常见的色谱法有哪几大类
经典液相色谱法

返回章目录
返回章目录
分析化学课件
液-固...
离子交...
薄层色...
纸色谱...
小
结
习
题
1、液-固吸附柱色谱法
X:溶质分子 Y:流动相分子 a:吸附剂 m:流动相
分析化学课件
液-固...
离子交...
薄层色...
纸色谱...
小
结
习
题
1.1 基本概念
1.1.1吸附色谱法(adsorption chromatography)
小
结
习
题
3.5.2 展开 先饱和15-20min,防止边缘效应 , 先饱和 展开剂浸薄层板下端0.5cm,不能浸住起始线 , 展开剂浸薄层板下端 层析缸应密闭 展开方式:单向展开,双向展开…… 展开方式:单向展开,双向展开
分析化学课件
液-固...
离子交...
薄层色...
纸色谱...
小
结
习
题
3.6 定性和定量分析
分析化学课件
液-固...
离子交...
薄层色...
纸色谱...
小
结
习
题
1.3 吸附等温线 一定温度下,某组分在吸附剂表面吸附达平衡时, 该组分在两相中的浓度相关曲线
分析化学课件
液-固...
离子交...
薄层色...
纸色谱...
小
结
习
题
等温线 直线型 凸型 凹型
色谱峰 对称 拖尾 前沿
原因 吸附剂表面没被饱和 吸附剂表面具有吸附能力不 同的吸附位点 进样量较大
分析化学课件
液-固...
离子交...
薄层色...
纸色谱...
常见的化工原料检测方法介绍

目前化工原料的检测方法常见的有五种,分别为:高效液相色谱分析法(HPLC)、紫外吸收光谱分析法(UV)、薄层色谱分析法(TLC)、气相色谱分析法(GC)和原子吸收光谱分析法(AAS)。
每一种方法的作用原理和应用都各不相同。
其中,HPLC和UV为标准植物提取物的常用检测方法,TLC被用于比例植物提取物的检测,GC用来检测挥发性液体或油类,AAS用于提取物重金属含量的检测。
1、高效液相色谱分析法(HPLC)HPLC全程是High Performance Liquid Chromatography(高效液相色谱法),又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。
高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。
该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。
高效液相色谱法(HPLC)是20世纪60年代后期发展起来的一种分析方法。
近年来,在保健食品功效成分、营养强化剂、维生素类、蛋白质的分离测定等应用广泛。
世界上约有80%的有机化合物可以用HPLC来分析测定。
1.1 高效液相色谱分析的流程由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。
被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。
废液流入废液瓶。
遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。
这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。
1.2 高效液相色谱的分离过程同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。
色谱法知识简介

色谱法知识简介一、色谱法的定义色谱法(色谱分析、为色层法、层析法),是一种物理化学分析方法,它利用混合物中各物质在两相间分配系数的差别,当溶质在两相间做相对移动时,各物质在两相间进行多次分配,从而使各组分得到分离。
二、色谱法的特点及优缺点(1)特点:具高超的分离能力,其分离效率远远高于其他分离技术,如蒸馏、萃取、离心等方法。
(2)优点:①分离效率高;②应用范围广;③分板速度快;④样品用量少;⑤灵敏度高;⑥分离和测定一次完成;⑦易于自动化,可在工业流程中使用。
(3)缺点:对所分析对象的鉴别功能较差,一般来说色谱的定性分析是靠保留值定性,但在一定的色谱条件下,一个保留值可能对应许多个化合物。
(为分离和鉴定一个有机混合物,常常把色谱方法的高效分离能力和光谱方法的鉴别能力结合在一起,发展了各种各样的联用技术。
)三、色谱法的分类1、按分离原理分——吸附色谱法、分配色谱法、离子交换色谱法、分子排阻色谱法、亲和色谱法等。
2、按分离方法分——纸色谱法、薄层色谱法(TLC)、柱色谱法、高效液相色谱法(HPLC)、气相色谱法(GC)等。
3、按两相状态分类——气相色谱(气-固、气-液)、液相色谱(液-固、液-液)、超临界流体色谱、化学键合相色谱等。
4、按实际应用方面分——分析型色谱、制备型色谱。
定义:在一定温度下,处于平衡状态时,溶质在互不相溶的两相间浓度之比。
mC C K s S C :每1ml 固定相中含有溶质的质量;(国标中以C L 表示) m C :每1ml 流动相中溶解溶质的质量。
分配系数反映了溶质在两相中的迁移能力及分离效能,与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。
分配系数对系统中组分的影响:在同一色谱条件下,样品中K 值大的组分在固定相中滞留时间长,后流出色谱柱;K 值小的组分则滞留时间短,先流出色谱柱。
由此可见,组分在两相中的分配系数越大,越易分离。
K 对色谱峰的影响:正常峰——条件(流动相、固定相、温度和压力等)一定样品浓度很低时(S C 、m C 很小)时K 只取决于组分的性质,与浓度无关。
色谱分析方法

色谱分析方法色谱分析是一种重要的分离和检测技术,广泛应用于化学、生物、环境等领域。
色谱分析方法主要包括气相色谱、液相色谱、超临界流体色谱等,每种方法都有其特定的应用领域和优势。
本文将就色谱分析方法进行介绍,希望能对读者有所帮助。
首先,气相色谱是一种以气体为载气相的色谱分离技术。
它适用于挥发性较好的化合物的分离和检测,如石油化工、食品安全等领域。
气相色谱的分离原理是通过化合物在固定相和流动相之间的分配来实现,固定相通常是一种涂覆在毛细管或填充在管柱中的吸附剂,而流动相则是惰性气体。
气相色谱具有分离效率高、分析速度快、灵敏度高等优点,因此在实际应用中得到了广泛的应用。
其次,液相色谱是一种以液体为流动相的色谱分离技术。
它适用于挥发性较差的化合物的分离和检测,如生物药品、环境监测等领域。
液相色谱的分离原理是通过化合物在固定相和流动相之间的分配来实现,固定相通常是一种涂覆在填充柱或固定在固定相支持物上的吸附剂,而流动相则是液体。
液相色谱具有分离能力强、适用范围广、分析准确等优点,因此在实际应用中也得到了广泛的应用。
此外,超临界流体色谱是一种以超临界流体为流动相的色谱分离技术。
它适用于疏水性化合物的分离和检测,如天然产物提取、药物分析等领域。
超临界流体色谱的分离原理是通过化合物在固定相和流动相之间的分配来实现,固定相通常是一种涂覆在填充柱或固定在固定相支持物上的吸附剂,而流动相则是超临界流体。
超临界流体色谱具有分离速度快、溶解度大、环保性好等优点,因此在实际应用中也得到了广泛的应用。
综上所述,色谱分析方法是一种重要的分离和检测技术,不同的色谱方法有着各自的特点和应用领域。
在实际应用中,我们可以根据样品的性质和分析要求选择合适的色谱方法,以达到最佳的分离和检测效果。
希望本文对读者对色谱分析方法有所帮助,谢谢阅读!。
中药化学2.2 色谱分离技术

聚酰胺吸附力的影响因素: 1:形成氢键的能力与溶剂有关 水中>有机溶剂中>碱性溶剂中 常用溶剂对聚酰胺洗脱能力顺序如下: 水<甲醇或乙醇<丙酮<稀氢氧化钠液或稀氨溶 液<甲酰胺或二甲基甲酰胺<尿素水溶液。
注意温度超过150 ℃则游离硅醇基之间脱 水形成硅氧醚结构丧失游离硅醇基的吸附能力。 为酸性吸附剂适于分离中性或酸性成分。
常用硅胶:
硅胶H(不含黏合剂) 硅胶G(含黏合剂) 硅胶GF254(含煅石膏,另含有一种无机荧 光剂)。硅胶GF254nm紫外光下呈强烈黄绿色 荧光背景,在荧光背景下通过紫外光照射成分 斑点为暗斑,常用于一般显色手段不易显色的 成分的分离。
3、 洗脱:
洗脱操作的目的是要将加入的样品中各个 组分先后从上往下带出来,并能分开收集各成 分。 洗脱的过程中,上端溶剂不能干,分段收 集是关键;作定性检查合并相同成分。 TLC时Rf为0.2-0.3的溶剂系统是最佳的 洗脱系统,梯度洗脱。
4. 应用 柱色谱分离能力比薄层分离能力更强, 效果更好,尤其对结构相似、性质接近、 采用薄层难以分离的成分分离效果好。
(一)吸附剂
4、常用的吸附剂
(1)硅胶SiO2•xH2O 多孔性的硅氧烷交链结构,极性吸附剂, 吸附性较氧化铝稍低,既适于分离亲水性成分, 又可用于分离亲脂性成分。 其吸附作用的强弱取决于游离硅醇基的数 目,也与含水量有关,含水量达17%以上,则 失去吸附性,所以需110℃活化30分钟。
(一)吸附剂
例:求图中A、B、C三斑点Rf大小并判断三成分 极性大小顺序。
色谱法的分类及其原理

色谱法的分类及其原理(一)按两相状态气相色谱法:1、气固色谱法2、气液色谱法液相色谱法:1、液固色谱法2、液液色谱法(二)按固定相的几何形式1、柱色谱法(column chromatography):柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法2、纸色谱法(paper chromatography ):纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。
3、薄层色谱法(thin-layer chromatography, TLC):薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。
(三)按分离原理按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为:1、吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。
适于分离不同种类的化合物(例如,分离醇类与芳香烃)。
2、分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。
3、离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。
离子交换色谱主要是用来分离离子或可离解的化合物。
它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。
4、尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。
这样,样品分子基本按其分子大小先后排阻,从柱中流出。
被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。
色谱的定量分析

色谱的定量分析1.色谱分析有几种定量方法色谱分析常用的定量方法:归一化法、内标法和内加(增量)内标法、外标法。
1、面积归一化法优点是简便、准确,当操作条件变化时对结果影响较小,宜于分析多组分试样中各组分的含量。
但是试样中所有组分必须全部出峰,因此,此法在使用中受到一定限制。
2、外标法是用纯物质配成一系列不同浓度的标准溶液(或直接购买不同浓度标准溶液)分别取一定体积,注入色谱仪,根据峰面积和浓度做标准曲线。
在分析未知样时按与标准曲线相同的操作条件和方法,由标准曲线查出所需组分的浓度(现在在工作站上直接就能求出浓度)。
此法要求进样准确,操作条件稳定,分析样品和标准曲线条件必须一致。
3、内标法是试样中所有组分不能全部出峰或只要求测定试样中某个或某几个组分时,可采用此法。
内标法是在准确称取一定量的试样中,加入一定的标准物质(内标物),根据内标物和试样的质量以及色谱图上的相应峰面积,计算待测组分的含量。
内标法的关键是选择合适的内标物,内标物应是试样中不存在的纯物质,物质与被测物质相近,能溶于样品中,但不能于样品发生反应。
此法比较费事,一般不使用于快速分析。
2.常用的层析分析方法有哪些在分离分析特别是蛋白质分离分析中,层析是相当重要、且相当常见的一种技术,其原理较为复杂,对人员的要求相对较高,这里只能做一个相对简单的介绍。
一、吸附层析1、吸附柱层析吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。
2、薄层层析薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。
这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。
3、聚酰胺薄膜层析聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。
这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。
层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。
因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。
简述常见色谱分离法的类型及基本原理

简述常见色谱分离法的类型及基本原理色谱分离法是一种常用的分离分析方法,其基本原理是利用不同物质在固定相和流动相之间的分配平衡,实现物质的分离。
根据分离原理的不同,色谱分离法可以分为以下几种类型:
1. 液相色谱法(LC):该方法是最常用的色谱分离法之一,其基本原理是利用不同物质在固定相和流动相之间的分配平衡,实现物质的分离。
液相色谱法具有高分离效能、高灵敏度、高选择性等优点,被广泛应用于生物、医药、环保、化工等领域。
2. 气相色谱法(GC):该方法利用不同物质在气相状态下的吸附和解吸特性,实现物质的分离。
气相色谱法具有高分离效能、高灵敏度、分析速度快等优点,被广泛应用于环保、化工、食品、医药等领域。
3. 高效液相色谱法(HPLC):该方法是一种改进的液相色谱法,通过提高固定相的粒径和流动相的速度,提高分离效率和速度。
高效液相色谱法具有高分离效能、高灵敏度、分析速度快等优点,被广泛应用于生物、医药、环保、化工等领域。
4. 薄层色谱法(TLC):该方法是一种简便的色谱分离法,通过在薄层板上分离样品,实现物质的分离。
薄层色谱法具有操作简单、分析速度快、灵敏度高等优点,被广泛应用于食品、环保、化工等领域。
5. 离子交换色谱法(IEC):该方法利用不同物质在离子交换剂
上的吸附和解吸特性,实现物质的分离。
离子交换色谱法具有高分离效能、高灵敏度、分析速度快等优点,被广泛应用于生物、环境等领域。
不同的色谱分离法具有不同的原理和特点,应根据具体的分析需求选择合适的色谱方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的色谱法有哪几大类
色谱法(chromatography)又称色谱分析、色谱分析法、层析法,是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。
常见的色谱法主要有:柱色谱法、薄层色谱法、高效液相色谱法、气相色谱法、超临界流体色谱法。
1、柱色谱法
原始的色谱方法,该方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。
常见的洗脱方式有两种:一种是自上而下依靠溶剂本身的重力洗脱,另一种:自下而上依靠毛细作用洗脱。
收集分离后的纯净组分也有两种不同的方法:一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。
柱色谱法被广泛应用于混合物的分离,包括:对有机合成产物、天然提取物以及生物大分子的分离。
2、薄层色谱法
应用非常广泛的色谱方法,这种色谱方法将固定相涂布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。
薄层色谱法成本低廉、操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。
3、高效液相色谱法(HPLC)
目前,应用多的色谱分析方法,高效液相色谱系统由流动相储液瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是,针对其流动相为液体的特点作出很多调整。
HPLC输液泵要求输液量稳定平衡;进样系统要求进样便利、切换严密;由于液体流动相黏度远远小于气体,为了减低柱压,高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。
HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。
4、气相色谱法
气相色谱法是将氦或氩等气体作为载气(称移动相),将混合物样品注入装有填充
剂(称固定相)的色谱柱里,进行分离的一种方法。
分离后的各组分经检测器变为电信号并用记录仪记录下来。
气相色谱法近20年发展很快,种类很多,通常有五部分组成:(1)气源包括载气、燃烧器、助燃气、气体的净化和流量控制系统;(2)进样系统包括气化室和注射器等;(3)色谱柱是气相色谱的心脏,它又分为装有填充剂的填充柱和非常细的毛细管柱;(4)检测器;(5)记录仪或电子计算系统。
5、超临界流体色谱法
超临界流体色谱(supercriticalfluidchromatography;SFC)以超临界流体做流动相是依靠流动相的溶剂化能力来进行分离、分析的色谱过程,是20世纪80年代发展和完善起来的一种新技术。
超临界流体色谱兼有气相色谱和液相色谱的特点。
它既可分析气相色谱不适应的高沸点、低挥发性样品,又比高效液相色谱有更快的分析速度和条件。
操作温度主要决定于所选用的流体,常用的有二氧化碳及氧化亚氮。
超临界流体容易控制和调节,在进入检测器前可以转化为气体、液体或保持其超临界流体状态,因此可与现有任何液相或气相的检测器相连接,能与多种类型检测器相匹配,扩大了它的应用范围和分类能力,在定性、定量方面有较大的选择范围。
还可以用多种梯度技术来优化色谱条件。
并且比高效液相色谱法易达到更高的柱效率。