一元多元线性回归
一元线性回归模型与多元线性回归模型对比知识分享

方程总体显著性 检验
目的:对模型中被解释变量与解释变量之间的线性 关系在总体上是否成立做出判断。
原假设Ho:卩1 = 0,卩2 = °,••■Pk= °
备择假设:Hi:PjO12…k)不全为零
ESS妆
统计量的构造:F-Rssg- i)~F(3-k- 1)判断步骤:①计算F统计量的值
②给定显著性水平J查F分布的临界值表获得Fa(kn-k -1)
③比较F与&的值,
若F>Fa,拒绝原假设,认为原方程总体线性关系在1-a的置信水平下显著。
若F-F%接受原假设,不能认为原方程总体线性关 系在I-01的置信水平下显著。
变量的显著性检 验
目的:对模型中被解释变量对每一个解释变量之间的线性关系是否成立作 出判断,或者说考察所选择的解释变量对被解释变量是否有显著的线性影 响。针对某解释变量刍,
(2)提高模型的拟合优度(以减小残差平方和,从而减小%)
(3)提高样本观测值的分散度(样本值越分故.切越小.习越小)
f(普通
最小二乘估计的离 差形式)
随机干扰项的方差 的估计量
宀E
n-2
残差平方和达到最小,得到正规方程组,求得参数 的普通最小二乘估计值鸟=XX尸XY
B=gx,' £y
(普通最小二乘估计的离差形式)
随机干扰项的方差尸-工:-,
□一k一1n-k-1
最大似然估计
(ML)矩估计(MM)
参数估计值估计结 果与OLS方法一 致,但随机干扰项 的方差的估计量与OLS不同
(X諾),(X?必),...(Xi,G,...(Xn,E)贝IJ,上述式子可以写成:
(X11,x12,...xlk,y1), (X^i,x??,…5),
一元与多元线性回归

1.1 1.2 1.3 1.4 1.5 一元线性回归模型 参数的最小二乘估计 回归直线的拟合优度 显著性检验 预测与估计
什么是回归分析?
1. 从一组样本数据出发,确定变量之间的数学 关系式 2. 对这些关系式的可信程度进行各种统计检验, 并从影响某一特定变量的诸多变量中找出哪 些变量的影响显著,哪些不显著 3. 利用所求的关系式,根据一个或几个变量的 取值来预测或控制另一个特定变量的取值, 并给出这种预测或控制的精确程度
2. 回归平方和(SSR—sum squares of regression)
3. 残差平方和(SSE—sum squares of error)
–
判定系数R2
1. 回归平方和占总误差平方和的比例
2. 反映回归直线的拟合程度 3. 取值范围在 [ 0 , 1 ] 之间 4. R2 1,说明回归方程拟合的越好;R20, 说明回归方程拟合的越差
8 6 4 2 0 0 10 20 30 40 贷款项目个数
不良贷款
10
10 8 6 4 2 0 0 50 100 150 200 固定资产投资额
不良贷款与贷款项目个数的散点图
不良贷款与固定资产投资额的散点图
相关系数
(例题分析)
用Excel计算相关系数
估计方程的求法
(例题分析)
【例】求不良贷款对贷款余额的回归方程
ˆ 0 t 2 (n 2) S xy y 1 + n
x0 x n 2 xi x
2 i 1
式中: Sy 为估 计标准误差
利用回归方程进行估计和预测
(预测区间估计)
• y 的个别值的预测区间 估计 1. 利用估计的回归方程 ,对于自变量 x 的一 个给定值 x0 ,求出因 变量 y 的一个个别值 的估计区间,这一区 间称为预测区间 2. y0在1-置信水平下的 预测区间为
计量经济学第二章(第一部分)

i= 1
同
上
该准则消除了正负误差抵消,其缺点是:
不能保证找到的直线具有无偏性。如:
+2 -1
-1
+3
0 0
3 Yi -Yˆ i = 4
3
2
Yi -Yˆ i =6
i=1
i=1
3
3
2
Yi -Yˆ i = 3
Yi -Yˆ i =9
i=1
i=1
33 计量经济学
(3)使得
13 计量经济学
Y i01X iui,i1,2n,..., 同
上
其中 0,1 称为回归参数;u为随机误差 项; X称为解释变量;Y称为被解释变量。 “一元”是指:只有一个解释变量;
14 计量经济学
Y i01X iui,i1,2n,..., 同
上
“线性”包含:
被解释变量与间 解为 释线 变性 量关系
量Y的影响;
16 计量经济学
同 上
(2)变量观测值的观测误差的影响; (3)模型数学形式的设定误差影响; (4)其它随机因素的影响。
17 计量经济学
同 上
2、随机误差项u的特性
(1)对被解释变量Y的影响方向,有正有负;
(2)由于代表次要因素,因此,对Y的总平
均影响可视为零;
(3)对被解释变量Y的影响是非趋势的,是
假定2、3统称为高斯-马尔可夫假定。
23 计量经济学
假定4 cov(Xi,ui)=Exiui=0 ,
假
定
i=1,2,…,n且X为确定性变量,而非 4
随机变量。
如果解释变量X是确定性变量而非随机变 量该假定自动成立,即EXi=Xi ,EXiui= XiEui= 0 。该假定表明X与u不相关。因 为在模型中u包含了除X对Y的影响外其它 因素对Y的影响,因此应与X对Y的影响分 开。
回归分析

,
,
y1 0 1 x11 2 x12 p x1 p 1 y x x x 2 0 1 21 2 22 p 2p 2 y n 0 1 x n1 2 x n 2 p x np n
(1)建立非线性回归模型1/y=a+b/x; (2)预测钢包使用x0=17次后增大的容积y0; (3)计算回归模型参数的95%的置信区间。
初始值要先计算,先选择已知数据中的两点( 2,6.42)和(16,10.76)代入设定方程,得到方程组
2 6.42 6.42(2a b) 2 2a b 16 10.76(16a b) 16 10.76 16a b
ˆ 2.7991 y x 23.5493
解释:职工工资总额每增加1亿元,社会商品零售总额将增加 2.80亿。
2、一元多项式回归模型
(1) 多项式回归的基本命令 在一元回归模型中,如果变量y与x的关系是n次多项式,即
y an x an1x
n
n1
... a1x a0
试求:① 给出y与t的回归模型; ② 在同一坐标系内做出原始数据与拟合结果的散点图 ③ 预测t=16时残留的细菌数;
ex006
三、多元线性回归模型 (略)
多元线性回归模型及其表示
对于总体
( X 1 , X 2 ,, X p ;Y ) 的n组观测值
( xi1 , xi 2 ,, xip ; yi )(i 1,2,, n; n p)
例为了分析X射线的杀菌作用,用200千伏的X射线来照射细 菌,每次照射6分钟用平板计数法估计尚存活的细菌数,照 射次数记为t,照射后的细菌数y如表3.3所示。
计量经济学复习资料——概论一元和多元线性回归习题

计量经济学复习资料——概论⼀元和多元线性回归习题概论、⼀元线性回归、多元线性回归习题⼀、单项选择题1. 总体回归线是指( ) A )样本观测值拟合的最好的曲线 B )使残差平⽅和最⼩的曲线C )解释变量X 取给定值时,被解释变量Y 的样本均值的轨迹D )解释变量X 取给定值时,被解释变量Y 的条件均值或期望值的轨迹2. 指出下列哪⼀变量关系是确定函数关系⽽不是相关关系? () A. 商品销售额与销售价格 B. 学习成绩总分与各门课程成绩分数 C. 物价⽔平与商品需求量 D. ⼩麦亩产量与施肥量3. 经济计量分析⼯作的基本⼯作步骤是-() A .设定理论模型→收集样本资料→估计模型参数→检验模型B .设定模型→估计参数→检验模型→应⽤模型C .理论分析→数据收集→计算模拟→修正模型D .确定模型导向→确定变量及⽅程式→应⽤模型4. 若⼀元线性回归模型Y=β1+β2X +u 满⾜经典假定,那么参数β1、β2的普通最⼩⼆乘估计量β^1、β^2是所有线性估计量中( )A )⽆偏且⽅差最⼤的B )⽆偏且⽅差最⼩的C )有偏且⽅差最⼤的D )有偏且⽅差最⼩的5. 在⼀元线性回归模型Y=β1+β2X +u 中,若回归系数β2通过了t 检验,则表⽰( ) A )β^2≠0 B )β2≠0 C )β2=0 D )β^=06. 在多元线性回归模型Y=β1+β2X 2+β3X 3 +β4X 4+u 中,对回归系数βj (j=2,3,4)进⾏显著性检验时,t 统计量为( )A )()jjSe ββ?? B )()j j Se ββ C )()j j Var ββ D )()j j Var ββ??7. 在⼆元线性回归模型中,回归系数的显著性t 检验的⾃由度为( )。
A. n B. n-1 C. n-2 D. n-38. 普通最⼩⼆乘法要求模型误差项u i 满⾜某些基本假定,下列结论中错误的是( )。
A. E(u i )=0 B. E(2i u )=2i σC. E(u i u j )=0D. u i ~N(0.σ2)9. 对模型Yi=β0+β1X1i+β2X2i+µi 进⾏总体显著性F 检验,检验的零假设是( ) A. β1=β2=0 B. β1=0 C. β2=0 D. β0=0或β1=010. 在多元线性回归中,判定系数R 2随着解释变量数⽬的增加⽽() A.减少 B .增加 C .不变 D .变化不定11. 已知三元线性回归模型估计的残差平⽅和为8002=∑te,估计⽤样本容量为24=n ,则随机误差项t u 的⽅差估计量2S 为( )。
计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
Matlab统计回归详解

统计回归一、一元线性回归回归分析中最简单的形式是x y 10ββ+=,y x ,均为标量,10,ββ为回归系数,称一元线性回归。
这里不多做介绍,在线性回归中以介绍多元线性回归分析为主。
二、多元线性回归(regress )多元线性回归是由一元线性回归推广而来的,把x 自然推广为多元变量。
m m x x y βββ+++= 110 (1)2≥m ,或者更一般地)()(110x f x f y m m βββ+++= (2)其中),,(1m x x x =,),,1(m j f j =是已知函数。
这里y 对回归系数),,,(10m ββββ =是线性的,称为多元线性回归。
不难看出,对自变量x 作变量代换,就可将(2)化为(1)的形式,所以下面以(1)为多元线性回归的标准型。
1.1 模型在回归分析中自变量),,,(21m x x x x =是影响因变量y 的主要因素,是人们能控制或能观察的,而y 还受到随机因素的干扰,可以合理地假设这种干扰服从零均值的正态分布,于是模型记作⎩⎨⎧++++=),0(~2110σεεβββN x x y m m (3) 其中σ未知。
现得到n 个独立观测数据),,,(1im i i x x y ,m n n i >=,,,1 ,由(3)得⎩⎨⎧=++++=ni N x x y i i im m i i ,,1),,0(~2110 σεεβββ (4) 记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nm n m x x x x X 111111, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n y y Y 1 (5) T n ][1εεε =,T m ][10ββββ =(4)表示为 ⎩⎨⎧+=),0(~2σεεβN X Y (6) 1.2 参数估计用最小二乘法估计模型(3)中的参数β。
由(4)式这组数据的误差平方和为∑=--==ni T i X Y X Y Q 12)()()(ββεβ (7)求β使)(βQ 最小,得到β的最小二乘估计,记作βˆ,可以推出 Y X X X T T 1)(ˆ-=β(8) 将βˆ代回原模型得到y 的估计值mm x x y βββˆˆˆˆ110+++= (9) 而这组数据的拟合值为βˆˆX Y =,拟合误差Y Y e ˆ-=称为残差,可作为随机误差ε的估计,而∑∑==-==n i ni i i iy y e Q 1122)ˆ( (10) 为残差平方和(或剩余平方和),即)ˆ(βQ 。
计量经济学复习资料——概论一元和多元线性回归习题

概论、一元线性回归、多元线性回归习题一、 单项选择题1. 总体回归线是指( ) A )样本观测值拟合的最好的曲线 B )使残差平方和最小的曲线C )解释变量X 取给定值时,被解释变量Y 的样本均值的轨迹D )解释变量X 取给定值时,被解释变量Y 的条件均值或期望值的轨迹2. 指出下列哪一变量关系是确定函数关系而不是相关关系? ( ) A. 商品销售额与销售价格 B. 学习成绩总分与各门课程成绩分数 C. 物价水平与商品需求量 D. 小麦亩产量与施肥量3. 经济计量分析工作的基本工作步骤是-( ) A .设定理论模型→收集样本资料→估计模型参数→检验模型B .设定模型→估计参数→检验模型→应用模型C .理论分析→数据收集→计算模拟→修正模型D .确定模型导向→确定变量及方程式→应用模型4. 若一元线性回归模型Y=β1+β2X +u 满足经典假定,那么参数β1、β2的普通最小二乘估计量β^1、β^2是所有线性估计量中( )A )无偏且方差最大的B )无偏且方差最小的C )有偏且方差最大的D )有偏且方差最小的5. 在一元线性回归模型Y=β1+β2X +u 中,若回归系数β2通过了t 检验,则表示( ) A )β^2≠0 B )β2≠0 C )β2=0 D )β^=06. 在多元线性回归模型Y=β1+β2X 2+β3X 3 +β4X 4+u 中,对回归系数βj (j=2,3,4)进行显著性检验时,t 统计量为( )A )()jjSe ββˆˆ B )()j j Se ββ C )()j j Var ββ D )()j j Var ββˆˆ7. 在二元线性回归模型中,回归系数的显著性t 检验的自由度为( )。
A. n B. n-1 C. n-2 D. n-38. 普通最小二乘法要求模型误差项u i 满足某些基本假定,下列结论中错误的是( )。
A. E(u i )=0 B. E(2i u )=2i σC. E(u i u j )=0D. u i ~N(0.σ2)9. 对模型Yi=β0+β1X1i+β2X2i+μi 进行总体显著性F 检验,检验的零假设是( ) A. β1=β2=0 B. β1=0 C. β2=0 D. β0=0或β1=010. 在多元线性回归中,判定系数R 2随着解释变量数目的增加而( ) A.减少 B .增加 C .不变 D .变化不定11. 已知三元线性回归模型估计的残差平方和为8002=∑te,估计用样本容量为24=n ,则随机误差项t u 的方差估计量2S 为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y = −0.683 + 0.004x
显著性 .026 .000
VAR00002
Value
1.000
.318*
.
.021
53
53
.318*
1.000
.021
.
53
53
(3) 如果存在异方差,用幂函数型的权函数建立最小二乘回归方程。 模型描述
因变量
VAR00003
自变量 1
VAR00002
权重
源
VAR00002
幂值 模型:MOD_2。
1.500
当M=1.5时得到最优权函数,此时得到:
回归 残差 总计
平方和 .006 .003 .009
ANOVA
自由度
均方00
52
F 98.604
显著性 .000
(常量) VAR00002
未标准化系数
B
标准误差
-.683
.298
.004
.000
系数
标准化系数
Beta
标准误差
.812
.082
t -2.296 9.930
可以得到,幂函数型的权函数建立最小二乘回归方程为:
.00000 1.56196
53
标准预测值
-1.314
3.675
.000
1.000
53
标准残差
-2.625
1.999
.000
.990
53
a. 因变量:VAR00003
我们将残差作为Y轴变量,将y值作为X轴变量,得到散点图如下:
(2) 诊断该问题是否存在异方差。
由残差散点图可知存在异方差性,用 spearman 相关系数分析。
根据 SPSS 计算得出 y 与 x 的线性回归方程为;
y = −0.831 + 0.004x 残差散点图: 在计算残差散点图之前,我们先计算残差,如下图所示:
残差统计a
最小值
最大值
平均值 标准偏差 个案数
预测值
.2441 12.2796
3.4132 2.41244
53
残差
-4.13989 3.15220
相关性
斯皮尔曼 Rho VAR00002
Unstandardized Predicted Value *. 在 0.05 级别(双尾),相关性显著。
相关系数 显著性(双尾) 个案数 相关系数 显著性(双尾) 个案数
P=0.021,所以方差与自变量的相关性是显著的。
Unstandardized
Predicted
实验内容:P129,4.9(1)(2)(3) (1) 用最小二乘法建立 y 与 x 的回归方程,并画出残差散点图。
系数a
未标准化系数
标准化系数
模型
B
标准误差
Beta
t
显著性
1
(常量)
-.831
.442
-1.882
.065
VAR00002
.004
.000
.839
11.030
.000
a. 因变量:VAR00003