新人教版初中数学导学案:《旋转》第二节中心对称导学案2
人教版数学九年级上册23.2.1中心对称导学案

23.2.1 中心对称一、学习目标:1、中心对称的概念2、中心对称的性质3、掌握中心对称的性质并利用中心对称的性质作图二、学习重难点:重点:掌握中心对称的性质难点:利用中心对称的性质作图算探究案三、合作探究(一)复习引入请同学独立完成下题如左图所示,ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形。
(二)问题导入1、从A旋转到B,旋转中心是?旋转角是多少度呢?从A旋转到C呢?从A旋转到D呢?2、(1)把其中一个图案绕点O旋转180°,你有什么发现?(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你有什么发现?定义:像这样把一个图形绕着某一点旋转180度,如果它能够和另一个图形______,那么,我们就说这两个图____________________或中心对称,这个点就叫___________,这两个图形中的对应点,叫做______________________.课堂探究旋转三角板,画关于点O对称的两个三角形:第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A′B′C′;第三步,移开三角板.画出的△ABC与△A′B′C′关于点O对称.分别连接对称点AA′、BB′、CC′。
点O 在线段AA′上吗?如果在,在什么位置?△ABC与△A′B′C′有什么关系?议一议:下图中△A′B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?归纳总结1.中心对称的两个图形,对称点所连线段经过对称中心,而且被对称中心所__________.(即对称点与对称中心三点__________)2.中心对称的两个图形是______________.例题解析例1 (1)已知A点和O点,画出点A关于点O的对称点A'.(2)已知线段AB和O点,画出线段AB关于点O的对称线段A' B' .(3)如图,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.例2:如图,已知△ABC与△A′B ′C ′中心对称,找出它们的对称中心O.归纳总结中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)中心对称的两个图形是全等形.变式训练1、如图,△ABC与△ AD E是成中心对称的两个三角形,______是对称中心,点B的对称点是______,点C的对称点是______.2、如图,△ABC与△ ADE是成中心对称的两个三角形,∠BAD=______3、下图中△A′B′C′与△AB C关于点O成中心对称,运用中心对称性质回答:(1)在同一直线上的三点有_____,_____,_____;(2)有哪些与O有关的线段相等?随堂检测1、如图,已知△ABC与△A′B′C′成中心对称,求作出它们的对称中心O.2、如图,平行四边形ABCD的两条对角线交于点O,试找出图中成中心对称的三角形.3、下所英文单词中,是中心对称的有()A.CEOB.MBAC.SOSD.SAR4、如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD 边上的高是()A.2B.4C.6D.85. 如图,正方形ABCD与正方形A′B′C′D′关于一点中心对称,已知A,D′,D三点的坐标分别是(0,4),(0,3),(0,2)。
人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时教案

人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时教案一. 教材分析人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时,主要介绍了中心对称图形的概念及其性质。
本节内容是在学生已经掌握了中心对称的定义和性质的基础上进行授课的。
教材通过丰富的实例,让学生进一步理解中心对称图形的特点,并能运用其性质解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了中心对称的基本概念,但对其性质的理解还不够深入。
因此,在教学过程中,需要教师通过具体的实例,引导学生深入理解中心对称图形的性质,并能够运用这些性质解决实际问题。
三. 教学目标1.理解中心对称图形的性质。
2.能够运用中心对称图形的性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.中心对称图形的性质。
2.如何运用中心对称图形的性质解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,引导学生通过自主学习、合作交流,深入理解中心对称图形的性质,并能够运用这些性质解决实际问题。
六. 教学准备1.准备相关的案例和图片,用于讲解中心对称图形的性质。
2.准备一些实际问题,用于巩固学生对中心对称图形性质的理解。
七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生回顾中心对称的定义和性质。
例如,展示一个矩形,让学生找出其中心对称点。
2.呈现(10分钟)展示一些中心对称图形的图片,让学生观察并总结中心对称图形的性质。
引导学生发现,中心对称图形的特点是:对折后两部分完全重合,且对称轴是通过图形的中心的。
3.操练(10分钟)让学生分组讨论,每组找一个中心对称图形,并总结其性质。
然后,每组选取一个代表进行汇报。
4.巩固(10分钟)给出一些实际问题,让学生运用中心对称图形的性质进行解决。
例如,给出一个图形,要求学生找出其中心对称点。
5.拓展(10分钟)引导学生思考:中心对称图形在实际生活中有哪些应用?让学生举例说明。
人教版九年级上册第23章旋转中心对称教案

人教版九年级上册第23章旋转中心对称教案教学目标知识技能:理解中心对称的定义,掌握中心对称的性质.数学思考:在发现、探究的过程中完成对中心对称变换从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力.解决问题:培养学生的观察、分析、归纳能力,感受中心对称美,发展学生的作图能力.情感态度:利用图形探索中心对称的性质,让学生体验到数学与生活是紧密联系的,体会到生活中的对称美,发展学生的美感.教学重点:理解中心对称的定义,掌握中心对称的性质,并利用中心对称的性质作图.教学难点:中心对称的性质及利用性质作图.教学内容:课本第62页至64页.教学过程设计活动一.创设情景,探索新知.1.问题:观察实例(课本第62页图23.2-1,23.2-2),回答问题:①把其中一个图案绕点O旋转180°,你有什么发现?②线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180º,你有什么发现?2.引导学生归纳出中心对称的定义:把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;点O叫做对称中心;这两个图形中的对应点叫做关于中心的对称点.从旋转变换的角度引入中心对称的概念,让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称中要求旋转角必须为180 º,)渗透了从一般到特殊的数学思想方法.活动二.动手操作,理解性质.1.问题:如课本第63页图23.2-3,旋转三角板,画关于点O对称的两个三角形:(1) 画出△ABC;(2) 以三角板的一个顶点O为中心,把三角板旋转180º,画出△A′B′C′.2.让学生在作图的基础上思考:(1)分别连接对应点AA′、BB′、CC′.点O在线段AA′上吗?如果在,在什么位置?(2) △ABC与△A′B′C′全等吗?为什么?(3) △ABC与△A′B′C′有什么关系?(4)你能从中得到什么结论?3.(1)让每位学生参与到作图中,从活动中体会到旋转180º的实际意义.(2)让学生尝试自己证明△AOB与△A′B′C′全等.4.师生合作,归纳出中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形.通过学生的动手操作,在老师的引导下自主探索中心对称的性质.在学生自己动手画出两个中心对称的三角形后,及时开展中心对称性质的研究,培养了学生的探究精神.活动三.分析对比, 知识内化.问题:比较中心对称与轴对称有哪些区别?又有什么联系?教师引导学生思考作答.对比轴对称、平移变换进行学习反思,在思辨中完成知识内化,完善原有认知结构.活动四.知识应用,例题解析.1.例题:(1) 如课本图23.2-4,选择点O为对称中心,画出点A关于点O的对称点A′;(2) 如课本图23.2-5,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.2.问题:①一个点绕对称中心旋转180º,得到的是一个平角,这表示什么?②确定一个三角形需要几个点?作一个三角形关于某点成中心对称的三角形,需要作几个点的对称点呢?③你是如何理解“对称点所连线段都经过对称中心,而且被对称中心所平分”的?3.在学生准确作图后,教师提出相关的数学问题,学生独立思考、分析、解答问题.在本次活动中,教师应重点关注:(1) 学生画出图形后,能否加深对中心对称的性质的理解;(2) 学生不同的作图方法.利用中心对称的性质进行作图,加强对中心对称性质的理解,以适当的练习巩固本节课的知识点,使学生能熟练画出两个关于某点成中心对称的图形,巩固学生的作图能力,并会简单应用中心对称的性质.活动五.知识巩固,课堂练习.课本第64页小练习第1题.活动六.知识梳理,课堂小结.说说你在本节课的收获.活动七.知识反馈,布置作业.课本第67至68页第1,6题.。
人教版九年级上册数学《中心对称》教学导学案

23.2 中心对称(1)教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.2.难点与关键:从一般旋转中导入中心对称.教具、学具准备小黑板、三角尺教学过程一、复习引入请同学们独立完成下题.如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法.老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:(1)连结OA、OB、OC、OD;(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;(3)分别截取OE=OB,OF=OC;(4)依次连结DE、EF、FD;即:△DEF就是所求作的三角形,如图所示.二、探索新知问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.解:作法:(1)延长AD,并且使得DA′=AD(2)同样可得:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′)(2)连结A ′B ′、A ′C ′.则△A ′B ′C ′为所求作的三角形,如图所示.C(B ')B(C ')AA 'D三、巩固练习教材P74 练习2.23.2 中心对称(2)教学内容1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材P70 练习.四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分; 2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业1.教材P74 复习巩固1 综合运用6、7.1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°23.2.2 中心对称教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.A O(2)作出三角形AOB关于O点的对称图形,如图所示.B AO(2)延长AO使OC=AO,延长BO使OD=BO,连结CD则△COD为所求的,如图所示.B ACDO二、探索新知BA C D OBACEDOF从另一个角度看,上面的(1)题就是将线段AB 绕它的中点旋转180°,因为OA=•OB ,所以,就是线段AB 绕它的中点旋转180°后与它重合.上面的(2)题,连结AD 、BC ,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵AO=OC ,BO=OD ,∠AOB=∠COD∴△AOB ≌△COD ∴AB=CD也就是,ABCD 绕它的两条对角线交点O 旋转180°后与它本身重合. 因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形. 老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点? 老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.BACDO分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O 是四边形ABCD 的对称中心,根据中心对称性质,线段AC 、•BD 必过点O ,且AO=CO ,BO=DO ,即四边形ABCD 的对角线互相平分,因此,•四边形ABCD 是平行四边形. 三、巩固练习 教材P72 练习. 四、应用拓展例4.如图,矩形ABCD 中,AB=3,BC=4,若将矩形折叠,使C 点和A 点重合,•求折痕EF 的长.分析:将矩形折叠,使C 点和A 点重合,折痕为EF ,就是A 、C 两点关于O 点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积. 解:连接AF ,∵点C 与点A 重合,折痕为EF ,即EF 垂直平分AC .∴AF=CF ,AO=CO ,∠FOC=90°,又四边形ABCD 为矩形,∠B=90°,AB=CD=3,AD=•BC=4 设CF=x ,则AF=x ,BF=4-x ,由勾股定理,得AC 2=BC 2+AB 2=52∴AC=5,OC=12AC=52∵AB 2+BF 2=AF 2∴32+(4-x )=2=x2∴x=25 8∵∠FOC=90°∴OF2=FC2-OC2=(258)2-(52)2=(158)2 OF=158同理OE=158,即EF=OE+OF=154五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.六、布置作业1.教材P74 综合运用5 P75 拓广探索8、9。
人教版数学九年级上册23.2中心对称探索旋转的性质教案

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理,如利用直尺和圆规绘制中心对称图形。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解中心对称的基本概念。中心对称是指在平面上,存在一个点,使得图形中的任意一点关于这个点都有对应的另一点,且两点的距离相等。它是研究图形变换和性质的重要工具,广泛应用于艺术、建筑和工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了中心对称在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了中心对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对中心对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
本节课旨在培养学生的以下核心素养:1.逻辑推理能力:通过探索中心对称的性质,学会运用严密的逻辑推理方法,分析并解决问题;2.空间想象力:理解中心对称的概念,能够准确找出对称中心,并在脑中构建出对称图形,提高空间想象力;3.数据分析观念:运用中心对称知识,对实际问题进行数学建模,培养数据分析观念;4.数学抽象能力:从具体实例中抽象出中心对称的概念和性质,提升数学抽象能力;5.数学应用意识:了解中心对称在实际生活中的应用,培养学生将数学知识应用于解决实际问题的意识。通过本节课的学习,使学生在新教材要求下,全面提升数学核心素养。
最新人教版初中九年级数学上册《中心对称》导学案

23.2中心对称23.2.1 中心对称——中心对称的概念和性质一、新课导入1.导入课题:问题1:把图①中一个图案绕点O旋转180°,你有什么发现?问题2:如图②,线段AC、BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你又有什么发现?图①图②由此导入课题:中心对称.(板书课题)2.学习目标:(1)通过具体实例认识中心对称,弄清楚中心对称及其有关概念的含义.(2)探究并归纳出中心对称的性质.(3)会作与一个图形关于某个点成中心对称的另一个图形.3.学习重、难点:重点:中心对称的概念和性质.难点:中心对称性质的证明.二、分层学习1.自学指导:(1)自学内容:教材第64页最后一段话之前的内容.(2)自学时间:5分钟.(3)自学方法:通过操作,从具体的情景中感受,理解、归纳中心对称及相关概念.(4)自学参考提纲:①把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心(简称中心).这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.②中心对称是指几个图形之间的位置关系?一个图形绕一点旋转能与另一个图形重合就是中心对称吗?两个.不一定,必须是绕一点旋转180°能与另一个图形重合才是中心对称.③在下列四组图形中右边数字与左边数字成中心对称的有(1)(2)(3)(4) .(1)(2)(3)(4)2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:通过自学参考提纲的第②③题,了解学生是否能抓准中心对称的本质特征.②差异指导:依据学情予以点拨、指导.(2)生助生:小组内相互交流、研讨.4.强化:两个图形成中心对称须具备三个条件:①能找到一个对称中心;②旋转角为180°;③这两个图形旋转后能重合.1.自学指导:(1)自学内容:教材第64页最后一段话到第65页例题之前的内容.(2)自学时间:5分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①按下列步骤动手画图:第一步:用三角尺画出△ABC;第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,再画出△A′B′C′;第三步:移开三角尺,并用虚线连接对应点AA′,BB′,CC′.②思考下列问题:a.△ABC与△A′B′C′关于点O对称吗?对称.b.△ABC与△A′B′C′全等吗?为什么?全等.由图形旋转的性质可知△ABC≌△A′B′C′.c.线段AA′、BB′、CC′有何关系?相交于点O.d.点O在线段AA′、BB′、CC′的什么位置?点O在线段AA′、BB′、CC′的中点处.2.自学:学生可参考自学指导进行动手操作,交流、研讨.3.助学:(1)师助生:①明了学情:观察学生能否在探究提纲的指引下,顺利完成相应内容的学习.②差异指导:在充分了解学情的基础上,有针对性地予以指导.(2)生助生:小组内相互交流、协作,共同探讨、归纳结论.4.强化:交流学习成果,归纳中心对称的性质.1.自学指导:(1)自学内容:教材第65页至第66页的例1.(2)自学时间:5分钟.(3)自学方法:阅读教材并弄清画点A关于点O的对称点的画法,并在下图中动手画一画.(4)自学参考提纲:①如图,怎样画点A关于点O的对称点?连接AO,在AO的延长线上截取OA′=OA,即可求得点A关于点O的对称点A′.图①图②②如图②,怎样画△ABC关于点O对称的△A′B′C′?作出A,B,C三点关于点O的对称点A′,B′,C′,依次连接A′B′,B′C′,C′A′,就可得到与△ABC关于点O对称的△A′B′C′.2.自学:学生可参考自学指导进行动手操作,交流、研讨.3.助学:(1)师助生:①明了学情:观察学生能否正确画图.②差异指导:在充分了解学情的基础上,有针对性地予以指导.(2)生助生:小组内相互交流、协作,共同探讨、归纳结论.4.强化:(1)画一个点关于另一个已知点的对称点的操作要点.(2)作一个图形关于一个已知点的对称图形的操作要点.(3)练习:①分别画出图1中各图形关于点O对称的图形.图1 图2②图2中的两个四边形关于某点对称,找出它们的对称中心.解:如图所示,点O即为它们的对称中心.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何成功的经验或自我感觉不足的地方?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、小组交流协作情况、学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课设计通过问题导入,遵循从感性到理性的渐进认识规律、发展学生直观想象能力,分析、归纳、抽象概括的思维能力.学生在探究新知的过程中,教师给予学生更多的互动时间,联系生活中的例子,让学生对知识易于理解,易于接受.教学过程中要强调中心对称的性质和利用中心对称的性质作图的方法.从课堂发言和练习来看,学生积极动手动脑,教师适当引导,学生成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 下列结论中,错误的是(A )A.形状大小完全相同的两个图形一定关于某点成中心对称B.成中心对称的两个图形,对称中心到两对称点的距离相等C.成中心对称的两图形,对称中心在两对称点的连线上D.成中心对称的两图形,对应线段平行(或在同一直线上)且相等2.(10分) 如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等.其中正确的有(D)A.1个B.2个C.3个D.4个第2题图第3题图第4题图3.(10分) 如图,△ABC和△AB′C′成中心对称,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长为(D)A.4B.33C.233D.4334.(10分) 如图,四边形ABCD与四边形FGHE关于点O成中心对称,下列说法中错误的是(D)A.AD∥EF,AB∥GFB.BO=GOC.CD=HE,BC=GHD.DO=HO5.(10分) 如图,两个卡通图案是关于某点成中心对称的两个图案,试在图中确定其对称中心.解:如图:点O即为所求的对称中心.6.(20分)分别画出下面图形关于点O对称的图形.解:如图:二、综合应用(20分)7.(20分)如图,△DEC是由△ABC经过如下的几何变换而得到的:①以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;③将△ABC向下、向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有(A)A.①②B.①③C.②③D.①②③三、拓展延伸(10分)8.(10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由;(2)若△ABC的面积为3cm2,求四边形ABFE的面积.解:(1)AE与BF关于点C中心对称.理由:因为△FEC是由△ABC绕点C顺时针旋转180°得到的,所以△FEC于△ABC关于点C成中心对称,根据中心对称的性质可知点A、F,点B、E分别关于点C成中心对称,所以它们的连线AE与BF关于点C中心对称.(2)S四边形ABFE=4S△ABC=12 cm2.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
人教版九年级数学上册导学案 第二十三章 旋转 23.2.1 中心对称
人教版九年级数学上册导学案第二十三章旋转23.2.1 中心对称【学习目标】1.掌握中心对称、对称中心、关于对称中心的对称点等概念2.掌握中心对称的性质.3.会作一个图形关于某点成中心对称的对称图形.【课前预习】1.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等2.下面说法正确的是()A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称C.旋转后能重合的两个图形成中心对称D.旋转180°后能重合的两个图形成中心对称3.下列命题中正确的命题的个数有)①在成中心对称的两个图形中,连接对称点的线段都被对称中心平分②关于某一点成中心对称的两个三角形能重合③两个能重合的图形一定关于某点中心对称④如果两个三角形的对应点连线都经过同一点,那么这两个三角形成中心对称⑤成中心对称的两个图形中,对应线段互相平行或共线A.1个B.2个C.3个D.4个4.已知点P(-1-2a,2a-4)关于原点的对称点在第一象限,则整数a的值为()A.1 B.0 C.0,1 D.0,1,25.关于成中心对称的两个图形的性质,下列说法正确的是()A.连接对应点的线段都经过对称中心,并且被对称中心平分B.成中心对称的两个图形的对应线段不一定相等C.对应点的连线不一定都经过对称中心D.以上说法都不对6.关于中心对称的两个图形,对应线段的关系是( )A.平行B.相等C.平行且相等D.相等且平行或在同一直线上7.下列几何图形中,①一条线段;②平面上的两条直线;③等边三角形;④平行四边形;⑤等腰三角形,其中一定是中心对称图形的有()A.2个B.3个C.4个D.5个8.下列命题中的真命题是()A.全等的两个图形是中心对称图形B.关于中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形9.既是轴对称图形又是中心对称图形的是()A.等腰梯形 B.菱形 C.平行四边形 D.等边三角形10.下列图形①角,②平行四边形,③圆,④矩形,⑤菱形,⑥正方形,⑦等腰梯形,既是中心对称又是轴对称图形的有()A.②③④⑥, B.②③④⑤ C.①③⑥⑦ D.③④⑤⑥【学习探究】自主学习阅读课本,完成下列问题1、回忆什么是轴对称?成轴对称的两个图形有什么性质?如果一个图形沿着_________对折后能与__________重合,则称这两个图形关于这条直线对称或轴对称。
人教版九年级上册数学第23章旋转23.2.1中心对称导学案
杭六中九年级上册数学导教案中心对称学习目标1.经过旋转作图认识两个图形对于某一点对称(或中心对称)的本质;就是一个图形绕一点旋转180°而成 .2.经过作图探究中心对称的两个图形的性质;会利用中心对称的性质作出某一图形成中心对称的图形;会确立对称中心的地点 .3.经历对平时生活中与中心对称相关的图形进行察看、剖析、赏识、着手操作、绘图等过程,感觉生活中的对称美 .要点:中心对称的性质及应用 .难点:确立对称中心的地点 .学习过程一、创建问题情境问题:作出如图的两个图形绕点O 旋转 180°的图案,并回答以下的问题:1.以 O 为旋转中心,旋转180°后两个图形能否重合?2.各对称点绕O 旋转 180°后,这三点能否在一条直线上?二、自主学习如下图的两个图案绕 O 旋转 180°都是重合的,即甲图与乙图重合,△ OAB 与△ COD 重合.像这样,把一个图形绕着某一个点旋转180°,假如它可以与另一个图形,那么就说这两个图形对于这个点对称或中心对称,这个点叫做.这两个图形中的对应点叫做对于中心的对称点.例 1.如图,四边形 ABCD 绕 D 点旋转 180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?假如是对称中心是哪一点?假如不是,请说明原因.(2)假如是中心对称,那么 A、B、C、D 对于中心的对称点是哪些点.剖析:(1)依据中心对称的定义便直接可知这两个图形是中心对称图形,对称中心就是旋转中心.(3)旋转后的对应点,即是中心的对称点.概括: 1.中心对称的两个图形,对称点所连线段都经过,而且被所均分.2.对于中心对称的两个图形是图形.例 2.如图,已知△ ABC 和点 O,画出△ DEF,使△ DEF 和△ ABC 对于点 O 成中心对称.剖析:中心对称就是旋转 180°,对于点 O 成中心对称就是绕 O 旋转 180°,所以,我们连 AO、BO、CO 并延伸,取与它们相等的线段即可获得 .三、合作展现例 3:画出四边形 ABCD 对于点 O 成中心对称的图形,并用适合文字简述画法.例 4.如图,已知三个极点的坐标分别为A(-2,-1),B(-3,-3),C(-1,-3).(1)出对于 x 轴对称的 1 1 1,并写出点 A1的坐标;B C(2)画出对于原点 O 对称的 2 2 2,并写出点 A2的坐标.B C学生自主学习,达成例题的学习.请各个小组登台演示解答过程.四、讲堂小结说说自己对这节课的感觉,教师评论各个小组的表现.五、达标测试一、选择题1.你玩过扑克牌吗?你认真察看过每张扑克牌的图案吗?以下扑克牌的图案中,是中心对称的一组是()A.红挑 6 与红挑 4 B.方块 6 与方块 4C.梅花 6 与梅花 4 D.黑挑 6 与黑挑 42.如图△ ABC 与△ AB ′C′成中心对称,A 为对称中心,若∠ C=90°,∠B=30°, AC=1,则 BB ′的长为()A.4 B.3C.23D.4 3 3333.如图,边长为2的正方形 ABCD 的对角线订交于点O,过点 O 的直线分别交边 AD 、BC 与 E、F 两点,则暗影部分的面积是()A.1 B.2 C.3 D.42题图3题图4题图4.如图,已知菱形 ABCD 与菱形 EFGH 对于直线 BD 上某个点成中心对称,则点 B 的对称点是()宋此后,京师所设小学馆和武学堂中的教师称呼皆称之为“教谕” 。
人教版数学 中心对称(第二课时中心对称图形)导学案
人教版数学中心对称(第二课时中心对称图形)导学案学习目标:1、正确认识什么是中心对称图形,能够判别一个图形是不是中心对称图形。
2、理解中心对称图形与中心对称的区别与联系。
重点:能够判别一个图形是不是中心对称图形。
3、难点:理解中心对称图形与中心对称的区别与联系。
学习过程:一、1、参看教材P65思考回答问题。
你有什么发现___________________________________________.2、自学教材P65,回答下列问题:①把一个图形_______________________________如果旋转后_____________________________那么这个图形就叫做中心对称图形。
这个点叫___________。
②有上述定义可知,线段、平行四边形______(填是或者不是)中心对称图形。
4、交流探讨①中心对称图形与中心对称的区别与联系。
区别:1、从图形个数上来说:2、从定义上来说:中心对称图形揭示了具有___________性质的一种图形,而中心对称揭示了_____个图形之间的一种________关系。
一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
联系:1、从旋转的角度说明:宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
人教版九年级数学上第二十三章旋转23.2中心对称教案
问题与情境
师生活动
设计意图
探索验证:结合画出的图形师生共同分 析推理验证。
归纳: (1)关于中心对称的两个图形,对称点所 连线段都经过对称中心,而且被对称中心平 分。 (2)关于中心对称的两个图形是全等形。 (3) 对称线段相等且平行。 [活动 4] 中心对称画法探索 例1 (1)选择点 O 为对称中心, 画出 A 点关于 点 O 对称的点 A'。
23.2 中心对称
第一课时
教学目标分析
教 学 目 标
重点 难点
知 识与 技能
过 程与 方法
1. 正确认识什么是中心对称、对称中心,理解关于中心对称的图形的性质特 点。
2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形。 经历中心对称的探索过程,通过观察、操作、发现、探究中心对称的有关
概念和基本性质,培养学生的观察能力和动手操作能力。
情感态度 与价值观
通过对中心对称的学习,感受对称、匀称、均衡的美感,体验图形变化的 规律,感ቤተ መጻሕፍቲ ባይዱ图形变换和图形的美丽,感受生活中的数学,热爱数学。
中心对称的概念及性质。
中心对称的推导及理解。
教学流程安排
活动流程 活动 1
复习,导入新课。
活动 2 概念认识
(2) △ ABC 与△ A'B'C'有什么关系?
(1) 引导学生画图, 探索对称点及图 形之间的关系。
(2) 引导学生尝试阐 述结论,分析性 质,帮助学生理 解。
通过学生自已动 手画图,进一步加深 对中心对称的理解, 同时通过多种手段验 证出中心对称的性 质,深刻理解。为下 一步的学习打好基 础。
学生根据题目和要求 完成。
教师点评,鼓励学生 汇总、 归纳,强调各知识点 之间的区别与联系, 总结规 律方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《旋转》第二节中心对称导学案2
主编人:主审人:
班级:学号:姓名:
学习目标:
【知识与技能】
1、使学生了解中心对称图形的概念,以及两个图形成中心对称和中心对称图形的关系.
2、使学生初步学会识别常见的中心对称图形或图案,并能用推理方式说明一个图形是中心对称图形.
【过程与方法】
通过对常见图案或常见图形的识别,进一步理解两个图形成中心对称和中心对称图形的关系.
【情感、态度与价值观】
经历对对称图形的识别,发展学生的审美观,同时让学生知道不仅要看事物的表象,还要了解它的内涵,从而让学生知道平时应提高自己思维深度.
【重点】
中心对称图形的判断.
【难点】
两个图形成中心对称和中心对称图形的关系,以及中心对称的判定.
学习过程:
一、自主学习
(一)复习巩固
1.关于中心对称的两个图形具有什么性质?
2.作图题.
(1)作出线段AO 关于O 点的对称图形,如图所示.
B
A
O
(2)作出三角形AOB 关于O 点的对称图形,如上图所示. (二)自主探究
如图1,将线段AB 绕它的中点旋转180º,你有什么发现?
如图2,将它绕两对角线的交点O 旋转180º,你有什么发现?
思考:中心对称图形是
举例说明我们学过的还有哪些是中心对称图形?
(三)、自我尝试:
1.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A .等边三角形
B .等腰梯形
C .平行四边形
D .正六边形
2.下面的图案中,是中心对称图形的个数有( )个
A O
21085
A.1 B.2 C.3 D.4
3.下面图形中既是轴对称图形又是中心对称图形的是()
A.直角 B.等边三角形 C.直角梯形 D.两条相交直线
4.下列图形中,是中心对称图形,但不是轴对称图形的是().
A.正方形 B.矩形 C.菱形 D.平行四边形
5.如图上图所示,平放在正立镜子前的桌面上的数码“21085•”在镜子中的像是()A.21085 B.28015 C.58012 D.51082
二、教师点拔。
1、什么叫做中心对称图形?
2、中心对称与中心对称图形的区别:中心对称是指个图形之间的相互位置关
系,成中心对称的个图形中,其中一个图形上所有点关于对称中心的对称点都在图形上;而中心对称图形是指个图形成中心对称,中心对称图形上所有点关于对称中心手对称点都在上;中心对称图形的对称中心是图形的点,而两个图形关于某点成中心对称,对称中心位置。
3、中心对称图形与轴对称图形之间的联系:
1)对称轴条数为的图形是中心对称图形,对称中心是对称轴的交点;
2)中心对称图形是轴对称图形,轴对称图形也是中心对称图形;
3)对称轴的轴对称图形是中心对称图形;
三、课堂检测:
1、下列命题中真命题是()
A.两个等腰三角形一定全等 B.正多边形的每一个内角的度数随边数增多而减少 C.菱形既是中心对称图形,又是轴对称图形 D.两直线平行,同旁内角相等
2、在英文字母VWXYZ中,是中心对称的英文字母的个数有()个.
A.1 B.2 C.3 D.4
3、如图下图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,•点D、C
分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()
A.55° B.125° C.70° D.110°
4、将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°
5、把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么
这个图形叫做__________.
6、在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,•那么就称这个
图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:•正方形绕着它的
对角线的交点旋转90°后能与自身重合,•所以正方形是旋转对称图形,应有一个旋转角为90°.
(1)判断下列命题的真假(在相应括号内填上“真”或“假”)
①等腰梯形是旋转对称图形,它有一个旋转角为180°;()
②矩形是旋转对称图形,它有一个旋转角为180°;()
(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(•写出所有正确结论的序号)
①正三角形;②正方形;③正六边形;④正八边形.
(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别
满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中
心对称图形.
四、课外拓展
1、如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,•求折痕EF的长.
2、如图,直线y=2x+2与x轴、y轴分别交于A、B两点,将△AOB绕点O•顺时针旋转90°
得到△A1OB1.
(1)在图中画出△A1OB1;
(2)设过A、A1、B三点的函数解析式为y=ax2+bx+c,求这个解析式.。