方形的判定方法分别判断得出即可.【解答】解;A、若AB∥CD,AB=CD,则四边形ABCD是平行四边形,故此选项正确;B、若AC⊥BD,AC=BD,无法得到四边形ABCD是矩形,故此选项错误;C、若AC⊥BD,AB=AD,CB=CD,无法得到四边形ABCD是菱形,故此选项错误;D、若AB=BC=CD=AD,无法得到四边形ABCD是正方形,故此选项错误.故选:A.【点评】此题主要考查了平行四边形以及矩形、菱形和正方形的判定方法,正确掌握相关判定定理是解题关键.7.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则每张甲票、每张乙票的价格分别是()A.10元和8元B.8元和10元C.12元和10元D.10元和12元【考点】二元一次方程组的应用.【专题】计算题.【分析】设每张甲票、每张乙票的价格分别是x元,y元,列方程组得,求解即可.【解答】解:设每张甲票、每张乙票的价格分别是x元,y元,则,解得,答:每张甲票、每张乙票的价格分别是10元,8元.故选A.【点评】本题考查了二元一次方程组的应用,找出等量关系,列出方程组,是解此题的关键.8.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 1 3 6 5 5则这20名同学每天使用的零花钱的平均数和中位数分别是()A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3【考点】中位数;加权平均数.【分析】根据平均数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:1,2,2,2,3,3,3,3,3,3,4,4,4,4,4,5,5,5,5,5,则平均数为:=3.5,中位数为:=3.5.故选C.【点评】本题考查了平均数和中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图是一个长方形的铝合金窗框,其长为a(m),高为b(m),装有同样大的塑钢玻璃,当第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,用含a与b的式子表示这时窗子的通风面积是()m2.A.B.C.D.【考点】列代数式.【分析】第②块向右拉到与第③块重叠,再把第①块向右拉到与第②块重叠时,第一块和第二块玻璃之间的距离是(﹣)×.窗子的通风面积为①中剩下的部分.【解答】解:[a﹣﹣﹣×(﹣)]×b=ab.故选B.【点评】此题有一定的难度,主要是不能准确的找到窗子的通风部位.应该根据图示找到窗子通风的部位在那里,是那个长方形,其长和宽式多少,都需要求出来,再进行面积计算.10.如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于()A.1:2 B.1:3 C.1:4 D.2:3【考点】相似三角形的判定与性质.【分析】由AD∥BC,GE∥BC,易证得△AOD∽△COB,△OGE∽△OBC,又由AD=1,BC=3,点G是BD 的中点,根据相似三角形的对应边成比例,易得OG=OD,继而求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∵AD=1,BC=3,∴OD:OB=AD:BC=1:3,∴OD=BD,∵点G是BD的中点,∴DG=BD,∴OD=OG,∵GE∥BC,∴△OGE∽△OBC,∴GE:BC=OG:OB=OD:OB=1:3.故选:B.【点评】此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.已知二次函数y=x2﹣5x+6,当自变量x取m时,对应的函数值小于0,当自变量x取m﹣1、m+1时,对应的函数值为y1、y2,则y1、y2满足()A.y1>0,y2>0 B.y1<0,y2>0 C.y1<0,y2<0 D.y1>0,y2<0【考点】二次函数图象上点的坐标特征.【分析】根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值小于0,确定m ﹣1、m+1的位置,进而确定函数值为y1、y2.【解答】解:令y=x2﹣5x+6=0,解得:x=2或x=3.∵当自变量x取m时对应的值小于0,∴2<m<3,∴m﹣1<2,m+1>3,∴y1>0,y2>0.故选:A.【点评】此题考查了抛物线与x轴的交点和二次函数图象上的点的特征,解题的关键是求得抛物线与横轴的交点坐标.12.已知,如图,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,EF⊥AB于F,连接OE交DC于点P,则下列结论不正确的是()A.OE∥AB B.BC=2DE C.AC•DF=DE•CD D.DE=PD【考点】切线的性质.【分析】证明BC是⊙O的切线,进而得到P是CD的中点,利用中位线定理求出OE∥AB,据此判断A 正确;证明E是BC的中点,利用∠CDB是直角,据此得到BC=2DE,判断B选项正确;证明△ACD∽△EDF,即可得到AC•DF=DE•CD,判断C选项正确;只有当PE=PD时DE才等于PD,据此判断D选项错误.【解答】解:∵∠ACB=90°,∴BC是⊙O的切线,∵BC是⊙O的切线,∴OE垂直平分CD,∠OEC=∠OED,∴P是CD的中点,∴OP∥AB,∴OE∥AB,A选项正确,∵OE∥AB,O是AC的中点,∴E是BC的中点,∵AC是直径,∴∠ADC=90°,∴CD⊥AB,∴∠CDB=90°,∴BC=2DE,B选项正确;∵EF⊥AB,∴∠DFE=∠ADC=90°,∵DE=CD,BC是⊙O的切线,∴DE是⊙O的切线,∴∠EDF=∠CAD,∴△ACD∽△EDF∴,∴AC•DF=DE•CD,C选项正确.在四边形PDFE中,我们可以证明它是矩形,而不具备证明它是正方形的条件, ∴DE=,只有PE=PD时DE才等于PD,D选项错误,故选D.【点评】本题考查了圆的切线的性质、圆周角定理,相似三角形的判定与性质,切线长性质及三角形的中位线的运用,解答本题的关键是熟练掌握切线的判定定理以及切线的性质,此题有一定的难度.二.填空题(本大题共6小题,每小题3分,共18分)13.小明身高为140cm,比他高20cm的哥哥的身高为160cm.【考点】有理数的加法.【专题】应用题.【分析】根据有理数的加法,即可解答.【解答】解:140+20=160(cm).故答案为:160.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数加法法则.14.如图,把一块直角三角板直角顶点放在直尺的一边上,若∠1=25°,则∠2=65°.【考点】平行线的性质.【分析】由题意知,∠1+∠3=90°;然后根据“两直线平行,内错角相等”推知∠2=∠3.【解答】解:如图,根据题意,知∠1+∠3=90°.∵∠1=25°,∠3=65°.又∵AB∥CD,∴∠2=∠3=65°;故答案是“65°.【点评】本题考查了平行线的性质.解题时,要注意挖掘出隐含在题中的已知条件∠1+∠3=90°.15.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是3或4.【考点】三角形三边关系;一元一次不等式的整数解.【分析】先求出不等式的解集,再根据x是符合条件的正整数判断出x的可能值,再由三角形的三边关系求出x的值即可.【解答】解:2x﹣1<9,解得:x<5,∵x是它的正整数解,∴x可取1,2,3,4,根据三角形第三边的取值范围,得2<x<14,∴x=3,4.故答案为:3或4.【点评】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是2+2.【考点】剪纸问题.【专题】压轴题.【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线①为矩形的对称轴,依据对称轴的性质虚线①平分矩形的长,即可得到沿虚线②裁下的直角三角形的短直角边为10÷2﹣4=1,虚线②为斜边,据勾股定理可得虚线②为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三角形的周长.【解答】解:根据题意,三角形的底边为2(10÷2﹣4)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2.答:展开后等腰三角形的周长为2+2.【点评】本题主要考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来.17.如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,△AP′C是由△BPC绕着点C旋转得到的,PA=,PB=1,∠BPC=135°.则PC=.【考点】旋转的性质;勾股定理.【专题】计算题.【分析】根据旋转的性质可以得到∠P′CA=∠PCB,进而可以得到∠P′CP=∠ACB=90°,进而得到等腰直角三角形,求解即可.【解答】解:∵△AP′C是由△BPC绕着点C旋转得到的,∴∠P′CA=∠PCB,CP′=CP,∴∠P′CP=∠ACB=90°,∴△P′CP为等腰直角三角形,可得出∠AP′B=90°,∵PA=,PB=1,∴AP′=1,∴PP′==2,∴PC=,故答案为.【点评】本题考查了旋转的性质及勾股定理的知识,解题的关键是正确的利用旋转的性质得到相等的量.18.有依次排列的3个数:3,9,8.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作,做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8.继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是520.【考点】规律型:数字的变化类.【分析】首先具体地算出每一次操作以后所产生的那个新数串的所有数之和,从中发现规律,进而得出操作第100次以后所产生的那个新数串的所有数之和.【解答】解:设A=3,B=9,C=8,操作第n次以后所产生的那个新数串的所有数之和为S n.n=1时,S1=A+(B﹣A)+B+(C﹣B)+C=B+2C=(A+B+C)+1×(C﹣A);n=2时,S2=A+(B﹣2A)+(B﹣A)+A+B+(C﹣2B)+(C﹣B)+B+C=﹣A+B+3C=(A+B+C)+2×(C﹣A);…故n=100时,S100=(A+B+C)+100×(C﹣A)=﹣99A+B+101C=﹣99×3+9+101×8=520.故答案为:520.【点评】此题主要考查了数字变化类,本题中理解每一次操作的方法是前提,得出每一次操作以后所产生的那个新数串的所有数之和的规律是关键.三.解答题(本大题共7小题,共86分)19.(1)计算:3tan45°+|1﹣|﹣(3.14﹣π)0﹣(2)化简:÷(﹣a﹣2)【考点】分式的混合运算;零指数幂;二次根式的混合运算;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值,绝对值,零指数次幂以及分母有理化进行计算即可;(2)根据运算顺序,先算括号里面的,再算除法即可.【解答】解:(1)原式=3×1+﹣1﹣1﹣=3﹣2=1;(2)原式=÷=•=﹣=﹣.【点评】本题考查了特殊角的三角函数值,二次根式的混合运算以及分式的混合运算,通分、因式分解和约分是解答分式混合运算的关键.20.中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者小李随机调查了市区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中.共调査了200名中学生家长;(2)将图①补充完整;(3)根据抽样调查结果,请你估计市区80000名中学生家长中有多少名家长持反对态度?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】计算题.【分析】(1)由无所谓的人数除以所占的百分比即可求出学生家长的总数;(2)求出赞成的人数,补全统计图即可;(3)求出反对的人数占得百分比,乘以80000即可得到结果.【解答】解:(1)根据题意得:40÷20%=200(人),则共调查了200名中学生的家长;(2)赞成家长数为200﹣(40+120)=40(人),补全统计图,如图所示:(3)根据题意得:80000×=48000(人),则市区80000名中学生家长中有48000名家长持反对态度.【点评】此题考查了条形统计图,扇形统计图,用样本估计总体,弄清题意是解本题的关键.21.如图,直角三角形ABC,点A的坐标为(0,2),点B的坐标为(0,﹣2),BC的长为3,反比例函数y=的图象经过点C.(1)求反比例函数与直线AC的解析式;(2)点P是反比例函数图象上的点,若使△OAP的面积恰好等于△ABC的面积,求P点的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)求出C的坐标,代入反比例函数的解析式,即可求出反比例函数的解析式,设直线AC的解析式是y=ax+b,把A、C的坐标代入即可求出直线AC的解析式;(2)设P的坐标是(x,y),根据三角形面积求出x的值,代入反比例函数的解析式,求出y即可.【解答】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣2),∴AB=4,∵BC的长是3,∴C点的坐标是(3,﹣2),∵反比例函数y=的图象经过点C,∴k=3×(﹣2)=﹣6,∴反比例函数的解析式是y=﹣;设直线AC的解析式是y=ax+b,把A(0,2),C(3,﹣2)代入得:,解得:b=2,k=﹣,即直线AC的解析式是y=﹣x+2;(2)设P的坐标是(x,y),∵△OAP的面积恰好等于△ABC的面积,∴×OA•|x|=×3×4,解得:x=±6,∵P点在反比例函数y=﹣上,∴当x=6时,y=﹣1;当x=﹣6时,y=1;即P点的坐标为(6,﹣1)或(﹣6,1).【点评】本题考查了三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,主要考查学生的推理和计算能力,题目比较好,难度适中.22.某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过20%,则该商家经过两次连续降价(两次降价百分率相等)后,使该商品的利润为20%;(1)若已知该商家商品原来定价为30元,求每次降价的百分率;(2)若每件商品定价为x(x为整数)元,将剩余170件商品全部卖出,商店预期至少盈利340元,则有哪几种定价方案?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每次降价的百分率为x,根据商家经过两次连续降价(两次降价百分率相等)后,该商品的利润为20%,列出方程,求解即可;(2)若每件商品定价为x(x为整数)元,根据物价局限定每件商品的利润不得超过20%和剩余170件商品全部卖出,商店预期至少盈利340元,列出不等式组,求解即可.【解答】解:(1)设每次降价的百分率为x,根据题意得:30(1﹣x)2=16(1+20%),解得:x1=0.2=20%,x2=1.8(不合题意,舍去),答:每次降价的百分率为20%.(2)若每件商品定价为x(x为整数)元,根据题意得:,解得:18≤x≤,∵x为整数,∴x=18,19,∴共有2种方案,方案①:每件商品定价为18元,方案②:每件商品定价为19元.【点评】此题考查了一元二次方程和一元一次不等式组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程和不等式组,再求解;注意把不合题意的解舍去.23.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)【考点】切线的判定与性质;扇形面积的计算.【专题】综合题.【分析】(1)连接OD,由BC为圆O的切线,利用切线的性质得到∠ABC为直角,由CD=CB,利用等边对等角得到一对角相等,再由OB=OD,利用等边对等角得到一对角相等,进而得到∠ODC=∠ABC,确定出∠ODC为直角,即可得证;(2)根据图形,利用外角性质及等边对等角得到∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD⊥EC 于点D,可得∠E+∠C=∠E+∠DOE=90°,等量代换即可得证;(3)作OF⊥DB于点F,利用垂径定理得到F为BD中点,连接AD,由EA=AO可得:AD是Rt△ODE 斜边的中线,利用直角三角形斜边上的中线等于斜边的一半得到AD=AE=AO,即三角形AOD为等边三角形,确定出∠DAB=60°,即∠OBD=30°,在直角三角形BOF中,利用30°所对的直角边等于斜边的一半求出OF的长,利用勾股定理求出BFO的长,得到BD的长,得出∠DOB为120°,由扇形BDO面积减去三角形BOD面积求出阴影部分面积即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1)得:OD ⊥EC 于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE ;(3)解:作OF ⊥DB 于点F,连接AD,由EA=AO 可得:AD 是Rt △ODE 斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF ⊥BD,∴OF=1,BF=, ∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S 阴影=S 扇形OBD ﹣S △BOD =﹣×2×1=﹣.【点评】此题考查了切线的判定与性质,以及扇形面积的计算,熟练掌握切线的判定与性质是解本题的关键.24.如图,抛物线y=﹣x 2+bx+c 与x 轴交于A 、B 两点(A 在B 点左侧),与y 轴交于点C,对称轴为直线x=,OA=2,OD 平分∠BOC 交抛物线于点D (点D 在第一象限);(1)求抛物线的解析式和点D 的坐标;(2)点M 是抛物线上的动点,在x 轴上存在一点N,使得A 、D 、M 、N 四个点为顶点的四边形是平行四边形,求出点M 的坐标;(3)在抛物线的对称轴上,是否存在一点P,使得△BPD 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.。
2020年四川省绵阳市中考数学全真模拟试卷1解析版

2020年四川省绵阳市中考数学全真模拟试卷1解析版一.选择题(共12小题,满分36分,每小题3分)1.下面有4个汽车标志图案,其中是中心对称图形的是()A.B.C.D.2.一元二次方程﹣x2+2x=0的根为()A.﹣2B.0,2C.0,﹣2D.23.对于二次函数y=2(x﹣2)2+1,下列说法中正确的是()A.图象的开口向下B.函数的最大值为1C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小4.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°5.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是()A.90°B.30°C.45°D.60°6.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2107.如图,AB是⊙O的直径,点C为⊙O外一点,CA、CD是⊙O的切线,A、D为切点,连接BD、AD.若∠ACD=48°,则∠DBA的大小是()A.32°B.48°C.60°D.66°8.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°9.如图,P是抛物线y=﹣x2+x+3在第一象限的点,过点P分别向x轴和y轴引垂线,垂足分别为A、B,则四边形OAPB周长的最大值为()A.6B.7.5C.8D.410.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为()A.πcm2B.cm2C.D.11.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中FK1,K1K2,K2K3,K3K4,K5K6…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2014等于()A.B.C.D.12.如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(﹣1,3),抛物线与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x轴的另一个交点是(1,0),⑤当﹣3<x<﹣1时,有y2<y1.其中正确结论的个数是()A.5B.4C.3D.2二.填空题(共6小题,满分18分,每小题3分)13.已知m是关于x的方程x2+4x﹣5=0的一个根,则2m2+8m=14.在一个圆内接四边形ABCD中,已知∠A=100°,则∠C的度数为.15.如图,平面直角坐标系xOy中,点A(2,0),以OA为半径作⊙O,若点P,B都在⊙O上,且四边形AOPB为菱形.当点P在第三象限时,则点P的坐标为.16.在一幢高125m的大楼上掉下一个苹果,苹果离地面的高度h(m)与时间t(s)大致有如下关系:h=125﹣5t2.秒钟后苹果落到地面.17.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆(填内、上或外)18.已知关于x的方程x2﹣(2m﹣8)x+m2﹣16=0的两个实根x1、x2满足x1<<x2.则实数m 的取值范围.三.解答题(共7小题,满分86分)19.(16分)(1)计算:(2019﹣π);(2)解方程:3x(1﹣x)=2x﹣2.20.(11分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下算出线段BC旋转到B2C所经过的扇形的面积.(结果保留π)21.(11分)已知关于x的一元二次方程x2﹣2x+m﹣1=0(1)当m取何值时,这个方程有两个不相等的实根?(2)若方程的两根都是正数,求m的取值范围;(3)设x1,x2是这个方程的两个实数根,且1﹣x1x2=x12+x22,求m的值.22.(11分)已知二次函数的图象经过点A(﹣1,0)和点B(3,0),且有最小值为﹣2.(1)求这个函数的解析式;(2)函数的开口方向、对称轴;(3)当y>0时,x的取值范围.23.(11分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.24.(12分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.25.(14分)如图,O是坐标原点,过点A(﹣1,0)的抛物线y=x2﹣bx﹣3与x轴的另一个交点为B,与y轴交于点C,其顶点为D点.(1)求b的值以及点D的坐标;(2)连接BC、BD、CD,在x轴上是否存在点P,使得以A、C、P为顶点的三角形与△BCD相似?若存在,求出点P的坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【解答】解:根据中心对称的定义可得:A、B、C都不符合中心对称的定义.故选:D.【点评】本题考查中心对称的定义,属于基础题,注意掌握基本概念.2.【分析】利用因式分解法解方程.【解答】解:﹣x(x﹣2)=0,﹣x=0或x﹣2=0,所以x1=0,x2=2.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.3.【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【解答】解:二次函数y=2(x﹣2)2+1,a=2>0,∴该函数的图象开口向上,故选项A错误,函数的最小值是y=1,故选项B错误,图象的对称轴是直线x=2,故选项C错误,当x<2时y随x的增大而减小,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD =34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.【点评】此题考查了圆周角定理以及直角三角形的性质.此题比较简单,注意掌握数形结合思想的应用.5.【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【解答】解:∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点评】本题考查了旋转的性质,正方形的性质,等腰直角三角形的判定与性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小,然后判断出△CEF是等腰直角三角形是解题的关键.6.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.7.【分析】根据切线长定理可知CA=CD,求出∠CAD,再证明∠DBA=∠CAD即可解决问题.【解答】解:∵CA、CD是⊙O的切线,∴CA=CD,∵∠ACD=48°,∴∠CAD=∠CDA=66°,∵CA⊥AB,AB是直径,∴∠ADB=∠CAB=90°,∴∠DBA+∠DAB=90°,∠CAD+∠DAB=90°,∴∠DBA=∠CAD=66°,故选:D.【点评】本题考查切线长定理和切线的性质、等腰三角形的性质、直径所对的圆周角是直角等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【分析】根据圆周角定理即可求出答案【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.【点评】本题考查圆周角定理,注意圆的半径都相等,本题属于基础题型.9.【分析】设P(x,﹣x2+x+3),利用矩形的性质得到四边形OAPB周长=2PA+2OA=﹣2x2+2x+6+2x,然后根据二次函数的性质解决问题.【解答】解:设P(x,﹣x2+x+3),四边形OAPB周长=2PA+2OA=﹣2x2+2x+6+2x=﹣2x2+4x+6=﹣2(x﹣1)2+8,当x=1时,四边形OAPB周长有最大值,最大值为8.故选:C.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.【解答】解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1cm,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),==(cm2).∴图中阴影部分面积为:S扇形OBC故选:A.是解题【点评】此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S扇形OBC 关键.11.【分析】利用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2014的长.【解答】解:根据题意得:l1==,l2==,l3===π,l4==,按照这种规律可以得到:l n=,所以l2014=.故选:C.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2014的长.12.【分析】根据抛物线的图象特征和对称性可得①②④;将方程ax2+bx+c=3转化为函数图象求交点问题可解;通过数形结合可得⑤.【解答】解:由抛物线对称轴为直线x=﹣b=2a,则①正确;由图象,ab同号,c>0,则abc>0,则②正确;方程ax2+bx+c=3可以看做是抛物线y=ax2+bx+c与直线y=3求交点横坐标,由抛物线顶点为(﹣1,3)则直线y=3过抛物线顶点.∴方程ax2+bx+c=3有两个相等的实数根.故③正确;由抛物线对称轴为直线x=﹣1,与x轴的一个交点(﹣3,0)则有对称性抛物线与x轴的另一个交点为(1,0)则④正确;∵A(﹣1,3),B(﹣3,0),直线y2=mx+n与抛物线交于A,B两点∴当当﹣3<x<﹣1时,抛物线y1的图象在直线y2上方,则y2<y1,故⑤正确.故选:A.【点评】本题是二次函数综合题,考查了二次函数各项系数的性质、抛物线对称性和从函数观点看方程和不等式,解答关键是数形结合.二.填空题(共6小题,满分18分,每小题3分)13.【分析】利用一元二次方程的解的定义得到m2+4m=5,再把2m2+8m变形为2(m2+4m),然后利用整体代入的方法计算.【解答】解:∵m是关于x的方程x2+4x﹣5=0的一个根,∴m2+4m﹣5=0,∴m2+4m=5,∴2m2+8m=2(m2+4m)=2×5=10.故答案为10.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.【分析】直接根据圆内接四边形的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠C=180°﹣100°=80°.故答案为:80°【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.15.【分析】根据菱形的性质可知△POB,△AOB是等边三角形,从而得出∠POM=180°﹣60°×2=60°,再根据三角函数即可求出OM,PM的长度,得到点P的坐标.【解答】解:∵四边形AOPB为菱形∴OP=PB=AB=OB,∵OP=OB,∴△POB,△AOB是等边三角形,∴∠POM=180°﹣60°×2=60°,∴OM=OP•cos∠POM=1,PM=OP•sin∠POM=.当点P在第三象限时,P的坐标为(﹣1,﹣).故答案为:(﹣1,﹣).【点评】本题考查了菱形的性质,等边三角形的性质和三角函数等知识,得出△POB,△AOB是等边三角形是解题关键.16.【分析】苹果落到地面,即h的值为0,代入函数解析式求得t的值即可解决问题.【解答】解:把h=0代入函数解析式h=125﹣5t2得,125﹣5t2=0,解得t1=5,t2=﹣5(不合题意,舍去);答:5秒钟后苹果落到地面.故答案为:5.【点评】此题主要考查二次函数与一元二次方程的关系,解答时注意结合图象解答.17.【分析】先得出圆的圆心坐标C,进而得出OC的长与半径的长进行比较解答即可.【解答】解:如图,∵点A(0,3),点B(4,0),∴AB=,点C(2,1.5),∴OC==CA,∴点O(0,0)在以AB为直径的圆上,故答案为:上【点评】本题考查点与圆的位置关系的判断,是基础题,解题时要认真审题.18.【分析】根据当x=时,y<0时得到关于m的不等式,通过解不等式求得m的取值范围即可.【解答】解:∵关于x的方程x2﹣(2m﹣8)x+m2﹣16=0的两个实根x1、x2满足x1<<x2.∴令y=x2﹣(2m﹣8)x+m2﹣16,∴当x=时,y<0,即﹣(2m﹣8)+m2﹣16<0.解得﹣<m<.故答案是:﹣<m<.【点评】考查了抛物线与x轴的交点坐标,熟练掌握二次函数的图象的性质是解题的关键.三.解答题(共7小题,满分86分)19.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用因式分解法求解可得.【解答】解:(1)原式=1+9﹣(2﹣)+3×﹣6×=10﹣2++﹣2=8;(2)∵3x(1﹣x)=﹣2(1﹣x),∴3x(1﹣x)+2(1﹣x)=0,则(1﹣x)(3x+2)=0,∴1﹣x=0或3x+2=0,解得:x1=1,x2=﹣.【点评】本题考查一元二次方程的解法和实数的混合运算,解题的关键是灵活运用所学知识解决问题,学会用适当的方法解一元二次方程,属于中考常考题型.20.【分析】(1)利用轴对称的性质画出A、B、C的定义点A1、B1、C1,而从得到△A1B1C1;(2)利用旋转的性质和网格特点,画出A、B的定义点A2、B2而从得到△A2B2C;(3)由于线段BC旋转到B2C所经过的扇形的半径为CB,圆心角为90度,然后利用扇形的面积公式可计算它的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C为所作;(3)BC==,所以线段BC旋转到B2C所经过的扇形的面积==π.【点评】本题考查了作图﹣旋转:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称.21.【分析】(1)根据根的判别式得出不等式,求出不等式的解集即可;(2)根据根与系数的关系得出不等式,求出不等式的解集即可;(3)根据根与系数的关系得出x1+x2=2,x1x2=m﹣1,变形后代入,即可求出m,再判断即可.【解答】解:(1)∵△=(﹣2)2﹣4(m﹣1)=﹣4m+8>0,∴m<2时,方程有两个不相等的实数根;(2)∵设x1,x2是这个方程的两个实根,则x1>0,x2>0,∴x1x2=m﹣1>0,∴m>1,由(1)知:当△≥0时,m≤2,即m的取值范围是1<m≤2;(3)∵x1+x2=2,x1x2=m﹣1,,∴1﹣m+1=22﹣2(m﹣1),∴m=4,∵由(1)知:m<2,∴此时不存在,所以当1﹣x1x2=x12+x22时,m不存在.【点评】本题考查了根的判别式和根与系数的关系,能熟记知识点的内容是解此题的关键.22.【分析】由题意得:函数的对称轴为x=1,此时y=﹣2,则函数的表达式为:y=a(x﹣1)2﹣2,即可求解.【解答】解:(1)由题意得:函数的对称轴为x=1,此时y=﹣2,则函数的表达式为:y=a(x﹣1)2﹣2,把点A坐标代入上式,解得:a=,则函数的表达式为:y=x2+x+(2)a=>0,函数开口向上,对称轴为:x=1;(3)当y>0时,x的取值范围为:x>3或x<﹣1.【点评】本题考查的是二次函数基本性质,函数的开口方向、对称轴、x的取值范围都是函数的基本属性,是一道基本题.23.【分析】(1)根据题意选择合适坐标系即可,结合已知条件得出点B的坐标即可,根据抛物线在坐标系的位置,可知抛物线的顶点坐标为(5,5),抛物线的右端点B坐标为(10,0),可设抛物线的顶点式求解析式;(2)根据题意可知水面宽度变为6m时x=2或x=8,据此求得对应y的值即可得.【解答】解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.【点评】本题主要考查二次函数的应用,根据抛物线在坐标系中的位置及点的坐标特点,合理地设抛物线解析式,再运用解析式解答题目的问题.24.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.25.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得顶点坐标;(2)根据相似三角形的性质,可得AP的长,根据线段的和差,可得P点坐标.【解答】解:(1)把A(﹣1,0)代入y=x2﹣bx﹣3,得1+b﹣3=0,解得b=2.y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4).(2)如图,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,即A(﹣1,0),B(3,0),D(1,﹣4).由勾股定理,得BC2=18,CD2=1+1=2,BD2=22+16=20,BC2+CD2=BD2,∠BCD=90°,①当△APC∽△DCB时,,即,解得AP=1,即P(0,0).②当△ACP∽△DCB时,,即,解得AP=10,即P′(9,0).综上所述:点P的坐标(0,0)(9,0).【点评】本题考查了二次函数综合题,利用配方法求函数的顶点坐标;(2)利用相似三角形的性质得出关于AP的方程是解题关键,要分类讨论,以防遗漏.。
四川省南充市2019-2020学年中考一诊数学试题含解析

四川省南充市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.162.若,则的值为()A.﹣6 B.6 C.18 D.303.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为24.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.5.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤6.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上7.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)8.81的算术平方根是()A.9 B.±9 C.±3 D.39.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③10.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18B.16C.14D.1212.下列运算正确的是()A .(a ﹣3)2=a 2﹣9B .(12)﹣1=2C .x+y=xyD .x 6÷x 2=x 3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程3x 2﹣5x+2=0的一个根是a ,则6a 2﹣10a+2=_____.14.如图,ABCDE 是正五边形,已知AG=1,则FG+JH+CD=_____.15.不等式组5243x x +>⎧⎨-≥⎩的最小整数解是_____. 16.在数轴上与表示的点距离最近的整数点所表示的数为_____. 17.如图,在正六边形ABCDEF 中,AC 于FB 相交于点G ,则AG GC值为_____.18.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是3,则另一组新数据x 1+1,x 2+2,x 3+3,x 4+4,x 5+5的平均数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:(x ﹣2﹣52x +)÷2(3)2x x ++,其中x=3. 20.(6分)如图,ABC △中AB AC =,AD BC ⊥于D ,点E F 、分别是AB CD 、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S21.(6分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m =_______,n =_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 级学生的数学成绩的平均分数.①如下分数段整理样本 等级等级 分数段 各组总分 人数A110120X <≤ P 4 B 100110X <≤ 843n C 90100X <≤ 574m D 8090X <≤171 2 ②根据上表绘制扇形统计图22.(8分)已知x 1﹣1x ﹣1=1.求代数式(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)的值.23.(8分)如图,在平面直角坐标系中,四边形OABC 为矩形,直线y=kx+b 交BC 于点E (1,m ),交AB 于点F (4,12),反比例函数y=n x (x >0)的图象经过点E ,F . (1)求反比例函数及一次函数解析式;(2)点P 是线段EF 上一点,连接PO 、PA ,若△POA 的面积等于△EBF 的面积,求点P 的坐标.24.(10分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y (元)与x (件)之间的函数关系式,并写出自变量x 的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)25.(10分)如图,在Rt △ABC 中,∠C=90°,AC=3,BC=1.若以C 为圆心,R 为半径所作的圆与斜边AB 只有一个公共点,则R 的取值范围是多少?26.(12分)已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC . (1)求证:四边形ABCD 是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD 的长.27.(12分)(1)计算:0|28(2)2cos45π︒-+.(2)解方程:x 2﹣4x+2=0参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据根与系数的关系得到x 1+x 2=2,x 1•x 2=-5,再变形x 12+x 22得到(x 1+x 2)2-2x 1•x 2,然后利用代入计算即可.【详解】∵一元二次方程x 2-2x-5=0的两根是x 1、x 2,∴x 1+x 2=2,x 1•x 2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.2.B【解析】试题分析:∵,即,∴原式=====﹣12+18=1.故选B.考点:整式的混合运算—化简求值;整体思想;条件求值.3.C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.4.B【解析】【分析】【详解】设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.5.B【解析】试题分析:①、MN=12AB,所以MN的长度不变;②、周长C△PAB=12(AB+PA+PB),变化;③、面积S△PMN=14S△PAB=14×12AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线6.C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A【解析】【分析】直接利用平移的性质结合轴对称变换得出对应点位置.【详解】如图所示:顶点A2的坐标是(4,-3).故选A.【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.8.D【解析】【分析】根据算术平方根的定义求解.【详解】81,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.811.故选:D.【点睛】考核知识点:算术平方根.理解定义是关键.9.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.10.C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.41.9,故选C考点:实数与数轴的关系11.B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是1 6 .故选B.考点:简单概率计算.12.B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;B. (12)﹣1=2,故该选项正确;C.x与y不是同类项,不能合并,故该选项错误;D. x6÷x2=x6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】【分析】根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.【详解】解:∵方程3x1-5x+1=0的一个根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14【解析】【详解】根据对称性可知:GJ∥BH,GB∥JH,∴四边形JHBG是平行四边形,∴JH=BG,同理可证:四边形CDFB是平行四边形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,设FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG•BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=12(负根已经舍弃),∴BF=512-+1=512+,∴FG+JH+CD=5+1.故答案为5+1.15.-1【解析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.详解:5243xx+⎧⎨-≥⎩>①②.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式组的解集为-3<x≤1,∴不等式组的最小整数解是-1,故答案为:-1.点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.16.3【解析】≈3.317,且在3和4之间,∵3.317-3=0.317,4-3.317=0.683,且0.683>0.317,∴距离整数点3最近.17.12.【解析】【分析】由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.【详解】∵六边形ABCDEF是正六边形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴AG GC =12; 故答案为:12. 【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.18.1【解析】【分析】根据平均数的性质知,要求x 1+1,x 2+2,x 3+3,x 4+4、x 5+5的平均数,只要把数x 1、x 2、x 3、x 4、x 5的和表示出即可.【详解】∵数据x 1,x 2,x 3,x 4,x 5的平均数是3,∴x 1+x 2+x 3+x 4+x 5=15, 则新数据的平均数为1234512345151555x x x x x ++++++++++==1, 故答案为:1.【点睛】本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.192【解析】【分析】根据分式的运算法则即可求出答案.【详解】 原式()2245223x x x x --+=⨯++, ()()()2+33223x x x x x -+=⨯++,33x x -=+.当x ==2= 【点睛】 本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.20.(1)证明见解析;(2)253 2.【解析】【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE,DF=12AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)根据等边三角形的性质得出EF=5,AD=53,进而得到菱形AEDF的面积S.【详解】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=12AB=AE,Rt△ACD中,DF=12AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵AB=AC=BC=10,∴EF=5,3,∴菱形AEDF的面积S=12EF•AD=12×5×3253.【点睛】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(1)6;8;B;(2)120人;(3)113分.【解析】【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.【详解】(1)本次抽查的学生有:72420360︒÷=︒(人),2030%62043211 m n=⨯==---=,,数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)2120020⨯=120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:102208435741711134⨯---=(分),即A等级学生的数学成绩的平均分是113分.【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.22.2.【解析】【分析】将原式化简整理,整体代入即可解题.【详解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.23.(1)2yx=;1522y x=-+;(2)点P坐标为(114,98).【解析】【分析】(1)将F(4,12)代入0ny xx=(>),即可求出反比例函数的解析式2yx=;再根据2yx=求出E点坐标,将E、F两点坐标代入y kx b=+,即可求出一次函数解析式;(2)先求出△EBF 的面积,点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣),根据面积公式即可求出P 点坐标.【详解】 解:(1)∵反比例函数0n y x x =(>)经过点142F (,),∴n=2, 反比例函数解析式为2y x =. ∵2y x=的图象经过点E (1,m ), ∴m=2,点E 坐标为(1,2). ∵直线y kx b =+ 过点12E (,),点142F (,), ∴2142k b k b +=⎧⎪⎨+=⎪⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为1522y x =+﹣; (2)∵点E 坐标为(1,2),点F 坐标为142(,),∴点B 坐标为(4,2),∴BE=3,BF=32, ∴1139•32224EBF S BE BF ∆==⨯⨯=, ∴94POA EBF S S ∆∆== . 点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣), ∴115942224x ⨯-+=(), 解得114x =, ∴点P 坐标为11948(,). 【点睛】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.24.(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y =700x ,当10<x≤1时,y =﹣5x 2+750x ,当x >1时,y =300x ;(3)公司应将最低销售单价调整为2875元.【解析】(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.【详解】(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.由题意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次购买这种产品1件时,销售单价恰好为2800元;(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:当0≤x≤10时,y=(3200﹣2500)x=700x,当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,当x>1时,y=(2800﹣2500)•x=300x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y=700x,y=300x均是y随x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,最低价为3200﹣5•(75﹣10)=2875元,答:公司应将最低销售单价调整为2875元.【点睛】本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.25.R=或R=【解析】【分析】【详解】解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.考点:圆与直线的位置关系.26.(1)证明见解析;(2)CD的长为23【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根据30°的性质和勾股定理可求出EF和DF的长,在Rt△CEF 中,根据勾股定理可求出CF的长,从而可求CD的长.【详解】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30°的直角三角形的性质,勾股定理.证明AD=BC是解(1)的关键,作EF⊥CD于F,构造直角三角形是解(2)的关键.27.(1)-1;(2)x1=,x2=2【解析】【分析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程.【详解】(1﹣﹣=﹣1;(2)x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x﹣2=∴x1=,x2=2.【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.。
2019年四川省中考数学一模试卷及答案解析

四川省2019年中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列等式正确的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣32.若成立,则()A.a≥0,b≥0B.a≥0,b≤0C.ab≥0D.ab≤03.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度4.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含5.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm26.若点B(a,0)在以点A(﹣1,0)为圆心,2为半径的圆外,则a的取值范围为()A.﹣3<a<1B.a<﹣3C.a>1D.a<﹣3或a>17.在半径等于5cm的圆内有长为5cm的弦,则此弦所对的圆周角为()A.120°B.30°或120°C.60°D.60°或120°8.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)9.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD10.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二.填空题(共10小题,满分30分,每小题3分)11.若分式的值为0,则x=.12.当x时,二次根式有意义.13.某小组5名同学的身高(单位:cm)分别为:147,156,151,159,152,则这组数据的中位数是cm.14.为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.15.如图所示,AB是⊙O的直径,CD是⊙O的弦,连接AC,AD,若∠CAB=36°,则∠ADC的度数为.16.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是.17.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是.A.①;B.①②;C.①②③;D.①②③④18.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=°.19.如图,将扇形AOC围成一个圆锥的侧面.已知围成的圆锥的高为12,扇形AOC的弧长为10π,则圆锥的侧面积为.20.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D 的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).三.解答题(共9小题,满分90分)21.计算题(1)|﹣|+(﹣1)2018﹣2cos45°+.(2)÷(a+2)22.解方程:(1)x2﹣3x=4(2)2x(x﹣3)=3﹣x23.先化简,再求值:(x﹣2+)÷,其中x=﹣.24.已知关于x的一元二次方程mx2﹣(m﹣1)x﹣1=0.(1)求证:这个一元二次方程总有两个实数根;(2)若二次函数y=mx2﹣(m﹣1)x﹣1有最大值0,则m的值为;(3)若x1、x2是原方程的两根,且+=2x1x2+1,求m的值.25.小颖为班级联欢会设计了“配紫色”游戏:如图是两个可以自由转动的转盘,每个转盘被分成了面积相等的三个扇形.游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出了蓝色,那么就配成紫色.(1)请你利用画树状图或者列表的方法计算配成紫色的概率.(2)小红和小亮参加这个游戏,并约定配成紫色小红赢,两个转盘转出同种颜色,小亮赢.这个约定对双方公平吗?请说明理由.26.如图,为了测量电线杆的高度AB,在离电线杆25米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°,求电线杆AB的高.(精确到0.1米)参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751.27.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD =2,求⊙O的半径及EC的长.28.如图,AB是圆O的直径,点C、D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F.求证:EF与圆O相切.29.已知开口向上的抛物线y=ax2+bx+c与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于C点,∠ACB不小于90°.(1)求点C的坐标(用含a的代数式表示);(2)求系数a的取值范围;(3)设抛物线的顶点为D,求△BCD中CD边上的高h的最大值.(4)设E,当∠ACB=90°,在线段AC上是否存在点F,使得直线EF将△ABC的面积平分?若存在,求出点F的坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据二次根式的性质把各个二次根式化简,判断即可.【解答】解:()2=3,A正确;=3,B错误;==3,C错误;(﹣)2=3,D错误;故选:A.【点评】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.2.【分析】直接利用二次根式的性质分析得出答案.【解答】解:∵成立,∴a≥0,b≤0.故选:B.【点评】此题主要考查了二次根式的乘除,正确掌握二次根式的性质是解题关键.3.【分析】找出两抛物线的顶点坐标,由a值不变即可找出结论.【解答】解:∵抛物线y=(x+1)2+2的顶点坐标为(﹣1,2),抛物线y=x2的顶点坐标为(0,0),∴将抛物线y=x2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y=(x+1)2+2.故选:B.【点评】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.4.【分析】先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.【解答】解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,∵5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选:A.【点评】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P.外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P <R﹣r.5.【分析】这个圆锥的全面积为底面积与侧面积的和,底面积为半径为3的圆的面积,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式求测面积.【解答】解:这个圆锥的全面积=•2π•3•5+π•32=24π(cm2).故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.【分析】熟记“设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内”即可解答【解答】解:以A(﹣1,0)为圆心,以2为半径的圆交x轴两点的坐标为(﹣3,0),(1,0),∵点B(a,0)在以A(1,0)为圆心,以2为半径的圆外,∴a<﹣3或a>1.故选:D.【点评】本题考查了对点与圆的位置关系的判断的知识点,解答本题的关键是理解点B在以A(1,0)为圆心,以2为半径的圆内的含义,本题比较简单.7.【分析】根据题意画出相应的图形,连接OA,OB,在优弧AB上任取一点E,连接AE,BE,在劣弧AB上任取一点F,连接AF,BF,过O作OD⊥AB,根据垂径定理得到D为AB的中点,由AB的长得出AD的长,再由OA=OB,OD与AB垂直,根据三线合一得到OD为角平分线,在直角三角形AOD中,利用锐角三角函数定义及AD与OA的长,求出∠AOD的度数,可得出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,可得出∠AEB的度数,再利用圆内接四边形的对角互补可得出∠AFB的度数,综上,得到此弦所对的圆周角的度数.【解答】解:根据题意画出相应的图形为:连接OA,OB,在优弧AB上任取一点E,连接AE,BE,在劣弧AB上任取一点F,连接AF,BF,过O作OD⊥AB,则D为AB的中点,∵AB=5cm,∴AD=BD=cm,又OA=OB=5,OD⊥AB,∴OD平分∠AOB,即∠AOD=∠BOD=∠AOB,∴在直角三角形AOD中,sin∠AOD===,∴∠AOD=60°,∴∠AOB=120°,又圆心角∠AOB与圆周角∠AEB所对的弧都为,∴∠AEB=∠AOB=60°,∵四边形AEBF为圆O的内接四边形,∴∠AFB+∠AEB=180°,∴∠AFB=180°﹣∠AEB=120°,则此弦所对的圆周角为60°或120°.故选:D.【点评】此题考查了圆周角定理,垂径定理,等腰三角形的性质,锐角三角函数定义,以及圆内接四边形的性质,是一道综合性较强的题.本题有两解,学生做题时注意不要漏解.8.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.【分析】根据垂径定理得出=,=,根据以上结论判断即可.【解答】解:A、根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴=,∵对的圆周角是∠C,对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选:B.【点评】本题考查了垂径定理的应用,关键是根据学生的推理能力和辨析能力来分析.10.【分析】利用二次函数的性质得到y2的最小值为1,则可对①进行判断;把A点坐标代入y1=a (x+2)2﹣3中求出a,则可对②进行判断;分别计算x=0时两函数的对应值,再计算y2﹣y1的值,则可对③进行判断;利用抛物线的对称性计算出AB和AC,则可对④进行判断.【解答】解:∵y2=(x﹣3)2+1,∴y2的最小值为1,所以①正确;把A(1,3)代入y1=a(x+2)2﹣3得a(1+2)2﹣3=3,∴3a=2,所以②错误;当x=0时,y1=(x+2)2﹣3=﹣,y2=(x﹣3)2+1=,∴y2﹣y1=+=,所以③错误;抛物线y1=a(x+2)2﹣3的对称轴为直线x=﹣2,抛物线y2=(x﹣3)2+1的对称轴为直线x=3,∴AB=2×3=6,AC=2×2=4,∴2AB=3AC,所以④正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.二.填空题(共10小题,满分30分,每小题3分)11.【分析】分式为零时:分子等于零且分母不等于零.【解答】解:依题意得:|x|﹣4=0且4﹣x≠0.解得x=﹣4.故答案是:﹣4.【点评】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.12.【分析】根据二次根式的被开方数为非负数即可得出x的范围.【解答】解:由题意得:2x﹣3≥0,解得:x≥.故答案为:≥.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数这个知识点.13.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:由于此数据按照从小到大的顺序排列为147,151,152,156,159,最中间的数是152,所以这组数据的中位数是152cm,故答案为:152.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.14.【分析】第二次捕得200条所占总体的比例=标记的鱼25条所占有标记的总数的比例,据此直接解答.【解答】解:设湖里有鱼x条,则,解可得x=800.故答案为:800.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.15.【分析】连接BC,推出Rt△ABC,求出∠B的度数,即可得出结论.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=36°,∴∠B=54°,∴∠ADC=54°故答案为:54°.【点评】本题主要考查了圆周角的有关定理,作出辅助线,构建直角三角形,是解本题的关键.16.【分析】连接OE,由题意得:OE=OA=R,ED=DF=4,再解Rt△ODE即可求得半径的值.【解答】解:连接OE,如下图所示,则:OE=OA=R,∵AB是⊙O的直径,弦EF⊥AB,∴ED=DF=4,∵OD=OA﹣AD,∴OD=R﹣2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R﹣2)2+42,∴R=5.故答案为:5.【点评】本题考查了垂径定理和解直角三角形的运用.17.【分析】根据抛物线的开口方向确定a的取值范围;根据对称轴的位置确定b的取值范围;根据抛物线与y轴的交点确定c的取值范围;根据图象与x轴的交点坐标确定方程ax2+bx+c=0的根,也可以确定当y>0时x的取值范围;根据抛物线的开口方向和对称轴我的抛物线的增减性.【解答】解:∵抛物线的开口方向向下,∴a<0,∵对称轴在y轴的右边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①正确;根据图象知道抛物线与x轴的交点的横坐标分别为x=﹣1或x=3,∴方程ax2+bx+c=0的根为x1=﹣1、x2=3,故②正确;根据图象知道当x>1时,y随x值的增大而减小,故③正确;根据图象知道当y>0时,﹣1<x<3,故④正确.故选D.【点评】此题主要考查了抛物线的系数与图象的关系,其中二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.18.【分析】由四边形ABCD为正方形及半径相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+∠ADF=135°,进而确定出∠1+∠2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD的度数.【解答】解:∵正方形ABCD,AF,AB,AD为圆A半径,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四边形ABFD内角和为360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°﹣90°=45°,∵∠EFD为△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案为:45【点评】此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键.19.【分析】求出圆锥的底面半径,根据勾股定理求出圆锥的母线长,根据扇形面积公式计算即可.【解答】解:∵扇形AOC的弧长为10π,∴圆锥的底面半径为:=5,∴圆锥的母线长为:=13,则圆锥的侧面积为:×10π×13=65π,故答案为:65π.【点评】本题考查的是圆锥的计算,掌握弧长公式、扇形面积公式、圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长是解题的关键.20.【分析】由于与不一定相等,根据圆周角定理可知①错误;连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可知②正确;先由垂径定理得到A为的中点,再由C为的中点,得到=,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ =∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可知③正确;【解答】解:∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,∴=≠,∴∠BAD≠∠ABC,故①错误;连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EPA+∠EAP=∠EAP+∠GPD=90°,∴∠GPD=∠GDP;∴GP=GD,故②正确;∵弦CF⊥AB于点E,∴A为的中点,即=,又∵C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP.∵AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;故答案为:②③.【点评】此题是圆的综合题,其中涉及到切线的性质,圆周角定理,垂径定理,圆心角、弧、弦的关系定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,平行线的判定,熟练掌握性质及定理是解决本题的关键.三.解答题(共9小题,满分90分)21.【分析】(1)先计算绝对值、乘方、代入三角函数值和算术平方根,再计算乘法,最后计算加减即可得;(2)先计算括号内分式的减法、将被除式因式分解,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=+1﹣2×+4=+1﹣+4=5;(2)原式=÷(﹣)=÷=•==.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及实数的混合运算顺序和运算法则.22.【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)先变形得到2x(x﹣3)+x﹣3=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1;(2)2x(x﹣3)+x﹣3=0,(x﹣3)(2x+1)=0,x﹣3=0或2x+1=0,所以x1=3,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.24.【分析】(1)先计算判别式得到△=(m+1)2,根据非负数的性质即可得到△≥0,于是利用判别式的意义即可得到结论;(2)根据二次函数的性质得m<0且=0,然后解方程即可;(3)先根据根与系数的关系得到x1+x2=,x1x2=﹣,再把+=2x1x2+1变形得到=2x1x2+1,则=2•(﹣)+1,然后解关于m的方程即可.【解答】(1)证明:m≠0,△=(m﹣1)2﹣4m×(﹣1)=(m+1)2,∵(m+1)2≥0,即△≥0,∴这个一元二次方程总有两个实数根;(2)解:∵二次函数y=mx2﹣(m﹣1)x﹣1有最大值0,∴m<0且=0,∴m=﹣1;故答案为﹣1.(3)解:x1+x2=,x1x2=﹣,∵+=2x1x2+1,∴=2x1x2+1,∴=2•(﹣)+1,整理得m2+m﹣1=0,∴m=或m=.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式和二次函数的性质.25.【分析】(1)用表格列出所有等可能结果,再根据概率公式计算可得;(2)分别计算出小红、小亮获胜的概率,比较大小即可得出结论.【解答】解:(1)如下表所示:红蓝1蓝2红(红,红)(红,蓝1)(红,蓝2)黄(黄,红)(黄,蓝1)(黄,蓝2)蓝(蓝,红)(蓝,蓝1)(蓝,蓝2)由表可知,共有9种等可能结果,其中配成紫色的有3种结果,所以P(能配成紫色)=;(2)∵P(小红赢)=,P(小亮赢)=∴P(小红赢)=P(小亮赢),因此,这个游戏对双方是公平的.【点评】本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.26.【分析】根据CE和α的正切值可以求得AE的长度,根据AB=AE+EB即可求得AB的长度,即可解题.【解答】解:在中Rt△ACE,∴AE=CE•tanα,=BD•tanα,=25×tan22°,≈10.10米,∴AB=AE+EB=AE+CD≈10.10+1.20≈11.3(米).答:电线杆的高度约为11.3米.【点评】本题考查了三角函数在直角三角形中的运用,本题中正确计算AE的值是解题的关键.27.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,在Rt△OAC中利用勾股定理求出r 的值,连接BE,由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE.【解答】解:∵OD⊥弦AB,AB=8,∴AC===4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,r2=(r﹣2)2+42,解得:r=5,连结BE,如图,∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了勾股定理、圆周角定理,作出恰当的辅助线是解答此题的关键.28.【分析】连接OD,作出辅助线,只要证明OD⊥EF即可,根据题目中的条件可知,∠FOD与∠FAD的关系,由AD平分∠CAB,可知∠EAF与∠FAD之间的关系,又因为AE⊥EF,从而可以推出OD垂直EF,本题得以解决.【解答】证明:连接OD,如右图所示,∵∠FOD=2∠BAD,AD平分∠CAB,∴∠EAF=2∠BAD,∴∠EAF=∠FOD,∵AE⊥EF,∴∠AEF=90°,∴∠EAF+∠EFA=90°,∴∠DFO+∠DOF=90°,∴∠ODF=90°,∴OD⊥EF,即EF与圆O相切.【点评】本题考查切线的判定,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.29.【分析】(1)由抛物线y=ax2+bx+c过点A(﹣3,0),B(1,0),得出c与a的关系,即可得出C点坐标;(2)利用已知得出△AOC∽△COB,进而求出OC的长度,即可得出a的取值范围;(3)作DG⊥y轴于点G,延长DC交x轴于点H,得出抛物线的对称轴为x=﹣1,进而求出△DCG ∽△HCO,得出OH=3,过B作BM⊥DH,垂足为M,即BM=h,根据h=HB sin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤,即可求出答案;(4)连接CE,过点N作NP∥CD交y轴于P,连接EF,根据三角形的面积公式求出S=S△CAEF,根据NP∥CE,求出,设过N、P两点的一次函数是y=kx+b,代入N、P 四边形EFCB的左边得到方程组,求出直线NP的解析式,同理求出A、C两点的直线的解析式,组成方程组求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(﹣3,0),B(1,0),∴消去b,得c=﹣3a.∴点C的坐标为(0,﹣3a),答:点C的坐标为(0,﹣3a).(2)当∠ACB=90°时,∠AOC=∠BOC=90°,∠OBC+∠BCO=90°,∠ACO+∠BCO=90°,∴∠ACO=∠OBC,∴△AOC∽△COB,,即OC2=AO•OB,∵AO=3,OB=1,∴OC=,∵∠ACB不小于90°,∴OC≤,即﹣c≤,由(1)得3a≤,∴a≤,又∵a>0,∴a的取值范围为0<a≤,答:系数a的取值范围是0<a≤.(3)作DG⊥y轴于点G,延长DC交x轴于点H,如图.∵抛物线y=ax2+bx+c交x轴于A(﹣3,0),B(1,0).∴抛物线的对称轴为x=﹣1.即﹣=﹣1,所以b=2a.又由(1)有c=﹣3a.∴抛物线方程为y=ax2+2ax﹣3a,D点坐标为(﹣1,﹣4a).于是CO=3a,GC=a,DG=1.∵DG∥OH,∴△DCG∽△HCO,∴,即,得OH=3,表明直线DC过定点H(3,0).过B作BM⊥DH,垂足为M,即BM=h,∴h=HB sin∠OHC=2sin∠OHC.∵0<CO≤,∴0°<∠OHC≤30°,0<sin∠OHC≤.∴0<h≤1,即h的最大值为1,答:△BCD中CD边上的高h的最大值是1.(4)由(1)、(2)可知,当∠ACB=90°时,,,设AB的中点为N,连接CN,则N(﹣1,0),CN将△ABC的面积平分,连接CE,过点N作NP∥CE交y轴于P,显然点P在OC的延长线上,从而NP必与AC相交,设其交点为F,连接EF,因为NP∥CE,所以S△CEF =S△CEN,由已知可得NO=1,,而NP∥CE,∴,得,设过N、P两点的一次函数是y=kx+b,则,解得:,即,①同理可得过A、C两点的一次函数为,②解由①②组成的方程组得,,故在线段AC上存在点满足要求.答:当∠ACB=90°,在线段AC上存在点F,使得直线EF将△ABC的面积平分,点F的坐标是(﹣,﹣).【点评】本题主要考查对用待定系数法求二次函数、一次函数的解析式,三角形的面积,解二元一次方程,相似三角形的性质和判定,二次函数图象上点的坐标特征等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.。
中考数学模拟试卷 (13)

2019年四川省巴中市恩阳区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤02.下列计算正确的是()A.=﹣4B.(a2)3=a5C.a•a3=a4D.2a﹣a=23.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个5.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.6.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.37.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A.甲稳定B.乙稳定C.一样稳定D.无法比较8.如图,在△ABC中,CD⊥AB,且CD2=AD•DB,AE平分∠CAB交CD于F,∠EAB=∠B,CN =BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD2=DF•DC.则下列结论正确的是()A .①②④B .②③④C .①②③④D .①③9.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =2,则阴影部分图形的面积为( )A .4πB .2πC .πD .10.二次函数y =﹣(x ﹣1)2+3图象的对称轴是( )A ..直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣3二.填空题(共10小题,满分30分,每小题3分)11.分解因式:4m 2﹣16n 2= .12.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E = 度.13.要使代数式有意义,x 的取值范围是 .14.一个多边形的每一个外角为30°,那么这个多边形的边数为 .15.如图,△ABC 中,点E 是BC 上的一点,CE =2BE ,点D 是AC 中点,若S △ABC =12,则S △ADF ﹣S △BEF = .16.如图,点D是等边三角形ABC内一点,△ABD绕点A逆时针旋转△ACE的位置,则∠AED =.17.函数y=k(x﹣1)的图象向左平移一个单位后与反比例函数y=的图象的交点为A、B,若A 点坐标为(1,2),则B点的坐标为.18.设a、b是一元二次方程x2+2x﹣7=0的两个根,则a2+3a+b=.19.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O 为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为,点A n.20.如图,直线l与x轴、y轴分别交于点A、B,且OB=4,∠ABO=30°,一个半径为1的⊙C,圆心C从点(0,1)开始沿y轴向下运动,当⊙C与直线l相切时,⊙C运动的距离是三.解答题(共11小题,满分90分)21.(6分)计算:﹣|1﹣|﹣sin30°+2﹣1.22.(6分)如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆,(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少?(π取3.14)23.(6分)对于实数m、n,定义一种运算“※”为:m※n=mn+n.(1)求2※5与2※(﹣5)的值;(2)如果关于x的方程x※(a※x)=﹣有两个相等的实数根,求实数a的值.24.(6分)已知,如图,菱形ABCD中,E、F分别是CD、CB上的点,且CE=CF;(1)求证:△ABE≌△ADF.(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面积.25.(10分)2015年2月27日,在中央全面深化改革领导小组第十次会议上,审议通过了《中国足球改革总体方案》,体制改革、联赛改革、校园足球等成为改革的亮点.在联赛方面,作为国内最高水平的联赛﹣﹣中国足球超级联赛今年已经进入第12个年头,中超联赛已经引起了世界的关注.图9是某一年截止倒数第二轮比赛各队的积分统计图.(1)根据图,请计算该年有支中超球队参赛;(2)补全图一中的条形统计图;(3)根据足球比赛规则,胜一场得3分,平一场得1分,负一场得0分,最后得分最高者为冠军.倒数第二轮比赛后积分位于前4名的分别是A队49分,B队49分,C队48分,D队45分.在最后一轮的比赛中,他们分别和第4名以后的球队进行比赛,已知在已经结束的一场比赛中,A 队和对手打平.请用列表或者画树状图的方法,计算C队夺得冠军的概率是多少?26.(6分)在如图所示的方格中,每个小正方形的边长为1,点A、B、C在方格纸中小正方形的顶点上.(1)按下列要求画图:①过点A画BC的平行线DF;②过点C画BC的垂线MN;③将△ABC绕A点顺时针旋转90°.(2)计算△ABC的面积.27.(10分)某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.28.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.29.(8分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进60米到达点E(点E在线段AB上),测得∠DEB=60°,求河的宽度.30.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC =∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.31.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2019年四川省巴中市恩阳区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.【分析】根据=|a|;幂的乘方法则:底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变分别进行分析即可.【解答】解:A、=4,故原题计算错误;B、(a2)3=a6,故原题计算错误;C、a•a3=a4,故原题计算正确;D、2a﹣a=a,故原题计算错误;故选:C.【点评】此题主要考查了幂的乘方、同底数幂的乘法、合并同类项,关键是掌握各知识点,记住计算法则.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.5.【分析】根据一元一次不等式组的解法解出不等式组,根据小于等于或大于等于用实心圆点在数轴上表示解答.【解答】解:不等式组的解集为:1≤x≤3,故选:A.【点评】本题考查的是解一元一此不等式组及在数轴上表示一元一次不等式组的解集,在解答此类题目时要注意实心圆点与空心圆点的区别.6.【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.7.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=1.8,S乙2=0.7,∴S甲2>S乙2,∴成绩比较稳定的是乙;故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【分析】根据已知条件可证△ADC∽△CDB,得出∠ACB=90°.根据等量关系及等腰三角形的性质得到CF=BN.根据同位角相等,证明FN∥AB.证明△ADF∽△CDA,根据相似三角形的性质得出AD2=DF•DC.【解答】解:①∵AE平分∠CAB∴∠CAE=∠DAF,∴△CAE∽△DAF,∴∠AFD=∠AEC,∴∠CFE=∠AEC,∴CF=CE,∵CN=BE,∴CE=BN,∴CF=BN,故本选项正确;②∵CD⊥AB,∴∠ADC=∠CDB=90°,∵CD2=AD•DB,∴,∴△ADC∽△CDB,∴∠ACD=∠B,∴∠ACB=90°,故本选项正确;③∵∠EAB=∠B,∴EA=EB,易知:∠ACF=∠ABC=∠EAB=∠EAC,∴FA=FC,易证:CF=CE,∴CF=AF=CE,∵FA=FC=BN,EA=EB,∴EF=CE,∴∵∠FEN=∠AEB,∴△EFN∽△EAB,∴∠EFN=∠EAB,∴FN∥AB,故本选项正确;④易证△ADF∽△CDA,∴AD2=DF•DC,故本选项正确;故选:C.【点评】本题综合考查了相似三角形的判定和性质,平行线的判定,等腰三角形的性质等知识点.9.【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,求出扇形COB面积,即可得出答案.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,CD=2,∴CE=CD=,∠CEO=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC==2,==,∴阴影部分的面积S=S扇形COB故选:D.【点评】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.10.【分析】直接根据二次函数的顶点式进行解答即可.【解答】解:二次函数y=﹣(x﹣1)2+3图象的对称轴是直线x=1,故选:A.【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.二.填空题(共10小题,满分30分,每小题3分)11.【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E=2(42°+y),即可得到结论.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.【点评】本题考查了平行线的性质以及三角形的外角的性质:三角形的外角等于两个不相邻的内角的和,正确设未知数是关键.13.【分析】根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得x﹣1≠0,再解即可【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.【点评】此题主要考查了二次根式有意义的条件和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.14.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.【分析】本题需先分别求出S △ABD ,S △ABE 再根据S △ADF ﹣S △BEF =S △ABD ﹣S △ABE 即可求出结果.【解答】解:∵点D 是AC 的中点,∴AD =AC ,∵S △ABC =12,∴S △ABD =S △ABC =×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =S △ABC =×12=4,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =6﹣4=2.故答案为:2.【点评】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.16.【分析】先利用等边三角形的性质得到AB =AC ,∠BAC =60°,再根据旋转的性质得到AE =AD ,∠EAD =∠CAB =60°,则可判断△AED 为等边三角形,然后利用等边三角形的性质 可得到∠AED 的度数.【解答】解:∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°,∵△ABD 绕点A 逆时针旋转△ACE 的位置,∴AE =AD ,∠EAD =∠CAB =60°,∴△AED为等边三角形,∴∠AED=60°.故答案为60°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.17.【分析】应先得到一次函数平移后的函数解析式,进而判断与反比例函数的交点.【解答】解:y=k(x﹣1)的图象向左平移一个单位为y=kx,为正比例函数,∵正比例函数与反比例函数的交点关于原点对称,A点坐标为(1,2),∴另一交点坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).【点评】用到的知识点为:一次函数y=kx+b平移规律:“左加右减”,即向左(右)移几个单位就加(减)几个单位;正比例函数与反比例函数的交点关于原点对称.18.【分析】根据根与系数的关系可知a+b=﹣2,又知a是方程的根,所以可得a2+2a﹣7=0,最后可将a2+3a+b变成a2+2a+a+b,最终可得答案.【解答】解:∵设a、b是一元二次方程x2+2x﹣7=0的两个根,∴a+b=﹣2,∵a是原方程的根,∴a2+2a﹣7=0,即a2+2a=7,∴a2+3a+b=a2+2a+a+b=7﹣2=5,故答案为:5.【点评】本题主要考查了根与系数的关系,解题的关键是把a2+3a+b转化为a2+2a+a+b的形式,结合根与系数的关系以及一元二次方程的解即可解答.19.【分析】由直线解析式求出B1点的坐标,解直角三角形得出∠B1OA1=30°,由此可发现,OA2=OB1=OA1÷cos30°=OA1,同理OA3=OA2=()2OA1,OA4=OA3=()3OA1,…,由此得出一般规律.【解答】解:由A1坐标为(1,0),可知OA1=1,把x=1代入直线y=x中,得y=,即A1B1=,tan∠B1OA1==,所以,∠B1OA1=30°,则OA2=OB1=OA1÷cos30°=OA1=,OA3=OA2=()2,OA4=OA3=()3,故点A4的坐标为(,0),点A n(()n﹣1,0).故答案为:(,0),(()n﹣1,0).【点评】本题考查了一次函数的综合运用.关键是由直线解析式求出直线与x轴正方向的夹角为30°,再依次求OA2,OA3,OA4,…的长,得出一般规律.20.【分析】设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,利用勾股定理即可解决问题;【解答】解:设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,在Rt△BEC′中,∠ABC=30°,EC′=1,∴BC′=2EC′=2,∵BC=5,∴CC′=3,同法可得CC″=7,故答案为3或7.【点评】本题考查切线的性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,注意一题多解.三.解答题(共11小题,满分90分)21.【分析】原式利用二次根式性质,绝对值的代数意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值.【解答】解:原式=3﹣+1﹣+=2+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.【分析】根据长方形与圆形的面积即可求出阴影部分的面积,然后代入a、b的值即可求出答案.【解答】解:(1)长方形的面积为:a×2b=2ab,两个半圆的面积为:π×b2=πb2,∴阴影部分面积为:2ab﹣πb2(2)当a=4,b=1时,∴2ab﹣πb2=2×4×1﹣3.14×1=4.86【点评】本题考查列代数式,涉及代入求值,有理数运算等知识.23.【分析】(1)根据新运算“※”的运算公式进行运算即可得出结论;(2)根据新运算“※”的运算公式将方程进行变形,再根据方程有两个相等的实数根结合根的判别式,即可得出关于a的一元一次不等式及一元二次方程,解之即可得出结论.【解答】解:(1)2※5=2×5+5=15;2※(﹣5)=2×(﹣5)+(﹣5)=﹣15.(2)x ※(a ※x )=x ※[(a +1)x ]=x (x +1)(a +1)=﹣,整理得:4(a +1)x 2+4(a +1)x +1=0.∵关于x 的方程x ※(a ※x )=﹣有两个相等的实数根, ∴,∴a =0. 【点评】本题考查了实数的运算、根的判别式以及解一元一次不等式,解题的关键是:(1)根据新运算“※”的运算公式进行运算;(2)由原方程有两个相等的实数根,找出关于a 的一元一次不等式及一元二次方程.24.【分析】(1)根据SAS 即可判断出△ABE ≌△ADF .(2)连接AC ,则可将菱形分成两个全等的等边三角形,从而根据AB =4可求出面积.【解答】证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,BC =CD ,∠B =∠D ,∵CE =CF ,∴BE =DF ,在△ABE 与△ADF 中, ∵,∴△ABE ≌△ADF (SAS )(2)连接AC ,∵∠C =120°,∴可得△ABC 和△ACD 为两个全等的等边三角形,又∵AB =4,S △ABC =S △A ,DC =4,∴S 菱形ABCD =.【点评】本题考查了菱形的性质及全等三角形的判定,难度一般,解答本题的关键是根据题意条件得出证明结论需要的条件.25.【分析】根据题意列表得出A、B、C、D四个队与第4名以后的球队进行比赛所有得分结果,由表格中体现的所有情况,选出符合题意C队获胜的情况的情况总数,从而估算出C队获胜的概率.【解答】解:(1)4÷25%=16(支),答:该年有16支中超球队参赛;故答案为:16;(2)积分为39.5﹣44.5的球队为16﹣1﹣3﹣6﹣4=2(支),补全条形统计图如图所示;(3)依题意列表格:由表格得到共有如下27种比赛积分结果:(50,52,51,48);(50,52,51,46);(50,52,51,45);(50,52,49,48);(50,52,49,46);(50,52,49,45);(50,52,48,48);(50,52,48,46);(50,52,48,45);(50,50,51,48);(50,50,51,46);(50,50,51,45);(50,50,49,48);(50,50,49,46);(50,50,49,45);(50,50,48,48);(50,50,48,46);(50,50,48,45);(50,49,51,48);(50,49,51,46);(50,49,51,45);(50,49,49,48);(50,49,49,46);(50,49,49,45);(50,49,48,48);(50,49,48,46);(50,49,48,45);其中已知A队打平,C队获胜的情况恰有6种,==.故P(C队获胜)【点评】本题考察了限定组合求概率的方法,较为复杂.26.【分析】(1)利用BC为小方格正方形的对角线,画DF∥BC,MN⊥BC,利用网格特点和旋转的性质画出B、C旋转后的对应点B′、C′,从而得到△AB′C′;(2)利用三角形面积公式计算.【解答】解:(1)如图,DF、MN、△AB′C′为所作;(2)△ABC的面积=×2×1=1.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.27.【分析】(1)等量关系为:A种型号衣服9件×进价+B种型号衣服10件×进价=1810,A种型号衣服12件×进价+B种型号衣服8件×进价=1880;(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,则:,解之得.答:A 种型号的衣服每件90元,B 种型号的衣服100元;(2)设B 型号衣服购进m 件,则A 型号衣服购进(2m +4)件, 可得:, 解之得, ∵m 为正整数,∴m =10、11、12,2m +4=24、26、28.答:有三种进货方案:(1)B 型号衣服购买10件,A 型号衣服购进24件;(2)B 型号衣服购买11件,A 型号衣服购进26件;(3)B 型号衣服购买12件,A 型号衣服购进28件.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式组,及方程组.28.【分析】(1)把点A 坐标分别代入反比例函数y =,一次函数y =x +b ,求出k 、b 的值,再把点B 的坐标代入反比例函数解析式求出n 的值,即可得出答案;(2)求出直线AB 与y 轴的交点C 的坐标,分别求出△ACO 和△BOC 的面积,然后相加即可; (3)根据A 、B 的坐标结合图象即可得出答案.【解答】解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b ,得k =1×4,1+b =4,解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上,∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.29.【分析】根据题意中的数据和锐角三角函数可以解答本题.【解答】解:由题意可得,tan∠DAB=,tan,∠CAB=90°,∠DAB=30°,AE=60米,∴=60,解得,DB=30米,即河的宽度是30米.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.30.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.31.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2, 则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方程的解C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是 A.①② B.②③ C.①③ D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是 A.23 B.12 C.13 D.49 8.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________. 12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________. 13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到0.1) 15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜 若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获 胜.问他们两人谁获胜的概率大?请分析说明乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
四川省广元市数学中考模拟考试试卷

四川省广元市数学中考模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共20题;共40分)1. (2分) (2016七上·大同期末) ()A .B . 1<-a<bC .D . -b<a<-12. (2分) (2020七下·门头沟期末) 计算a2×a3 的结果是()A . a6B . a5C . 2a5D . a93. (2分)(2017·保康模拟) 不等式组的整数解有()A . 0个B . 5个C . 6个D . 无数个4. (2分) (2019八下·余姚期末) 如图,矩形ABCD中,CD=6,E为BC边上一点,且EC=2将△DEC沿DE折叠,点C落在点C'.若折叠后点A,C',E恰好在同一直线上,则AD的长为()A . 8B . 9C .D . 105. (2分) (2017·临高模拟) 由五个小立方体搭成如图的几何体,从正面看到的平面图形是()A .B .C .D .6. (2分)化简分式的结果是A . 2B .C .D . -27. (2分)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A . y=0.05xB . y=5xC . y=100xD . y=0.05x+1008. (2分) (2019九上·银川月考) 在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为()A .B .C .D .9. (2分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为()A . 7.6×10﹣8B . 0.76×10﹣9C . 7.6×108D . 0.76×10910. (2分)(2020·云南模拟) 某中学篮球队12名队员的年龄情况如下表,则这个队队员年龄的众数和中位数分别()年龄(岁)1415161718人数(人)14322A . 15,16B . 15,15C . 15,15.5D . 16,1511. (2分) (2020九上·德清期末) 如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A . 2B . 3C .D .12. (2分)(2016·海南) 某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是()A . 该村人均耕地面积随总人口的增多而增多B . 该村人均耕地面积y与总人口x成正比例C . 若该村人均耕地面积为2公顷,则总人口有100人D . 当该村总人口为50人时,人均耕地面积为1公顷13. (2分)(2019·襄州模拟) 如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD 于点E,则图中阴影部分的面积是()A .B . 2C .D . 2﹣14. (2分)如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A . 28°B . 26°C . 60°D . 62°15. (2分) (2020九上·延长期末) 二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是A .B .C .D .16. (2分)下列是张悦、王强和赵涵的对话,张悦:“从学校向西直走500米,再向北直走100米就到医院了”.王强:“从学校向南直走300米,再向西直走200米就到电影院了.”赵涵:“火车站在电影院正北方向的200米处.”,则医院与火车站相距()A . 100 米B . 200米C . 300米D . 500米17. (2分) (2016九下·广州期中) 如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A . ∠ABC=90°B . AC=BDC . OA=OBD . OA=AD18. (2分) (2020八上·柯桥期末) 如图,点,在边上,沿将翻折,点的对应点为点,,,则等于()A .B .C .D .19. (2分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2 .其中正确的结论有()A . 4个B . 3个C . 2个D . 1个20. (2分)下列四个点中在函数y=2x-3的图象上有()个.(1,2) , (3,3) , (-1, -1), (1.5,0)A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)21. (1分)(2020·攀枝花) 因式分解:a-ab2=________.22. (1分)正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x 轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2 ,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.23. (1分) (2016九上·仙游期末) 如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B 为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.24. (1分) (2020七上·会宁期中) 1﹣2+3﹣4+…+97﹣98+99﹣100=________.三、解答题 (共5题;共54分)25. (10分) (2017七下·寿光期中) 假如某市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘坐出租车从汽车站到市政府走了10千米,应付车费多少元?26. (15分)(2017·西固模拟) 近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?27. (10分) (2016九上·萧山期中) 已知:如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E 与点F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.(1)求四边形AEOF的面积.(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式,求x取值范围.28. (10分)(2018·崇阳模拟) 已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC= ,求⊙O的直径.29. (9分)(2019·淮安模拟) 如图,二次函数与x轴、分别交于点A、B两点(点A在点B的左边),与y轴交于点C.连接CA、CB.(1)直接写出抛物线的顶点坐标________;∠BCO=________°;(2)点P是抛物线对称轴上一个动点,当PA+PC的值最小时,点P的坐标是________;(3)在(2)(1,2)的条件下,以点O为圆心,OA长为半径画⊙O,点F为⊙O上的动点,值最小,则最小值是________;(4)点D是直线BC上方抛物线上的一点,是否存在点D使∠BCD=∠CAO-∠ACO,若存在,求出点D的坐标,若不存在,说明理由.参考答案一、选择题 (共20题;共40分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:二、填空题 (共4题;共4分)答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:答案:24-1、考点:解析:三、解答题 (共5题;共54分)答案:25-1、答案:25-2、考点:答案:26-1、答案:26-2、答案:26-3、考点:解析:答案:27-1、答案:27-2、考点:解析:答案:28-1、答案:28-2、考点:解析:答案:29-1、答案:29-2、答案:29-3、答案:29-4、考点:解析:。
四川省绵阳市 中考数学模拟试卷含答案解析

四川省绵阳市中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.下列四个数中,比0大的是()A.﹣B.﹣C.0 D.|﹣2|2.下列计算正确的是()A.2x+x=x3B.x3÷x=x2C.(﹣2x2y)3•4x﹣3=﹣32x2y3 D.(x﹣y)2=x2﹣y23.与如图所示的三视图对应的几何体是()A.B.C.D.4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣115.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0 B.﹣3 C.﹣2 D.﹣16.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为()A.B.C.D.8.清明小长假期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩,已知甲地到乙地有2条公路,乙地到丙地有3条公路,每一条公路的长度如图,梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是()A.B.C.D.9.已知a、b为两个连续整数,且a<﹣<b,则a+b=()A.4 B.5 C.6 D.810.如图,在正五边形ABCDE中,∠ACD=()A.30°B.36°C.40°D.72°11.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使点C和点A重合,则折痕EF的长为()A.B.C.15 D.1612.如图,已知在⊙O中,AB=4,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.π﹣2B.π﹣2C.π﹣4D.π﹣4二.填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x3﹣9x=.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=.15.如图,直线a∥b,点B在直线b上,∠1=38°,∠ABC=90°,则∠2=.16.绵阳市在改造剑南路西段工程中为治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工作效率比原计划提高20%,结果共用30天完成这一任务.如果设原计划每天铺设x米管道,那么根据题意可列方程.17.已知M,N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a﹣b)x的顶点坐标为.18.如图,在△ABC中,AB=AC=3,高BD=,AE平分∠BAC,交BD于点E,则DE的长为.三.解答题(本大题共7小题,共86分)19.(1)计算:(sin30°)﹣1﹣(2015)0+|1﹣|﹣.(2)解不等式组:,并判断x=是否为该不等式组的解.20.某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(2013•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.22.关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)若α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.23.如图,AB为⊙O的直径,BC⊥AB,CP切⊙O于点P,连OC,交⊙O于N,交BP于E,连BN,AP.(1)求证:BN平分∠PBC.(2)连AC交BP于M,若AB=BC=4,求tan∠PAC的值.24.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.25.已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF 之间的数量关系,并证明.四川省绵阳市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.下列四个数中,比0大的是()A.﹣B.﹣C.0 D.|﹣2|【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:因为|﹣2|=2,所以根据实数比较大小的方法,可得2,所以比0大的是|﹣2|.故选:D.【点评】此题主要考查了实数比较大小的方法,要熟练掌握.2.下列计算正确的是()A.2x+x=x3B.x3÷x=x2C.(﹣2x2y)3•4x﹣3=﹣32x2y3 D.(x﹣y)2=x2﹣y2【考点】整式的混合运算.【专题】计算题.【分析】A、利用合并同类项法则合并得到结果,即可做出判断;B、利用同底数幂的除法法则计算,即可做出判断;C、先利用积的乘方及幂的乘方运算法则计算,再利用单项式乘以单项式的法则计算,即可做出判断;D、利用差的完全平方公式展开,即可做出判断.【解答】解:A、2x+x=3x,本选项错误;B、x3÷x=x3﹣1=x2,本选项正确;C、(﹣2x2y)3•4x﹣3=﹣8x6y3•4x﹣3=﹣32x3y3,本选项错误;D、(x﹣y)2=x2﹣2xy+y2,本选项错误,故选B【点评】此题考查了整式的混合运算,涉及的知识有:完全平方公式,合并同类项法则,积的乘方及幂的乘方运算法则,以及同底数幂的除法法则,熟练掌握公式及法则是解本题的关键.3.与如图所示的三视图对应的几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正视图可以排除C,故C选项错误;从左视图可以排除A,故A选项错误;从左视图可以排除D,故D选项错误;符合条件的只有B.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认知能力,可通过排除法进行解答.4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0 B.﹣3 C.﹣2 D.﹣1【考点】在数轴上表示不等式的解集.【专题】计算题.【分析】首先根据不等式的性质,解出x≤,由数轴可知,x≤﹣1,所以,=﹣1,解出即可;【解答】解:不等式2x﹣a≤﹣1,解得,x≤,由数轴可知,x≤﹣1,所以,=﹣1,解得,a=﹣1;故选:D.【点评】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形【考点】菱形的判定.【分析】根据菱形的判定:一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形.对角线互相垂直的平行四边形是菱形分别进行分析即可.【解答】解:A、四边相等的四边形是菱形,说法正确;B、一组对边相等,另一组对边平行的四边形是菱形,说法错误;C、对角线互相垂直的四边形是菱形,说法错误;D、对角线互相平分的四边形是菱形,说法错误;故选:A.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为()A.B.C.D.【考点】解直角三角形.【专题】计算题.【分析】在直角三角形ACM中,利用锐角三角函数定义表示出sin∠CAM,由已知sin∠CAM的值,设CM=3x,得到AM=5x,根据勾股定理求出AC=4x,由M为BC的中点,得到BC=2CM,表示出BC,在直角三角形ABC中,利用锐角三角函数定义表示出tanB,将表示出的AC与BC代入即可求出值.【解答】解:在Rt△ACM中,sin∠CAM==,设CM=3x,则AM=5x,根据勾股定理得:AC==4x,又M为BC的中点,∴BC=2CM=6x,在Rt△ABC中,tanB===.故选B【点评】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握锐角三角函数定义是解本题的关键.8.清明小长假期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩,已知甲地到乙地有2条公路,乙地到丙地有3条公路,每一条公路的长度如图,梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:如图所示:由树状图可知共有2×3=6种可能,这条路线正好是最短路线的有1种,所以概率是.故选:A.【点评】此题主要考查了列表法求概率,正确列举出所有可能是解题关键.9.已知a、b为两个连续整数,且a<﹣<b,则a+b=()A.4 B.5 C.6 D.8【考点】估算无理数的大小.【分析】先估算出与的取值范围,再求出a,b的值,进而可得出结论.【解答】解:∵16<20<25,∴4<<5.∵4<5<9,∴2<<3,∴﹣3<﹣<﹣2,∴4﹣3<﹣<5﹣2,即1<﹣<3,∵a、b为两个整数,∴a=2,b=3,∴a+b=5.故选:B.【点评】本题考查的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.10.如图,在正五边形ABCDE中,∠ACD=()A.30°B.36°C.40°D.72°【考点】全等三角形的判定与性质;等腰三角形的性质;多边形内角与外角.【分析】根据正多边形的性质求出AB=BC=AE=DE,∠EAB=∠B=∠ACD=∠CDE=∠E,根据多边形内角和定理求出∠B=∠BCD=108°,根据等腰三角形性质和三角形内角和定理求出∠BAC=∠BCA=36°,代入∠ACD=∠BCD﹣∠BCA求出即可.【解答】解:∵五边形ABCDE是正五边形,∴AB=BC=AE=DE,∠EAB=∠B=∠ACD=∠CDE=∠E,∴∠B=∠BCD==108°,∴∠BAC=∠BCA=(180°﹣∠B)=36°,∴∠ACD=∠BCD﹣∠BCA=108°﹣36°=72°,故选D.【点评】本题考查了等腰三角形的性质,多边形的内角和定理,正多边形的性质的应用,解此题的关键是求出∠BCD和∠ACB的度数,注意:正多边形的所有边都相等,所有角都相等.11.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使点C和点A重合,则折痕EF的长为()A.B.C.15 D.16【考点】翻折变换(折叠问题).【分析】先连接AF,由于矩形关于EF折叠,所以EF垂直平分AC,那么就有AF=CF,又ABCD是矩形,那么AB=CD,AD=BC,在Rt△ABF中,(设CF=x),利用勾股定理可求出CF=,在Rt△ABC中,利用勾股定理可求AC=5,在Rt△COF中再利用勾股定理可求出OF=,同理可求OE=,所以EF=OE+OF=.【解答】解:连接AF.∵点C与点A重合,折痕为EF,即EF垂直平分AC,∴AF=CF,AO=CO,∠FOC=90°.又∵四边形ABCD为矩形,∴∠B=90°,AB=CD=3,AD=BC=4.设CF=x,则AF=x,BF=4﹣x,在Rt△ABC中,由勾股定理得AC2=BC2+AB2=52,且O为AC中点,∴AC=5,OC=AC=.∵AB2+BF2=AF2∴32+(4﹣x)2=x2∴x=.∵∠FOC=90°,∴OF2=FC2﹣OC2=()2﹣()2=()2∴OF=.同理OE=.即EF=OE+OF=.故选:A.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是作辅助线,灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.12.如图,已知在⊙O中,AB=4,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.π﹣2B.π﹣2C.π﹣4D.π﹣4【考点】扇形面积的计算.【分析】利用勾股定理求得BD=2BF=4,连接OB、OD、BC,先求得∠ABC=90°,进而根据射影定理=S 求得FC=2,从而求得直径的长,根据余弦函数求得∠BAF=30°,进而得出∠BOD=120°,最后根据S阴影﹣S△BOD即可求得阴影的面积.扇形【解答】解:∵AC是直径,AC⊥BD于F,∴BF=DF,=,∴∠BAC=∠DAC,在RT△ABF中,BF==2,∴BD=2BF=4,连接OB、OD、BC,∵AC是直径,∴∠ABC=90°,∴BF2=AF•FC,即(2)2=6FC,∴FC=2,∴直径AC=AF+FC=6+2=8,∴⊙O 的半径为4,∵AB=4,AF=6,∴cos ∠BAF===, ∴∠BAF=30°,∴∠BAD=60°,∴∠BOD=120°,∵OC=4,FC=2,∴OF=2,∴S 阴影=S 扇形﹣S △BOD =﹣×4×2=π﹣4;故选D .【点评】本题考查了垂径定理,扇形的面积、及直角三角函数和勾股定理等知识,难度适中.二.填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x 3﹣9x= x (x+3)(x ﹣3) .【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x 3﹣9x,=x (x 2﹣9),=x (x+3)(x ﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=125°.【考点】作图—基本作图.【分析】根据角平分线的作法可得AD平分∠CAB,再根据三角形内角和定理可得∠ADB的度数.【解答】解:由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°﹣20°﹣35°=125°.故答案为:125°.【点评】此题主要考查了角平分线的作法以及角平分线的性质,熟练根据角平分线的性质得出∠ADB 度数是解题关键.15.如图,直线a∥b,点B在直线b上,∠1=38°,∠ABC=90°,则∠2=52°.【考点】平行线的性质.【分析】由AB⊥BC,可得∠1+∠3=90°,求出∠3,又由a∥b推出∠2=∠3,从而求出∠2.【解答】解:∵∠ABC=90°,∠1+∠2+∠ABC=90°,∴∠1+∠3=90°,∴∠3=90°﹣∠1=90°﹣38°=52°,∵a∥b,∴∠2=∠3=52°.故答案为:52°.【点评】此题考查的知识点是平行线的性质及余角、补角,解题的关键是先由余角、补角求出∠3,再由平行线的性质求出∠2.16.绵阳市在改造剑南路西段工程中为治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工作效率比原计划提高20%,结果共用30天完成这一任务.如果设原计划每天铺设x米管道,那么根据题意可列方程120+(1+20%)x•(30﹣)=300.【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设x米管道,提高工作效率之后每天铺设(1+20%)x米管道,根据共用30天完成这一任务,列方程.【解答】解:设原计划每天铺设x米管道,提高工作效率之后每天铺设(1+20%)x米管道,由题意得,120+(1+20%)x•(30﹣)=300.故答案为:120+(1+20%)x•(30﹣)=300.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.17.已知M,N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a﹣b)x的顶点坐标为(﹣3,).【考点】二次函数的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】首先根据函数图象上点的坐标特点可得ab=,a﹣b=﹣3,进而得到二次函数解析式y=﹣x2﹣3x,再利用顶点坐标公式求解即可.【解答】解:∵M,N两点关于y轴对称,点M坐标为(a,b),∴N(﹣a,b),∵点M在双曲线y=上,∴ab=,∵点N在直线y=﹣x+3上,∴b=a+3,∴a﹣b=﹣3,∴y=﹣abx2+(a﹣b)x变为y=﹣x2﹣3x,∴=﹣3,=即顶点坐标为(﹣3,),故答案为:(﹣3,).【点评】此题主要考查了函数图象上点的坐标性质,以及求二次函数顶点坐标,关键是掌握凡是函数图象经过的点必能满足解析式.18.如图,在△ABC中,AB=AC=3,高BD=,AE平分∠BAC,交BD于点E,则DE的长为.【考点】勾股定理;角平分线的性质;等腰三角形的性质.【分析】延长AE交BC于点F.在Rt△ADB中,根据勾股定理得到AD,进一步得到CD;在Rt△BDC 中,根据勾股定理得到BC;根据等腰三角形的性质和角平分线的性质得到CF,在Rt△AFC中,根据勾股定理得到AF,通过AA证明△DAE∽△FAC,根据相似三角形的性质即可求解.【解答】解:延长AE交BC于点F.∵在△ABC中,AB=AC=3,高BD=,∴在Rt△ADB中,AD==2,∴CD=AC﹣AD=1,∴在Rt△BDC中,BC==,∵AE平分∠BAC,∴CF=,∠AFC=90°,∴在Rt△AFC中,AF==,∵∠DAE=∠FAC,∠ADE=∠AFC=90°,∴△DAE∽△FAC,∴DE:AD=CF:AF,DE===.故答案为:.【点评】考查了勾股定理,等腰三角形的性质和角平分线的性质,相似三角形的判定和性质,关键是根据题意作出辅助线.三.解答题(本大题共7小题,共86分)19.(1)计算:(sin30°)﹣1﹣(2015)0+|1﹣|﹣.(2)解不等式组:,并判断x=是否为该不等式组的解.【考点】实数的运算;估算无理数的大小;零指数幂;负整数指数幂;解一元一次不等式组;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项化为最简二次根式,计算即可得到结果;(2)分别求出不等式中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可做出判断.【解答】解:(1)原式=2﹣1+﹣1﹣2=﹣;(2),由①得:x>﹣3,由②得:x≤1,∴不等式组的解集为﹣3<x≤1,则x=不是不等式组的解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(2013•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)派往A地x台乙型联合收割机,那么派往B地(30﹣x)台,派往A地的(30﹣x)台甲型收割机,派往B地(20﹣30+x)台,可得y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200,10≤x≤30.(2)根据题意可列不等式(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200≥79600,解出x 看有几种方案.【解答】解:(1)y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200=200x+74000,10≤x≤30;(2)200x+74000≥79600,解得x≥28,三种方案,依次为x=28,29,30的情况①当x=28时,派往A地28台乙型联合收割机,那么派往B地2台乙,派往A地的2台甲型收割机,派往B地18台甲.②当x=29时,派往A地29台乙型联合收割机,那么派往B地1台乙,派往A地的1台甲型收割机,派往B地19台甲.③当x=30时,派往A地30台乙型联合收割机,那么派往B地0台乙,派往A地的0台甲型收割机,派往B地20台甲.【点评】本题考查的是用一次函数解决实际问题,根据题意列出函数式以及根据题意列出不等式结合自变量的取值范围确定方案.22.关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)若α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.【考点】根与系数的关系;解一元二次方程-因式分解法;根的判别式.【分析】(1)由于关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β,那么其判别式应该是一个正数,由此即可求出k的取值范围;(2)根据根与系数的关系可以得到α+β=﹣(2k﹣3),αβ=k2,而α+β+αβ=6,由此可以求出k的值,再把(α﹣β)2+3αβ﹣5变为(α+β)2﹣αβ﹣5,代入前面的值就可以求出结果.【解答】解:(1)∵方程x2+(2k﹣3)x+k2=0有两个不相等的实数根,∴△>0即(2k﹣3)2﹣4×1×k2>0解得k<;(2)由根与系数的关系得:α+β=﹣(2k﹣3),αβ=k2.∵α+β+αβ=6,∴k2﹣2k+3﹣6=0解得k=3或k=﹣1,由(1)可知k=3不合题意,舍去.∴k=﹣1,∴α+β=5,αβ=1,故(α﹣β)2+3αβ﹣5=(α+β)2﹣αβ﹣5=19.【点评】此题首先利用一元二次方程的判别式求出k的取值范围,然后利用根与系数的关系求出k的值,接着把所求的代数式变形为两根之和与两根之积的形式,代入值就解决问题.23.如图,AB为⊙O的直径,BC⊥AB,CP切⊙O于点P,连OC,交⊙O于N,交BP于E,连BN,AP.(1)求证:BN平分∠PBC.(2)连AC交BP于M,若AB=BC=4,求tan∠PAC的值.【考点】切线的性质.【分析】(1)连接OP,证OC垂直平分PB,求出∠NBE+∠ENB=90°,∠CBN+∠NBO=90°,根据∠ONB=∠OBN求出∠NBP=∠NBC,即可得出答案;(2)证△OEB∽△BEC,求出BE=2OE,CE=2BE=4OE,设OE=x,则CE=4x,过C作CQ⊥AP交AP延长线于Q,得出四边形QPEC是矩形,推出QC=PE=BE=2x,QP=CE=4x,AQ=6x,代入tan∠PAC=求出即可.【解答】(1)证明:连接PO,∵CB⊥AB,∴CB是⊙O切线,∵CP是⊙O切线,∴PC=BC,即C在PB垂直平分线上,∵OP=OB,∴O在PB的垂直平分线上,∴OC⊥PB,PE=BE,∴∠BEC=∠CBO=90°,∴∠NBE+∠ENB=90°,∠CBN+∠NBO=90°, ∵ON=OB,∴∠ONB=∠OBN,∴∠NBP=∠NBC,∴BN平分∠PBC.(2)解:∵BE⊥OC,∴∠OEB=∠CEB=∠OBC=90°,∴∠OBE+∠EOB=90°,∠EBO+∠EBC=90°, ∴∠EOB=∠EBC,∴△OEB∽△BEC,∴==,∵OB=AB=2,BC=4,∴BE=2OE,CE=2BE=4OE,设OE=x,则CE=4x,∵PE=BE,AO=OB,∴AP=2OE=2x,过C作CQ⊥AP交AP延长线于Q,则∠Q=∠QPE=∠PEC=90°,∴四边形QPEC是矩形,∴QC=PE=BE=2x,QP=CE=4x,∴AQ=4x+2x=6x,在Rt△AQC中,tan∠PAC===.【点评】本题考查了切线的性质,矩形的性质和判定,解直角三角形,线段垂直平分线性质的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.【考点】二次函数综合题;二次函数的最值;待定系数法求二次函数解析式;等腰三角形的性质;勾股定理.【专题】代数几何综合题;压轴题;分类讨论.【分析】(1)设y=ax(x﹣4),把A点坐标代入即可求出答案;(2)根据点的坐标求出PC=﹣m2+3m,化成顶点式即可求出线段PC的最大值;(3)当0<m<3时,仅有OC=PC,列出方程,求出方程的解即可;当m≥3时,PC=CD﹣PD=m2﹣3m,OC=,分为三种情况:①当OC=PC时,,求出方程的解即可得到P的坐标;同理可求:②当OC=OP时,③当PC=OP时,点P的坐标.综合上述即可得到答案.【解答】解:(1)设y=ax(x﹣4),把A点坐标(3,3)代入得:a=﹣1,函数的解析式为y=﹣x2+4x,答:二次函数的解析式是y=﹣x2+4x.(2)解:0<m<3,PC=PD﹣CD,∵D(m,0),PD⊥x轴,P在y=﹣x2+4x上,C在OA上,A(3,3),∴P(m,﹣m2+4m),C(m,m)∴PC=PD﹣CD=﹣m2+4m﹣m=﹣m2+3m,=﹣+,∵﹣1<0,开口向下,∴有最大值,当D(,0)时,PC max=,答:当点P在直线OA的上方时,线段PC的最大值是.(3)当0<m<3时,仅有OC=PC,∴,解得,∴;当m≥3时,PC=CD﹣PD=m2﹣3m,OC=,由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣4)2,①当OC=PC时,,解得:或m=0(舍去),∴;②当OC=OP时,,解得:m1=5,m2=3,∵m=3时,P和A重合,即P和C重合,不能组成三角形POC,∴m=3舍去,∴P(5,﹣5);③当PC=OP时,m2(m﹣3)2=m2+m2(m﹣4)2,解得:m=4,∴P(4,0),答:存在,P的坐标是(3﹣,1+2)或(3+,1﹣2)或(5,﹣5)或(4,0).【点评】本题主要考查对用待定系数法求二次函数的解析式,等腰三角形的性质,勾股定理,二次函数的最值等知识点的理解和掌握,用的数学思想是分类讨论思想,此题是一个综合性比较强的题目,(3)小题有一定的难度.25.已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF 之间的数量关系,并证明.【考点】四边形综合题.【分析】(1)中所给的是最特殊的一种情况,但对整个题来说,要从(1)中找到基本的解题思路,此题难的是构造全等三角形,从而证明线段相等.虽然(1)中没有要求步骤,但能正确的解出(1)可以给(2)和(3)定一个基调;(2)是将(1)中的等边三角形变为等腰三角形,但起关键作用的条件没变,任然可以仿照(1)中的方法去做;(3)中将三角形变为更一般的三角形,但和(1)比较起来还是有两个条件没变,而利用这两个条件能证明两个三角形相似,从而利用相似的对应边成比例得出结论.【解答】解:(1)证明:如图1,过点E作EH∥AB交AC于点H.则∠BAC+∠AHE=180°,∠BAC=∠CHE,∵AB=BC=AC,∴∠BAC=∠ACB=60°,∴∠CHE=∠ACB=∠B=60°,∴EH=EC.∵AD∥BC,∴∠FCE=180°﹣∠B=120°,又∵∠AHE=180°﹣∠BAC=120°,∴∠AHE=∠FCE,∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,∴△AEH≌△FEC,∴AE=EF;(2)(1)中的结论仍然成立.证明:如图2,过点E作EH∥AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,∵AB=BC,∴∠BAC=∠ACB∴∠CHE=∠ACB,∴EH=EC∵AD∥BC,∴∠D+∠DCB=180°.∵∠BAC=∠D,∴∠AHE=∠DCB=∠ECF∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,∴△AEH≌△FEC,∴AE=EF;(3)猜想:(1)中的结论仍然成立.证明:如图3,过点E作EH∥AB交AC于点H.由(2)可得∠EAC=∠EFC,∵AD∥BC,∠BAC=∠D,∴∠AHE=∠DCB=∠ECF,∴△AEH∽△FEC,∴AE:EF=EH:EC,∵EH∥AB,∴△ABC∽△HEC,∴EH:EC=AB:BC=k,∴AE:EF=k,∴AE=kEF.【点评】主要考查了四边形的综合知识.本题三问由特殊到一般,注意比较它们之间的异同,关键抓住不变量,从而得出结论.本题难度很大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
注意事项:
南充市中考适应性联考 数 学 试 卷 (满分 120 分,时间 120 分)
(1) 答题前将姓名、座位号、准考证号填在答题卡指定位置.
(2) 所有解答内容均需涂、写在答题卡上.
(3) 选择题须用 2B 铅笔将答题卡相应题号对应选项涂黑,若需改动,须擦净另涂.
(4) 填空题、解答题在答题卡对应题号位置用 0.5 毫米黑色字迹笔书写.
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分)
每小题都有代号为 A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置.涂涂正确记 3 分,不涂、涂错或多涂记 0 分.
1. 在下列 4 个数中,最小的数是(
).
A .(-3)0
B .(- )2
C .-(-3)
D .-∣-3∣ 2. 下列各式的变形中,正确的是( ). A .(-x -y )(-x +y )=x 2-y 2
B . 1 x -x =
1- x x C .x 2-4x -4=(x -2)2
D .x ÷(x 2+x )= 1 +1 x 3. 下列调查中,适合用普查方式的是( ).
A .检测 100 只灯泡的质量情况
B .了解在南充务工人员月收入的大致情况
C. 了解全市学生观看“开学第一课”的情况
D. 了解某班学生对“南充丝绸文化”的知晓率
3(x + 2) ≥ x + 4,
4.不等式组 2x +13> x -1 的整数解之和是( ).
A .3
B .4
C .5
D .6
5.如图,把一副三角板放在桌面上,若两直角顶点重合,两条斜边平行,则∠1 与∠2 的差是( ).
A .45°
B .30°
C .25°
D .20°
6.某商店剩有两个进价不同的计算器,处理时都卖了 70 元,其中一个赢利 40%,另一个亏本 30%,针对这两个计算器,这家商店( ).
A .赚了 10%
B .赚了 10 元
C .亏了 10%
D .亏了 10 元
7.如图,□ABCD 的对角线 AC ,BD 交于点 O ,若顺次联接 ABCD 各边中点,可得到的一个新的四边形.添加下列条件不能肯定新的四边形成为矩形的是(
). A . AC ⊥BD B .AB =BC C .∠ABD =∠ADB D .∠ABO =∠BAO
3 2 8.如图,在正六边形 ABCDEF 外作正方形 DEGH ,连接 AH ,则 tan ∠HAB 等于( ).
A .3
B . +1
C .2
D . +1
(第 7 题) (第 8 题) (第 9 题)
9.如图,△ABC 的内切圆与三边分别切于点 D ,E ,F ,下列结论正确的是
(). A .∠EDF =∠B B .2∠EDF =∠A +∠C
C . 2∠A =∠FE
D +∠EDF D .∠AED +∠BF
E +∠CD
F >180°
10.已知抛物线 y =ax 2+bx +c (a ≠0)经过点(-1,0),(0,3),对称轴在 y 轴右侧,则下列结论:①a <0;②抛物线经过(1,0);③方程 ax 2+bx +c =1 有两个不相等的实数根;④-3<a +b <3.正确的有( ).
A .①③
B .①②③
C .①③④
D .③④
二、填空(本大题共 6 个小题,每小题 3 分,共 18 分) 请
将答案填在答题卡对应题号的横线上.
11.计算:(2-sin45°)0-√83 = . (第 13 题) 12. 若关于 x 的方程 x 2+mx +2n =0 有一个根是-2,则 m -n = .
13. 如图,把大正方形平均分成 9 个小正方形,其中有 2 个已涂黑,剩余的 7 个小正方形分
别用 1,2,3,…,7 表示,并写在卡片上,任抽一张,将番号对应的小正方形涂黑,使 3 个涂黑的小正方形组成轴对称图形,这个事件的概率是 .
14. 如图,AB 是⊙O 的直径,弦 CD ⊥AB 于 E .若 CD =6 cm ,∠CAB =22.5°,则⊙O 的半
径为 .
(第 14 题) (第 15 题)
(第 16 题)
15.如图,若抛物线 y =x 2 与双曲线 y =-2
x (x <0)上有三个不同的点 A (x 1,m ),B (x 2,
m )
,C (x 3,m ),则当 n =x 1+x 2+x 3 时,m 与 n 的关系为 . 16.如图,菱形 ABCD 的边长为 4,∠B =120°.点 P 是对角线 AC 上一点(不与端点 A
1 重合),则线段
2 AP +PD 的最小值为 .
5 三、(本大题共 9 小题,共 72 分)
解答题应写出必要的文字说明或推演步骤. x +1 4
17.(6 分)计算: x -1 - x 2 -1 -1.
18.(6 分)如图,AB ∥CD ,延长 BD 到 E ,∠1+∠E =∠2,∠1+∠2=∠3.求证:
BE =CD .
19.(6 分)近年“微信”、“支付宝”、“网购”和“共享单车”给我们的生活带来了很多便
利,某数学小组在校内对“你最认可的新事物”进行调查(抽到的同学从这 4 种中选1 种).随机调查了 m 人,并将调查结果绘制成如下统计图(尚未完善).
(1) 根据图中信息,可知 m = ,n = ;
(2) 已知 A ,B 两同学都最认可“微信”,C 最认可“支付宝”,D 最认可“网购”.从这 4 名同学中再抽取两名,请通过列表或画树状图,求抽到的两名同学最认可的新事物不一样的概率.
20.(8 分)已知关于 x 的方程 x 2-(2k -1)x +k 2=0 有两个不相等的实数根 x 1 和 x 2.
(1) 求实数 k 的取值范围;
(2) 当∣x 1-x 2∣= k 时,求实数 k 的值.
21.(8 分)如图,直线 y =-12x 与双曲线数 y =k x 交于 A ,B 两点,点 A 的纵坐标是2
(1) 求反比例函数的解析式.
(2)根据图象直接写出不等式
-12x >k
x 的解集
(3)将直线 y =-1
2x 向上平移后,与 y 轴交于点 C ,
与 x 轴交于点 D .当四边形 ABDC 是平行四边形时, 求
直线 CD 的解析式.
5 22.(8 分)如图,AB 是半⊙O 的直径,点 C ,D 在半圆上,CD =BD ,过点 D 作 EF ⊥AC
于 E ,交 AB 的延长线于 F .
(1) 求证:EF 是⊙O 的切线. 3 (2) 当 BF =4,sin F = 5
时,求 AE 的长.
23.(10 分)某商店试销一款进价为 60 元/件的新童装,并与供货商约定,试销期间售价不低
于进价,也不得高于进价的 45%,同一周内售价不变.从试销记录看到,单价定为 65 元这周,销售了 55 件;单价定为 75 元这周,销售了 45 件.每周销量 y (件) 与销售单价 x (元)符合一次函数关系.
(1) 求每周销量 y (件)与销售单价 x (元)之间的关系式.
(2) 商店将童装售价定为多少时,这周内销售童装获得毛利最大,最大毛利 W 是多少元?
(3) 若商店规划一周内这项销售获得毛利不低于 500 元,试确定售价 x 的范围.
24.(10 分)如图,正方形 ABCD 的边长为 2 ,O 是 BC 边的中点,P 是正方形内一动
点,且 OP =2,连接 DP ,将线段 DP 绕点 D 逆时针旋转 90°到 DQ ,连接 AP ,CQ .
(1) 直接写出线段 AP 和 CQ 的关系.
(2) 当 A ,O ,P 三点共线时,求线段 DP 的长.
(3) 连接 PQ ,求线段 PQ 的最小值.
25.(10 分)如图,抛物线 y =ax 2+bx +4 与 x 轴交于点 A (-2,0)和点 B (4,0).点
C 是抛物线第一象限上一点,CH ⊥x 轴于 H .点
D 是 BC 的中点,DH 与 y 轴交于点
E .
(1) 求抛物线的解析式.
(2) 当 C 恰好是抛物线的顶点时,求点 E 的坐标.
3 (3) 当△CHB 的面积是△EHB 面积的 2
tan ∠DHB 的值. 时,求。