鸡兔同笼问题的几种基本公式和典型例题
(奥数)鸡兔同笼问题五种解题思路

鸡兔同笼问题经典形式的解题思路(1)已知总头数和总脚数,求鸡、兔各多少:思路:假设全部都是鸡,总脚数减去鸡脚数后剩下的事兔子比鸡多的脚,ok 再除以脚的差,算出兔子数。
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多,求鸡和兔的数量思路:根据鸡兔脚数的差数,折算成鸡的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。
(总头数-脚数之差/一只鸡的脚数)÷(2+1)=兔数;例:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?兔:(40-32/2)÷(2+1)=8 只;鸡:40-8=3只(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多思路:和上题目一样,根据鸡兔脚数的差数,折算成兔的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。
(4) 已知鸡和兔的头数差以及脚数和例:鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?思路:总脚数减去多的动物的脚数后,除以两种动物的单个脚数为兔子的个数。
274-(26×2)÷(2+4)=37(只) 兔(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),思路:根据互换前后的脚数相加除以(鸡的脚数加兔的脚数之和)为头数,再根据1求解。
小学数学鸡兔同笼问题解题思路和方法公式例题附答案

小学数学鸡兔同笼问题解题思路和方法公式例题附答案鸡兔同笼问题是一个古典的算术问题,它包括第一鸡兔同笼问题和第二鸡兔同笼问题。
第一鸡兔同笼问题是已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题;第二鸡兔同笼问题是已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题。
解答这类问题一般采用假设法,可以先假设都是鸡或都是兔,然后进行置换,使问题得到解决。
对于第一鸡兔同笼问题,假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2);假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)。
对于第二鸡兔同笼问题,假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2);假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)。
举个例子,假设一笼里有长毛兔子和芦花鸡,数数头有35,脚数共有94.我们可以先假设35只全为兔,然后求出鸡数和兔数;也可以先假设35只全为鸡,然后求出鸡数和兔数。
这样就可以得出答案,即有鸡23只,有兔12只。
另一个例子是,有2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?这个问题可以转化为“鸡兔同笼”问题。
假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)。
最后一个例子是第二鸡兔同笼问题,鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?我们可以假设全都是鸡或都是兔,然后求出鸡数和兔数。
根据计算,鸡有60只,兔有40只。
答案:有6辆车和270人。
年龄问题是指两人的年龄差不变,但是两人年龄之间的倍数关系随着年龄的增长在发生变化。
解题时要紧紧抓住“年龄差不变”这个特点,可以利用“差倍问题”的解题思路和方法。
例如,爸爸今年35岁,XXX今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?根据年龄差不变,可以得出35÷5=7(倍),明年爸爸的年龄是(35+1)÷(5+1)=6(倍)。
鸡兔同笼问题五种基本公式

鸡兔同笼问题五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”36-14=22(只)……………………………鸡。
36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,能够用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不但不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不但不给运费,还需要赔成本××元……。
鸡兔同笼的十种解法公式

鸡兔同笼的十种解法公式
"鸡兔同笼"是一种经典的数学问题,通过给定的笼中动物(鸡和兔子)的总数量和腿的总数量,来求解鸡和兔子各有多少只。
这个问题可以通过不同的数学方法解决。
以下是十种常见的解法:
1、代数法:
设鸡的数量为
x+y=动物总数
2x+4y=腿的总数
2、减法法:
全部当作兔子算,然后减去多出来的腿数除以2(因为兔子比鸡多两条腿)得到鸡的数量。
3、矩阵法:
使用矩阵解线性方程组。
4、迭代法:
假设所有动物都是兔子,然后逐一将兔子换成鸡,直到腿的总数符合条件。
5、图形法:
画图表示动物和腿的数量关系,通过图形的方式求解。
6、函数法:
将动物数量和腿数关系转换为函数,求解函数的值。
7、比例法:
根据鸡和兔子腿数的比例关系来解决问题。
8、试错法:
逐个尝试不同的组合,直到找到满足条件的答案。
9、排列组合法:
将问题转化为组合数学问题求解。
10、编程法:
使用计算机编程遍历所有可能的组合来找到正确答案。
鸡兔同笼

鸡兔同笼问题鸡兔同笼公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
(完整版)鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼典型例题10道
鸡兔同笼典型例题10道一、基础型例题1. 鸡和兔在一个笼子里,从上面数,有8个头,从下面数,有26只脚。
问鸡和兔各有几只?- 逻辑:我们先假设笼子里全是鸡,那么8个头就应该有8×2 = 16只脚。
但实际有26只脚,多出来的脚就是兔子比鸡多的脚。
每只兔子比鸡多2只脚,多出来的26 - 16 = 10只脚,10÷2 = 5只就是兔子的数量,鸡就是8 - 5 = 3只。
2. 一个笼子里有鸡和兔共12只,它们一共有34只脚。
求鸡和兔各多少只?- 逻辑:假设全是鸡,12只鸡就有12×2 = 24只脚。
实际34只脚,多了34 - 24 = 10只脚。
因为每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是12 - 5 = 7只。
3. 鸡兔同笼,头共10个,脚共30只。
鸡兔各几只?- 逻辑:要是全是鸡,10只鸡就有20只脚。
30 - 20 = 10只脚是多出来的,这是兔子的脚多出来的部分。
每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是10 - 5 = 5只。
二、数字变化型例题4. 鸡兔同笼,共有15个头,46只脚。
问鸡和兔各有多少只?- 逻辑:先当全是鸡,15只鸡有15×2 = 30只脚。
46 - 30 = 16只脚是多的,每只兔比鸡多2只脚,兔就有16÷2 = 8只,鸡就是15 - 8 = 7只。
5. 笼子里有鸡和兔,一共20个头,56只脚。
鸡和兔分别有多少?- 逻辑:假设都是鸡,20只鸡有20×2 = 40只脚。
56 - 40 = 16只脚多出来了,这是兔子的。
每只兔比鸡多2只脚,兔有16÷2 = 8只,鸡有20 - 8 = 12只。
三、特殊条件型例题6. 鸡兔同笼,鸡比兔多2只,共有脚28只。
鸡兔各多少只?- 逻辑:设兔有x只,那鸡就有x + 2只。
兔脚有4x只,鸡脚有2(x + 2)只。
可列方程4x+2(x + 2)=28,4x+2x + 4 = 28,6x = 24,x = 4。
鸡兔同笼问题五种基本公式[1]
鸡兔同笼问题五种基本公式鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
鸡兔同笼练习题大全(最新最全)
鸡兔同笼练习题大全1、公式1:(兔的脚数×总只数 - 总脚数)÷(兔的脚数 - 鸡的脚数)= 鸡的只数,总只数 - 鸡的只数 = 兔的只数2、公式2:(总脚数 - 鸡的脚数×总只数) ÷ (兔的脚数 - 鸡的脚数)= 兔的只数,总只数 - 兔的只数 = 鸡的只数3、公式3:总脚数÷ 2 - 总头数 = 兔的只数,总只数 -兔的只数 = 鸡的只数4、公式4:兔总只数 = (鸡兔总脚数 - 2 ×鸡兔总只数) ÷ 2,鸡的只数 = 鸡兔总只数 - 兔总只数5、公式5:鸡的只数 = (4 ×鸡兔总只数 - 鸡兔总脚数) ÷ 2,兔的只数 = 鸡兔总只数-鸡的只数,公式6:4× + 2(总数x)=总脚数(x = 兔,总数 - x = 鸡数,用于方程)鸡兔同笼类练习题一1. 有鸡兔共20只,脚44只,鸡兔各几只?2、龟鹤共有100个头,350只脚.龟、鹤各多少?3、鸡兔共笼,兔比鸡多4只,共有脚76只,鸡、兔各多少只?4、鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有几只,兔有几只?5、鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?鸡兔同笼类练习题二1、有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有多少盒?铅笔有多少盒?2、大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?3、 100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个?4、 100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个?5、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?6、停车场上停了35辆小轿车和两轮摩托车,地面上数一上共有10个轮子,请问小轿车和摩托车各有多少辆?7、一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50人植树140棵,问种这两种树的各有多少人?8、幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少?鸡兔同笼类练习题三1. 学校有象棋、跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副?2. 王老师带48名同学去公园划船,共租了10条船恰好坐满。
鸡兔同笼问题五种基本公式和例题讲解
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题的几种基本公式和典型例题
一、已知总头数和总脚数,求鸡、兔各多少只?
二、已知总头数和鸡兔脚数的差数,求鸡、兔各多少只?
情况①:当鸡的总脚数比兔的总脚数多时,可用公式:
情况②:当兔的总脚数比鸡的总脚数多时,可用公式:
三、已知总脚数和鸡兔头数的差数,求鸡、兔各多少只?
情况①:当鸡的总头数比兔的总头数多时,可用公式:
例3:鸡兔同笼,鸡、兔共有46只,兔比鸡多28
只脚,鸡、兔各有多少只?
解:兔:(2×46+28)÷(2+4)=120÷6 = 120÷
6 = 20(只)
鸡:46-20 = 26(只)
兔数=(每只鸡的脚数×总头数 + 鸡兔脚数之差)÷(每只鸡的脚数 + 每只兔的脚数); 鸡数=总头数—兔数。
例2:鸡、兔共有120只,鸡比兔多120只脚,鸡、
兔各有多少只?
解:兔:(2×120-120)÷(2+4)=(240-120)
÷6 = 120÷6 = 20(只)
鸡:120-20 = 100(只)
兔数 =(每只鸡脚数×总头数—脚数之差)÷(每只鸡的脚数 + 每只兔的脚数); 鸡数=总头数—兔数。
例1:有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只? 解: 兔:(100-2×36)÷(4-2)=14(只); 鸡:36-14=22(只)。
答: 鸡有22只,兔有14只。
兔数 =(总脚数—每只鸡的脚数×总头
数)÷(每只兔的脚数—每只鸡的脚数);
鸡数 = 总头数—兔数。
情况②:当兔的总头数比鸡的总头数多时,可用公式:
四、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用公式:
五、鸡兔问题推广题的解法:可用假设法,转化成“鸡兔同笼”问题求解
例6:有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只? 解 :
鸡:[(52+44)÷(4+2)+(52-44)÷(4-2)]÷2=20÷2=10(只)
兔:[(52+44)÷(4+2)-(52-44)÷(4-2)]÷2=12÷2=6(只)
鸡数=[(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)]÷2;
兔数=[(两次总脚数之和)÷(每只鸡兔脚数和)-(两次总脚数之差)÷(每只鸡兔脚数之差)]÷2。
例5:鸡兔同笼,鸡、兔共有128只脚,兔比鸡多
8只,鸡、兔各有多少只?
解:兔:(128+8×2)÷(2+4)= 144÷6 = 24(只)
鸡:24-8 = 16(只) 兔数=(总脚数 + 鸡兔头数之差×每只鸡的脚数)÷(每只鸡的脚数 + 每只兔的脚数);
例4:鸡兔同笼,鸡、兔共有72只脚,鸡比兔多12只,鸡、兔各有多少只? 解:兔:(72-12×2)÷(2+4)= 48÷6 = 8(只) 鸡:12+8 = 20(只) 兔数=(总脚数—鸡兔头数之差×每只鸡
的脚数)÷(每只鸡的脚数 + 每只兔的
脚数);
例7:篮球每个19元,排球每个11元,两种球共买了16个,花了280元。
问篮球、排球各买几个?
分析:我们假设一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚。
现在已经把买球问题,转化成“鸡兔同笼”问题了.
解:利用上面算兔数公式,
蓝球数=(280 - 11×16)÷(19-11)=24÷8=13(个)
排球数=16-13=3(个).。