大学线性代数经典课件及习题 第四章 n维向量空间

合集下载

n维向量空间经典习题课(线性代数与空间解析几何)

n维向量空间经典习题课(线性代数与空间解析几何)
17
α1 , α 2 ,, αn线性无关 A α 1 , α 2 , , α n 0
1T T 2 T A A ( 1 , 2 , T n
AT A D ,
故D A A A ,
T 2
α1 , α 2 ,, αn线性无关 A α1 , α 2 ,, αn 0
2
方法2 证下列线性方程组有解
a11 x1 a x 21 1 an1 x1

a12 x2 a22 x2 an 2 x2


a1m xm a2 m xm anm xm

b1 b2 bn
a1i b1 a b 其中 i 2 i , 2 a ni bn
2. 线性组合、线性表示
(1) 判断向量 方法1
可由向量组 1 , 2 , , m 线性表示的常用方法
km m km 1 0
km m k m 1
k11 k2 2
只要证出 k m 1 0,
k1 k2 就可得出 1 2 k m 1 k m 1
23
证3
( 证 1 , 2 , 3与 1 , 2 , 3 等价)
1 1 2 3 , 1 1 1 2 1 2 2 3 , ( 1 , 2 , 3 ) ( 1 , 2 , 3 ) 1 1 2 1 2 3 3 1 2 2 3 3 . 向量组 1 , 2 , 3 可由向量组 1 , 2 , 3 线性表示.
R( A) 5
14
α1 , α 2 ,, αn线性无关的充要条件是 例 试证n维向量 T T T 1 1 1 2 1 n T T T 2 2 2 n D 2 1 0. T T T n 1 n 2 n n

线性代数课件(高教版)4-2

线性代数课件(高教版)4-2
T
a 1n a 2n a in a mn

T 1 T 2
T i
T m

向量组 , , …, m称为矩阵A的行向量组.
反之,由有限个向量所组成的向量组可以构 成一个矩阵.
m 个 n 维列向量所组成的向量 组 , , , , 1 2 m 构成一个 n m 矩阵
即线性方程组 x x x b 1 1 2 2 m m 有解 .
向量组的等价 定义2.2 设有两个向量组
A: ,m及 B: 1, 2, , s. 1, 2, 称 A 与向 向量组B 能由向量组A 线性表示 .若向量组 量组 B 能相互线性表示,则称 这两个 向量组等价.
向量组 a1 , a2 ,…… , am线性无关的充分必要条件是
R(A)=m.
例2 已知向量组a1 a2 a3线性无关 b1a1a2 b2a2a3 b3a3a1 试证向量组b1 b2 b3线性无关 证法二 把已知的三个向量等式写成一个矩阵等式
1 0 1 ( b , b , b ) ( a , a , a ) 1 1 0 1 2 3 1 2 3 0 1 1 记作BAK 因为|K|20 知K可逆 所以R(B)R(A)
a 1, a2 , a n 称为矩 向量组 , A 的列 .
( a ) 又有 类似地 , 矩阵 A m 个 n 维行 ij m n
a 11 a 12 a 21 a 22 A a i1 a i 2 am1 am2
T 1 T 2

a a a 0
1 1 2 2 m m
于是
a a a 1 a 0

北京工业大学线性代数第四章第一节 n 维向量空间

北京工业大学线性代数第四章第一节 n 维向量空间

n
向量组 1 , 2 , , n 称为矩阵A 的列向量组.
10
类似地, 矩阵A (aij )mn 又有m个n维行向量
a11 a12 a 21 a 22 A ai1 ai 2 a m1 am 2 a1n 1 1 a 2 n 2 2 , a in i m a mn m
23
例4 已知
1 1, 4, 0, 2,2 2, 7, 1, 3, 3 0, 1, 1, a , 3, 10, b, 4 , 不能由1 ,2 ,3 线性表出? ⑴ a , b为何值时, 能由1 ,2 ,3 线性表出且表示法 ⑵ a , b 为何值时,

, n
n xn 是否有解。
n xn
,n 线 性表出.
19
*若方程组 1 x1 2 x2
有解,则 可以由1 ,2 ,
n xn
,n 线 性表出.
且方程组的一组解就是表出系数. ① 若方程组有唯一解,则 可以由1 ,2 , ,n 线性表出且表示法唯一. ② 若方程组有无穷多解,则
1
第一节 n 维向量空间
一. n 维向量空间的概念 二.向量与矩阵的关系 三.向量的线性组合与线性表出
2
一. n 维向量空间的概念 一个mn矩阵的每一行都是由n个数组成 的有序数组,其每一列都是由m个数组成的有序 数组。 n元线性方程组的一个解也是由n个数 组成的有序数组。所以研究线性方程组解的结 构离不开有序数组。 1.定义:由数域P 中n 个数组成的有序数组称为 数域P 上的一个n 维向量,用小写的希腊字母 , , …表示.

线性代数课件PPT复习四五章

线性代数课件PPT复习四五章

0 0 0
1
a1 a2
1
an
0 0 0
0 0 0
a1 a2
1
1
an
a1
a2 a1
a3 a2
an an1
此即 在基底
1,
2
,
,
n
下的坐标.8
例3 在R3中取两组基
1 (1,2,1)T ,2 (2,3,3)T ,
1 (3,1,4)T , 2 (5,2,1)T ,
对应.
17
0 1 0
0
故在该基底下的矩阵为
0
A
0
1
0
0
0
0
1
0 0 0
0
A的特征多项式为
1 0
0
0 1
0
| E A |
n
00 0
1
00 0
故A的特征根为 =0 (n重)
把=0 代入 ( E A)X 0 得基础解系1 (1,0, ,0)T
因此,A的属于特征根=0的特征向量为
20
1. 计算A的特征多项式 | E−A| ; 2. 求特征方程 |E−A| = 0的全部根1, 2, ···, n, 也就
是A的全部特征值;
3. 对于特征值i, 求齐次方程组(iE−A)x = 0 的非零 解, 也就是对应于i 的特征向量.
[求出一组基础解系,它们就是对应于该特征根的线性无关
特征向量,它们的所有非零线性组合即为属于该特征根的
全部特征向量.]
注意:一般说求特征向量是求全部的特征向量,而 且要保证特征向量不为零. 如 k1X1+k2X2 (k1, k2不同时为0)
16
4. 掌握相似矩阵的概念、性质及矩阵可相似对角化 的充要条件及方法.

数学线性代数n维向量空间

数学线性代数n维向量空间
A = (α1, α2 ,L , αm ),°A = (α1, α2 ,L , αm , β)。
线性方程组(4.2)可表示为两种矩阵方程:
(1). 将所有系数构成一个系数矩阵A
a11 a12 L
a21 M
a22 M
L M
an1 an2 L
即:AX B
a1m x1 b1
a2m M
# 向量加法和向量的数乘满足的运算规律:
1 加法交换律: α + β = β + α; 2 加法结合律 : α β γ α β γ ; 3 α Ο α; 4 α α O; 51 α α; 6 k(lα) (kl)α; 7 k(α β) kα kβ 8 (k l)α kα lα
# 向量α和β的差为 α - β = α + (- β) = (a1 - b1, a2 - b2 ,L , an - bn )T
# 实向量a :向量a的分量都是实数; # 复向量b :向量b的分量都是复数。 定义4.1 所有n维实向量(real vector)的集合称为, n维实向量空间,记为R n,即
第四章 n维向量空间
第一节 n维向量的概念 第二节 向量的线性表示与线性相关 第三节 等价向量组 第四节 线性方程组的结构 第五节 向量空间的子空间
4.1 n维向量的概念
由第一章知道
行向量(1 n矩阵) 列向量(n 1矩阵)
通称:n维向量
n个数构成的有序数组
a1
本章所称的n维向量指n维列向量:a= a1, a2 ,L
证(1) β可由向量α1 ,α2 ,L ,αm线性表示
存在m个数x1, x2 ,L , xm,使得
x1α1 x2α2 L xmαm β
方程组 AX β 有解

《线性代数》课件-第4章 n元向量空间

《线性代数》课件-第4章 n元向量空间

§4.1 n元向量组的线性相关性第四章 n元向量空间线性表示定义11122=+++s sk k k βααα 为表示系数. 12,,,s k k k 若存在数 , 12,,,∈s k k k 使得 例如, 则称向量 可由向量组 线性表示, 12,,,s αααβ零向量是任意向量组的线性组合,这是因为12000s =⋅+⋅++⋅0ααα.向量组中的任意一个向量都可由该向量组线性表示, 12,,,s ααα这是因为11100100,-+=⋅++⋅+⋅+⋅++⋅i i i i s αααααα(1,2,,).=i s 给定 中的向量和向量组 12,,,s ,αααn β1111212212221212,,,⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥====∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦s s ns n n n ns b a a a b a a a b a a a 设;,βααα一般地:121122,⇔=+++s s s x x x x x x ,,,βααα.存在数使得12,,,s 可由线性表示βααα11112211211222221122,,,+++=⎧⎪+++=⎪⇔⎨⎪⎪+++=⎩s s s s n n ns s na x a x a xb a x a x a x b a x a x a x b 非齐次线性方程组有解.则1122s ⇔⨯+++=s s n x x x 非齐次线性方程组有解.αααβ12,,,s 可由线性表示β ααα1212,,,,,,A A ⇔==s s 矩阵[]的秩等于矩阵[]的秩.αααααα,β结论则称向量组 向量组的线性相关性()12,,,s αααⅠ:1122+++=0s s k k k ααα,给定 中的向量组 n()12,,,s ,αααⅠ:12,,,s k k k ,如果存在不全为零的数 使否则称()Ⅰ向量组线性无关(linearly independent ). 线性相关(linearly dependent ). 定义2===;123[1,0],[0,1],[1,3] 向量组线性相关ααα例如,()向量组线性无关Ⅰ注 1122+++=0.s s k k k才有ααα120====时s k k k 只有,===;123[1,0,0],[0,1,0],[0,0,1] 向量组线性无关εεε例如, 12,,,n n n 在中,元基本向量组线性无关.εεε()=⇔=s 时当组线性相关1,ⅠO;α()=⇔s 时当组线性相关分量对应成比例122,Ⅰ与;αα()≥⇔s 时当组线性相关2,Ⅰ()1-s 个组中至少有一个向量能由其余Ⅰ向量线性表示.()=⇔≠s 时当组线性无关1,ⅠO;α()=⇔s 时当组线性无关分量对应不成比例122,Ⅰ与;αα()≥⇔s 时当组线性无关2,Ⅰ()1-s 个组中每一个向量都不能由其余Ⅰ向量线性表示.线性相关的几何意义:两向量共线,三向量共面.线性无关的几何意义:两向量不共线,三向量不共面.(1) 若部分组线性相关,则整组必线性相关; (2) 若整组线性无关,则任一非空部分组必线性无关; 包含零向量或成比例向量在内的向量组必线性相关.例如, 结论部分组的整组的线性相关性的关系11121212221212,,,.⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m m nm n n nm a a a a a a a a a 设则ααα1122⇔⨯+++=0m m n m x x x 齐次线性方程组ααα12,,m , 线性相关ααα有非零解12[,,]A =m ,令矩阵ααα12[,,]A ⇔=m m ,.矩阵的秩小于向量个数ααα(线性无关).(仅有零解). (等于向量个数m, 即矩阵A 列满秩).n m ()时,.1当小于向量个数该向量组一定线性相关=n m (),2当时特别地,1212,,|,,|0⇔≠n n ,,.向量组线性无关行列式αααααα1212,,|,,|0⇔=n n ,,.向量组线性相关行列式αααααα相应地,可以得到关于行向量组的结论.定理1()12s ,,,设向量组Ⅰ:线性无关,ααα()12s ,,,而向量组Ⅱ:,αααβ线性相关,(),则向量可由向量组Ⅰ线性表示且表示方式惟一.β证明思路 只需证明非齐次线性方程组 1122+++=s s x x x αααβ有唯一解, 即证明1212,,,,,,A A ====矩阵的秩矩阵的秩s s s [][].αααααα,β()12s ,,,A 由向量组线性无关知矩阵的秩为s ,Ⅰ:,ααα()12s ,,,1A +由向量组线性相关知矩阵的秩小于s ,Ⅱ:,,αααβ事实上,()12s ,,,,则向量组Ⅱ:也线性无关.αααβ()()1A A ≤+所以=<s r r s ,()().A A 即有==r s r 推论1()12s ,,,设向量组Ⅰ:线性无关,ααα()若向量不能由向量组Ⅰ线性β表示,§4.2.1 向量组的秩(1) 第四章 n元向量空间向量组的线性表示及等价定义1()()1212:,,,:,,,设有两个向量组及s t ⅠⅡ,αααβββ()个向量都能由向量组线性表示Ⅰ,()如果组中的每Ⅱ则称向量组(II)能由向量组(I)线性表示. 则称这两个向量组等价. 如果向量组(I)与向量组(II)能互相线性表示, ()()()()()()⎫⎪⇒⎬⎪⎭Ⅱ可由Ⅰ线性表示Ⅲ可由Ⅰ线性表示;Ⅲ可由Ⅱ线性表示 向量组间的线性表示关系不满足对称性,但满足①反身性,即任一向量组可由自身线性表示;②传递性即, 向量组间的等价满足反身性,对称性和传递性.注1234[1,2,3,1],[1,2,3,1],[1,1,1,1],[0,2,4,1].αααα==----=---=已知向量组1234123134I ,,,II ,,III ,,αααααααααα记向量组()(线性相关);()(线性相关);()(线性无关),1I III 2I II 则 ()向量组()与()等价; ()向量组()与()不是等价的.例1()()1212:,,,:,,,设向量组可由向量组线性表示s t ⅠⅡ,αααβββ().≤组线性无关,则s t Ⅰ定理1若向量.等价的线性无关组必包含有相同个数的向量推论1基本定理1212,,,,≤如果向量组的一个部分组满足r s i i i r s (I),(II),():αααααα12,,向量组线性无关r i i i ①(II),;ααα则称向量组为向量组的一个(II)(I)极大线性无关部分组,简称极大无关组.12,,原向量组的任一向量都能被部分组线性表示r i i i ②(I)(II),,ααα定义2• 只含零向量的向量组没有极大无关组;• 线性无关向量组的极大无关组是其本身; • 一般来说,线性相关组的极大无关组不唯一;注 向量组的极大无关组===求向量组的极大无关组.ααα123[1,0],[0,1],[1,3] 例向量组的任一极大无关组与向量组自身等价.命题1向量组的任意两个极大无关组等价.注1 ,向量组的任两个极大无关组所含向量的个与极大无关组的选数都相同取无关.注212,,,向量组的极大无关组所含向量的个数称为该向量s ααα0.规定只含零向量的向量组的秩为 ()12,,,.记作s r ααα组的秩,定义3向量组的秩===的秩为2.向量组ααα123[1,0],[0,1],[1,3] 例 等价的向量组秩相等.注向量组的秩与线性相关性的联系向量组线性无关当且仅当 12s ,,,ααα()12s .=r s ,,,ααα向量组线性相关当且仅当 12s ,,,ααα()12s .<r s ,,,ααα定理211121212221212,,,.⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦s s ns n n ns a a a a a a a a a 设则ααα12[,,]A =s ,令矩阵ααα12s [,,]A ⇔=s ,.矩阵的秩小于向量个数ααα(即矩阵A 列满秩).向量组线性相关 12s ,,,ααα向量组线性无关 12s ,,,ααα12s [,,]A ⇔=s ,.矩阵的秩等于向量个数ααα 矩阵的秩与线性相关性的联系§4.2.2 向量组的秩(2) 第四章 n元向量空间A ⨯⎡⎤=⎣⎦ij n m a 1212[,,,]⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦m n ,ββαααβ设矩阵其中 12,,,∈nm ααα为矩阵 A 的行向量组, 为矩阵 A 的列向量组.12,,,∈mn βββ定义 矩阵A 的行向量组的秩称为A 的行秩, 矩阵A 的列向量组的秩称为A 的列秩.矩阵的行秩和列秩是矩阵的秩的另两种刻画.A ⎡⎤=⨯⎣⎦设是数域上的矩阵, 则ij a n m .A A A 的行秩的列秩的秩==定理证 若A =O ,结论显然成立;设 ,A O ≠并设A 的秩等于r ,先证明A 的列秩=A 的秩= r.因为A 的秩等于r ,则A 中必存在一个r 阶非零子式, r D 而子式 所在 r D 的A 的r 个列向量构成一个列满秩矩阵,因此A 的这r 个列向量线性无关. 另外A 的任意 r +1个列向量都线性相关. 否则,可假设A 的某 r +1个列线性无关, 则这 r +1个列向量所构成的矩阵列满秩,即它的秩为r +1.于是矩阵A 中存在一个r +1阶非零子式, 这与A 的秩为r 相矛盾.从而非零子式所在的r 个列是A 的列向量组 的一个极大无关组, r D 因而A 的列秩= r =A 的秩.因为A 的行秩= 的列秩 T A T ()A =r ()A =r = A 的列秩, 故定理得证.对于n 元向量所构成的向量组,在一般情况下,以矩阵的秩为 工具,可以很好地解决:求向量组的秩以及判断该向量组的 线性相关性等问题.例1()()1212,,,,,,证明若中的向量组 可由 线性表示,n s t ⅠⅡαααβββ()().≤则r r ⅠⅡ命题112,,,∈nm ααα若向量组 的秩为r , 则该向量组中任意 r 个线性无关的向量就是一个极大无关组. 命题2如果矩阵A 经过有限次初等行变换化为矩阵B , 列向量组有相同的线性相关性.则A 和B 中对应的1212[,,,][,,,].A B ==m m ,αααβββ设矩阵 取矩阵A 的s 个列向量 12,,,s j j j ααα1212[,,,][,,,]A B =−−−−→=m m 初等行变换,αααβββ及矩阵B 中对应的s 个列向量12,,,.j j js βββ当 有 121211[,,,][,,,]A B =−−−−→=s j j j j j js 初等行变换,αααβββ从而线性方程组1212+++=0s j j s j x x x ααα1212+++=0m j j s j x x x βββ与同解,故向量组与 有相同的线性相关性. 12,,,sj j j ααα12,,,mj j j βββ证T T T 123T T 45[1,0,1,1],[2,1,2,0],[2,1,0,1],[0,1,2,1],[0,0,2,1]=-=-=--=-=-求向量组的秩和一个极大无关组.ααααα例2解令12200011101202210111A -⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥⎣⎦1220001110,0011100000R -⎡⎤⎢⎥--⎢⎥−−−−→=⎢⎥-⎢⎥⎣⎦初等行变换(行阶梯矩阵)125(,,,)()3,A ==r r ααα125,,,ααα123,,ααα是向量组 的一个极大无关组.§4.3 n元向量空间第四章n元向量空间n 元向量空间及其子空间{}1212[,,,],,,nn n n a a a a a a =∈数域上全体元向量的集合记为:1212[,,,],[,,,],∀=∈∀=∈nnn n a a a b b b αβ1122[,,,];+=+++∈nn n a b a b a b αβ加法运算 数乘运算 12[,,,].∀∈=∈nn k k ka ka ka , α因为, 所以 是一个非空集合. [0,0,,0]=∈0nn因此 对于线性运算是封闭的.n并且线性运算满足如下八条运算律:(1),;∀∈+=+n 对,有α,β αββα1212(4)[,,,],[,,,],..();∀=∈∃-=---∈+-=0nnn n a a a a a a s t αααα(2),()();∀∈++=++n 对,有α,βγαβγαβγ(3)[0,0,,0],..,;∃=∈∀∈+=00nns t 有ααα(5)1;∀∈⋅=n 对,有ααα(6),,()();∀∈∀∈=nk l k l kl 对,有ααα(7),,();∀∈∀∈+=+nk l k l k l 对,有αααα(8),().∀∈∀∈+=+nk k k k 对,,有αβαβαβ(零元素)(负元素){}12[,,,]1,2,,∈=nn i a a a a i n =|,n 数域上元向量的全体是一个非空集合, 对于向量的加法以及数乘两种运算封闭, 八条运算律, 称为数域 上的n 元向量空间(vector space ). 定义1且满足 设W 是向量空间 的子集,如果集合W 非空, n 且集合W 对于向量的加法及数乘两种运算封闭, 则称W 为 的子空间(subspace ),n.<nW 记为 定义21,.∀∈+∈∀∈∀∈∈W W W k W k W 非空,且满足条件:(),,有;(2) ,有αβαβααW 为 的子空间n{}0nn及是的平凡子空间;{}T31=[,,0],∈<W x y x y ,例2例1 {}T32=[,,1],∈W x y x y ;而不是的子空间12∈ns 向量组,,,的线性组合的全体ααα例312,,,n s 是的子空间,称之为由生向量组空,成的子间ααα{}()1122s1211,2,,1,2,,,,,==+++∈=⎧⎫=∈==⎨⎬⎩⎭∑s s i i i i s i W k k k k i s k k i s L ,,ααααααα12,,,s 称为该子空间的一个生成元.ααα根据子空间的定义,验证非空及线性运算的封闭性;根据例3 的结论,验证具有线性生成结构,从而为生成子空间.证明子空间的常用方法{}T 31=[,,0],∈<W x y x y ,例如, 1001000⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x y x y 12,=+∈x y x y ,εε3112.=<W L (,)εε子空间的基和维数 12,,,向量组线性无关r ①;ααα12,,,则称向量组为子空间的一个r W ααα基(basis ), 12,,,中任一个向量都可由 线性表示r W ②,ααα定义3向量组的极大无关组设W 是 的一个子空间, n若W 中的有序向量组满足: 12,,,r ααα正整数r 为子空间W 的维数(dimension ),记作dim W =r , 并称W 为r 维子空间.{}dim{}0.=00零子空间没有基规定;注子空间的基不唯一,但维数是确定的.12,,,, n n n n 元基本向量组就是 元向量空间 的一个基称为εεε例如, ,n nn n 从而的维数是因此也将称作维向量空间.P n 的标准基,注 .中任意个线性无关的向量都是它的一个基nn例4dim 2=且W .T{[,,3],}=-+∀∈W a b a b b a b 证明集合 是 的子空间,并求 3W 的基和维数.证明显然W 非空, 并且W 中的每一个向量1111303--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a b a b a b b 12=+∈, ,,a b ab αα[][]TT121,1,0,1,1,3.==-其中αα312,.=这说明因此是的子空间W L (),αα[][]TT121,1,0,1,1,3==-又线性无关从而为的一个基W ,,αα§4.4 线性方程组解的结构第四章n元向量空间111122121122221122000.+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩n n n n m m mn n a x a x a x a x a x a x a x a x a x ,,,AX ⇔=(矩阵形式)0记齐次线性方程组111212122211n n m m mn a a a a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 的系数矩阵为 12X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦n x x x 未知数向量为{}A X AX A X ∈==0的解集是的子空间nnN 0 ,()=注2注1 齐次线性方程组解的线性组合还是解.性质11212AX AX =+=0 0 若是 的解则也是的解,.η,ηηη性质2()AX AX =∀∈=0 0 若是 的解则 也是的解k k ,.ηη齐次线性方程组的基础解系定义1当 有非零解时, AX =0如果解向量满足: 12,,,t ηηη(1)线性无关; 12,,,t ηηη(2)的任一解可由 线性表示, 12,,,t ηηηAX =0则称为方程组 的一个基础解系. 12,,,t ηηηAX =01122X =+++t t k k k ,ηηη12,,,其中是任意常数t k k k .()12(),,,A =t N L ηηη{}11221,2,,=+++∈=t t i k k k k i t ,ηηη如果为齐次线性方程组 的一个基础解系,则 12,,,t ηηηAX =0的通解可表示为 AX =0◆向量组的极大无关组不唯一,但不同极大无关组中所含向量个数相同.向量组的秩◆方程组的基础解系不唯一,但所含解向量的个数是唯AX 0解空间的维数一确定的.dim N(A)=如何求基础解系()A AX ⨯=<=0m n r r n 当时,方程组有非零解,1212,,,,,,++r r r n x x x x x x 不失一般性,不妨设为主变量,为自由变量111,1,10010000A --⎛⎫⎪ ⎪ ⎪−−−−→⎪ ⎪ ⎪ ⎪ ⎪⎝⎭n r r r n r b b b b 初等行变换A 则系数阵化为行简化阶梯形矩阵齐次线性方程组的基础解系11111,11,+-+-⎧=---⎪⎨⎪=---⎩r n r n rr r r n r nx b x b x x b x b x ⇔AX =011111,11,11+-+-++---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦r n r n r r r r n r n r r n n x b x b x x b x b x x x x x 通解为11121212212100010001++---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦r r r r r n b b b b b b x x x11121,12,12,,,.100010001n r r r r n r n rb b b b b b ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ηηη记112212,.X ---=+++其中 为任意常数n r n r n r k k k k k k ,,,ηηη112212,,,,,++--===令其中为任意常数r r n n r n r x k x k x k k k k ,,,AX =0 则 的通解为为齐次线性方程组 的一个基础解系,且 12,,,t ηηηAX =0dim ().A =-N n r()AX A A ⨯=<0m n r n 若齐次线性方程组的系数矩阵的秩,则必有定理1基础解系,()A -n r 且任一基础解系所含解向量的个数为.123412341234123450,230,380,3970.x x x x x x x x x x x x x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩例1求齐次线性方程组的一个基础解系,并写出通解.解 对方程组的系数矩阵初等行变换,得11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦310127012200000000⎡⎤⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦。

线性代数 第4章 向量空间 - 习题详解

线性代数 第4章 向量空间 - 习题详解

第4章 向量空间4.1 向量及其线性组合练习4.11. 设1231031,1,4010ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦求12αα-及12332ααα+-.解 12101011111001011αα-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12332ααα+-10330303121432410100202⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-=+-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦2. 设 1233()2()5()αααααα-++=+,求α. 其中1232104511,,1513101ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦解 由1233()2()5()αααααα-++=+得12362020611525122111(325)31051836669205244αααα⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-=+-== ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥- ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭3. 将线性方程组12312312310232x x x x x x x x x ++=⎧⎪-+=⎨⎪+-=⎩写成向量形式及矩阵形式.解 向量形式:123111*********x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦矩阵形式:123111*********x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦4. 设123,,,αααβ是已知列向量,若122ααβ+=,记矩阵123[,,]A ααα=,求线性方程组Ax β=的一个解.解 由12320αααβ++=得方程组Ax β=的一个解为T [1,2,0]x =5. 问β是否可由向量组4321,,,αααα线性表示?其中(1)12341111121111,,,,1111111111βαααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(2)12342111201022,,,,0124231132βαααα-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦解 (1)令[]123411111111,,,11111111A αααα⎡⎤⎢⎥--⎢⎥==⎢⎥--⎢⎥--⎣⎦由[]111111005/41111201001/41111100101/41111100011/4r A β⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦得Ax β=有唯一解[]T15,1,1,14x =--,从而β可由向量组4321,,,αααα唯一线性表示: 23451114444βαααα=+--(2)令[]123411121022,,,12421132A αααα-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦由[]111221220102200110012420000011132300000r A β-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦得Ax β=无解,从而β不能由向量组4321,,,αααα线性表示.6. 已知12341111101121,,,,2324335185a b a ααααβ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(1),a b 取何值时,β不能由4321,,,αααα的线性表示?(2),a b 取何值时,β可由4321,,,αααα唯一线性表示式?并写出表示式. 解 令[]1234,,,A αααα=,考察方程组Ax β=是否有解.[]11111011212224335185A a b a β⎡⎤⎢⎥-⎢⎥=⎢⎥++⎢⎥+⎣⎦1111101121012102252r a b a ⎡⎤⎢⎥-⎢⎥−−→⎢⎥+⎢⎥-+⎣⎦1111101121001000010r a b a ⎡⎤⎢⎥-⎢⎥−−→⎢⎥+⎢⎥+⎣⎦(1)当0,1≠-=b a 时,方程组Ax β=无解,故β不能由4321,,,αααα的线性表示. (2)当1-≠a 时, 继续进行初等行变换[]A β2100011111101121101001001010010101000010rr b a a b a b b a a -⎡⎤⎢⎥⎡⎤+⎢⎥⎢⎥-++⎢⎥⎢⎥⎢⎥−−→−−→+⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥+⎢⎥⎣⎦⎢⎥⎣⎦得方程组Ax β=有唯一解:T21,,,0111b a b b x a a a ++⎡⎤=-⎢⎥+++⎣⎦故β可由4321,,,αααα的唯一线性表示. 表示式为:1234210111b a b ba a a ++=-++++++βαααα 7. 用标准坐标向量证明:如果对任意向量x 有0Ax =,则A 是零矩阵. 证 设12[,,,]n A ααα= 是m n ⨯矩阵. 特别地取(1,2,,)n i x e R i n =∈= ,则0(1,2,,)i i Ae i n α===即A O =.8. 设向量组12,ββ可由向量组123,,ααα线性表示如下:112321232,βαααβααα=+-=-+写出形如(4.5)的矩阵形式.解[][]1212321,,,1111ββααα⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦9. 设123123032204103124,,,,,210111321213αααβββ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦证明向量组{}123,,βββ可由向量组{}123,,ααα线性表示,但向量组{}123,,ααα不能由向量组{}123,,βββ线性表示. 证 令[]123,,A ααα=,[]123,,B βββ=由[]400111040222004135000000rA B ⎡⎤⎢⎥⎢⎥−−→⎢⎥-⎢⎥⎣⎦知向量组{}123,,βββ可由向量组{}123,,ααα线性表示. 由[]204032022012000210000000rBA ⎡⎤⎢⎥-⎢⎥−−→⎢⎥-⎢⎥⎣⎦知12,αα都不能由向量组{}123,,βββ线性表示,故向量组{}123,,ααα不能由向量组{}123,,βββ线性表示.10. 设12123011131,1,0,2,210111ααβββ-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦证明向量组{}12,αα与向量组{}123,,βββ等价.方法1 令[][]12123,,,,A B ααβββ==. 由[]101110111300000rA B -⎡⎤⎢⎥−−→-⎢⎥⎢⎥⎣⎦知向量组{}123,,βββ可由向量组{}12,αα线性表示.[]1020.50.50110.50.500000rBA --⎡⎤⎢⎥−−→⎢⎥⎢⎥⎣⎦知向量组{}12,αα可由向量组{}123,,βββ线性表示.所以{}{}12123,,,ααβββ≅.方法2 令T1TT 12T T 23,A B βαβαβ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,则101011rA -⎡⎤−−→⎢⎥⎣⎦,101011000rB -⎡⎤⎢⎥−−→⎢⎥⎢⎥⎣⎦记T T12[1,0,1],[0,1,1]γγ=-=,根据行等价矩阵的行向量组等价,由上知{}{}{}{}121212312,,,,,,ααγγβββγγ≅≅所以{}{}12123,,,ααβββ≅.4.2 向量组的线性相关性练习4.21. 证明:含有零向量的向量组必线性相关. 证 不妨设向量组为{}123,,ααα,其中10α=,则1231000ααα++=根据定义{}123,,ααα线性相关.2. 证明:含两个向量的向量组线性相关的充要条件是它们的分量对应成比例. 问含三个向量的向量组线性相关的充要条件是不是它们对应的分量成比例?证 设112212[,,,],[,,,]T T n n a a a b b b αα== 且{}12,αα线性相关. 于是存在不全为零的数12,k k 使得11220k k αα+=,不妨设10k ≠,从而21221k k k ααα==,即 (1,2,,)i i a kb i n ==即1α与2α的对应分量成比例.反之,如果(1,2,,)i i a kb i n == ,则12k αα=,即1210k αα-=,故{}12,αα线性相关.由三个向量构成的向量组如果对应分量成比例,则显然线性相关. 但线性相关,它们的对应分量不一定成比例. 如123111,,123ααα⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦或1231121,2,3134ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3. 判别下列向量组的线性相关性: (1)[]12,5Tα=,[]21,3Tα=-(2)[][][]1231,2,3,0,2,5,1,0,2TTTααα=-=-=- (3)[][][]1232,4,1,1,0,1,2,0,1,1,1,3,0,0,1TTTααα==-=解(1) 令1221[,]53A αα-⎡⎤==⎢⎥⎣⎦,由110A =≠,知A 是可逆矩阵,故其列向量组{}12,αα线性无关.(2)类似(1),由 1012200352--=-,得{}123,,ααα线性相关. (3) 易知向量组()()()T T T 1,0,0,1,1,0,0,1,1321===βββ线性无关,而向量组{}123,,ααα是向量组{}123,,βββ的加长向量组,故{}123,,ααα也线性无关.4. 设[][][]1231,1,1,1,2,3,1,3,TTTt ααα===, (1) 问t 为何值时, 向量组321,,ααα线性相关? (2) 问t 为何值时, 向量组321,,ααα线性无关?解 令11112313A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,计算得5A t =- (1)当5t =时,A 是不可逆矩阵,其列向量组321,,ααα线性相关. (2)当5t ≠时,A 是可逆矩阵,其列向量组321,,ααα线性无关. 5. 证明由阶梯矩阵的非零行构成的向量组一定线性无关. 证 不妨设阶梯矩阵12340000000000T T T T U αααα⊗****⎡⎤⎡⎤⎢⎥⎢⎥⊗**⎢⎥⎢⎥==⎢⎥⎢⎥⊗*⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中0⊗≠. 考察下面方程组112233123000000x x x x x x ααα⊗⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++=++=*⊗⎢⎥⎢⎥⎢⎥**⊗⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥***⎣⎦⎣⎦⎣⎦显然该方程组只有零解,故{}123,,ααα线性无关.4.3 向量组的秩练习4.31. 设[][][][]T T T T12341,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7====αααα求向量组1234,,,αααα的秩及其一个极大无关组, 并把其余向量用所求的极大无关组线性表示.解 1234[,,,]A =αααα12341012234501233456000045670000r --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦因此{}12,αα是{}1234,,,αααα的一个最大无关组,且2132ααα+-=,21432ααα+-=2. 设向量组2123,,2,31311a b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦的秩为2,求,a b .解 记12342123,,2,31311a b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦αααα,由于{}1234rank ,,,2=αααα,所以{}341,,ααα线性相关,{}342,,ααα也线性相关.由[]3411212,,2330132111002ra a a a ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ααα 得2a =.由[]342122122,,23014113005rb b b ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ααα 得5b =.3. 证明极大无关组的定义4.5与定义4.6的等价性.证 (定义4.5⇒定义4.6) 设121,,,r βββ+ 是V 中任意1r +个向量. 由定义4.5(2)知121,,,r βββ+ 可由12,,,r ααα 线性表示,由定理4.9,121,,,r βββ+ 线性相关,即定义4.6(2)成立.(定义4.6⇒定义4.5)设β是V 中任意一个向量. 则12,,,,r αααβ 是1r +个向量,由定义4.6(2),12,,,,r αααβ 线性相关,又12,,,r ααα 线性无关,再由唯一表示定理,β可由12,,,r ααα 线性表示,即定义4.5(2)成立.4.4 矩阵的秩练习4.41. 求下面矩阵的秩(1)1121021120331101⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,(2)123222123333123111a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(其中123,,a a a 互不相等). 解 (1)由11211121021102112033002011010000r A ⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦得()3r A = (2)记123222123333123111a a a A a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,由于范德蒙行列式1232221231110a a a a a a ≠,得()3r A = 2. (1)设A 是23⨯矩阵,且rank 2A =,写出A 的等价标准形; (2)设A 是32⨯矩阵,且rank 2A =,写出A 的等价标准形. 解 (1)[]20A E ≅,(2)20E A ⎡⎤≅⎢⎥⎣⎦3. 设22139528A -⎡⎤=⎢⎥-⎣⎦(1)求一个42⨯矩阵B 使得0AB =,且rank 2B =; (2)求一个42⨯矩阵C 使得AC E =,且rank 2C =. 解 (1)求解方程组0Ax =得两个线性无关的解12[1,5,8,0],[1,11,0,8]T T ββ==-令[]1211511,8008B ββ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦则rank 2,B AB O ==,B 即为所求.(2)解1Ax e =得一个解11[5,9,0,0]8Tβ=--,解2A x e =得一个解21[2,2,0,0]8Tβ= 令[]1252921,00800C ββ-⎡⎤⎢⎥-⎢⎥==⎢⎥⎢⎥⎣⎦则2rank 2,C AC E ==,C 即为所求.4. 设m n n m m m A B C ⨯⨯⨯=,若C 是可逆矩阵,则()()r A r B m ==.证 ()()()()m r C r A B r A m r A m===≤⇒= ()()()()m r C r AB r B m r B m ===≤⇒=5. 证明:()()()r A B r A r B +≤+. 方法1 设12[,,,]n A ααα= ,[]12,,,n B βββ= ,(),()r A s r B t ==不妨设{}12,,,t ααα 是A 的列向量组的极大无关组,{}12,,,s βββ 是B 的列向量组的极大无关组. 显然A B +的列向量可由{}11,,,,,t s ααββ 线性表示,于是()r A B +=()A B +的列秩{}11r ,,,,,()()t s s t r A r B ααββ≤≤+=+证明:)()()(B r A r B A r +≤+ 方法2 由],[],[B A B B A c−→−+得[,][,]r A B B r A B +=,从而(用到例题的结论))()(],[],[)(B r A r B A r B B A r B A r +≤=+≤+6. 用等价标准形定理证明:rank 1m n A ⨯=的充要条件是T A αβ=其中0,0m n R R αβ≠∈≠∈.证 设rank 1A =,由等价标准形定理,存在可逆矩阵,m m n n P R Q R ⨯⨯∈∈,使得1000A P Q ⎡⎤=⎢⎥⎣⎦[]101,0,,00P Q ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令α是P 的第一列,T β是Q 的第一行,显然0,0αβ≠≠,上式就是T A αβ=.反之,如果TA αβ=()0,0αβ≠≠,则1()()1()1r A r r A α≤≤=⇒=4.5 向量空间练习4.51. 设{}31123123123(,,)|,,,0T V x x x x x x x R x x x R ==∈++=⊂ {}32123123123(,,)|,,,1T V x x x x x x x R x x x R ==∈++=⊂证明1V 是3R 的子空间, 2V 不是3R 的子空间. 证 1V 是齐次线性方程组的解集,2V 是非齐次线性方程组的解集,同例题的证明一样.2. 设343443434,,x x x x V x x x x R R x x ⎧⎫+⎡⎤⎪⎪⎢⎥-⎪⎪⎢⎥==∈⊂⎨⎬⎢⎥⎪⎪⎢⎥⎪⎪⎣⎦⎩⎭证明V 是4R 的子空间,并求V 的维数及V 的一个基.证 把V 中向量改写为34314211111001x x x x x αα⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则12span(,)V αα=,又{}12,αα线性无关,所以{}12,αα是V 的一个基,dim 2V =.3. 设12342112,1,1,010541αααα----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦求123span(,,)ααα两个不同的基, 并分别求α在所求的基下的坐标.解 易知{}123rank ,,2ααα=,又{}13,αα线性无关,{}23,αα线性无关,所以{}13,αα与{}23,αα都是123span(,,)ααα的基.解方程组1123x x ααα+=得120.5,1x x ==-于是α在基{}13,αα下的坐标是[]0.5,1T-.解方程组1223x x ααα+=得121,1x x ==-于是α在基{}23,αα下的坐标是[]1,1T-.4. 设121211201011,,,01310131ααββ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦证明:1212span(,)span(,)ααββ=. 证 只需证{}{}1212,,ααββ≅由[]12121011013100000000rααββ-⎡⎤⎢⎥-⎢⎥−−→⎢⎥⎢⎥⎣⎦知{}12,ββ可由{}12,αα线性表示. 由[]1212100.50.501 1.50.500000000rββαα⎡⎤⎢⎥⎢⎥−−→⎢⎥⎢⎥⎣⎦知{}12,αα可由{}12,ββ线性表示.所以{}{}1212,,ααββ≅. 5. 已知3R 的两个基为1231111,0,0111ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 及 1231232,3,4143βββ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦求由基123,,ααα到基123,,βββ的过渡矩阵.解 由[]123123100234,,,,,010*********rαααβββ⎡⎤⎢⎥−−→-⎢⎥⎢⎥--⎣⎦得[][]123123234,,,,010101βββααα⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦由基123,,ααα到基123,,βββ的过渡矩阵为234010101P ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦4.6 线性方程组解的结构练习4.61. 求齐次线性方程组1232340x x x x x x -+=⎧⎨-+=⎩ 两个不同的基础解系,并写出通解.解 记系数矩阵为A ,则10010111rA ⎡⎤−−→⎢⎥-⎣⎦同解方程为14234x x x x x =-⎧⎨=-⎩ 分别取3410,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得1201,11x x -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得基础解系为 120111,1001αα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦分别取3411,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得1201,10x x -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得基础解系为 120110,1101ββ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦通解为112212,(,)x k k k k R αα=+∈或112212,(,)x k k k k R ββ=+∈2. 求一个齐次线性方程组,使它的基础解系为T T 12[0,1,2,3],[3,2,1,0]ξξ==解 设所求方程组为0=Ax ,由题设()12,0A ξξ=.记()12,B ξξ=,则0=AB 即0=T T A B ,这说明T A 的列都是方程组0=x B T 的解.解方程组0=x B T ,即2341232303230x x x x x x ++=⎧⎨++=⎩ 得基础解系为T )0,1,2,1(1-=α,T )1,0,3,2(2-=α令],[21αα=T A ,即⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1032012121T T A αα所求方程组为0=Ax ,即⎩⎨⎧=+-=+-03202421321x x x x x x 3. 求下面非齐次方程组的一个解及对应的齐次方程组的基础解系1212341234522153223x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩ 解 对增广矩阵初等行变换化最简阶梯形[]1100510108211210110135322300012rA b -⎡⎤⎡⎤⎢⎥⎢⎥=−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦等价方程组为132348132x x x x x =--⎧⎪=+⎨⎪=⎩ 令30x =得方程组的一个解*[8,13,0,2]T η=-对应的齐次方程组的等价方程组为132340x x x x x =-⎧⎪=⎨⎪=⎩ 令31x =得基础解系[1,1,1,0]T α=-4. 设142536A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求使得方程组Ax b =有解的所有向量b . 解 向量b 是A 的列向量的线性组合,即12121425,,36b k k k k R ⎡⎤⎡⎤⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦5. 设12,,,s ηηη 是非齐次方程组b Ax =的s 个解向量,令112212,,,,s s s k k k k k k R ηηηη=+++∈证明:(1)η是非齐次方程组Ax b =的解的充要条件是121s k k k +++= ; (2)η是齐次方程组0Ax =的解的充要条件是120s k k k +++= . 证 (1) 1122s s k k k ηηη+++ 是b Ax =的解⇔ ()1122s s A k k k b ηηη+++= ⇔ ()12s k k k b b +++= (≠b 0) ⇔ 121s k k k +++=(2) 1122s s k k k ηηη+++ 是0=Ax 的解⇔ ()11220s s A k k k ηηη+++= ⇔ ()120s k k k b +++= (≠b 0) ⇔ 120s k k k +++=6. 设4rank 3m A ⨯=, 321,,ηηη是非齐次方程组b Ax =的3个解向量, 并且T T )4,3,2,1( , )5,4,3,2(321=+=ηηη求方程组b Ax =的通解.解 由3)(4=⨯m A r 知,知0=Ax 的基础解系只含一个向量,取T )6,5,4,3()(2321=+-=ηηηξ则ξ是0=Ax 的基础解系. 从而非齐次方程组b Ax =的通解为1x k ηξ=+,(k R ∈) 7. 设矩阵[]1234,,,=A αααα, 其中432,,ααα线性无关,3212ααα-=, 向量4321ααααβ+++=. 求线性方程组βx A =的通解.解 由假设易知()3r A =,从而0=Ax 的基础解系只含一个向量. 由12312342200=-⇔-++=ααααααα得[1,2,1,0]T ξ=-为0=Ax 的基础解系.由1234+++=ααααβ得[1,1,1,1]T η=为βx A =的一个解. 于是βx A =的通解是,()x k k R ηξ=+∈习题四1. 设βααα,,,,21r 都是n 维向量,β可由r ααα,,,21 线性表示,但β不能由121,,,-r ααα 线性表示,证明:r α可由121,,,,r αααβ- 线性表示.证 因为β可由r ααα,,,21 线性表示,设r r r r k k k k ααααβ++++=--112211又因为β不能由121,,,-r ααα 线性表示,所以0≠r k ,因此11111-----=r rr r r r k k k k k ααβα 即r α可由121,,,,r αααβ- 线性表示.2. 设123123111221,,1,1,,114a a a a a a a αααβββ--⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦确定常数a , 使向量组321,,ααα可由向量组321,,βββ线性表示, 但向量组321,,βββ不能由向量组321,,ααα线性表示.解 记],,[321ααα=A ,],,[321βββ=B ,由于{}123,,βββ不能由{}123,,ααα线性表示,所以3)(<A r ,从而0)2()1(2=+--=a a A得1=a 或2-=a .当1=a 时,1321βααα===,故321,,ααα可由321,,βββ线性表示,但2β不能由321,,ααα线性表示. 所以1=a 符合题意.当2-=a 时,由[]122112006033000033rBA ---⎡⎤⎢⎥−−→--⎢⎥⎢⎥-⎣⎦知{}123,,ααα不能由{}123,,βββ线性表示,与题设矛盾. 综上,1=a .3. 设121,,,-m ααα (3≥m )线性相关, m ααα,,32 线性无关, 讨论:(1)1α能否由132,,-m ααα 线性表示; (2)m α能否由121,,,-m ααα 线性表示.方法1 (1)因为m ααα,,32 线性无关,故132,,-m ααα 线性无关. 又因为121,,,-m ααα 线性相关,由唯一表示定理,1α可由132,,-m ααα 唯一表示.(2)设m α能由121,,,-m ααα 线性表示112211--+++=m m m αλαλαλα由(1),1α又能由132,,-m ααα 线性表示,故m α也能由132,,,-m ααα 线性表示,从而m ααα,,32 线性相关,这与假设矛盾. 故m α不能由121,,,-m ααα 线性表示.方法2 由假设{}121,,,1m r m ααα-<- ,{}23,,,1m r m ααα=-(1) 由{}{}231231,,,,,m m m r r ααααααα-=≤ {}131,,11m r m ααα-≤+≤-得{}{}23123,,,,,1m m r r m ααααααα==-由唯一表示定理,1α能由132,,-m ααα 唯一表示.(2)由(1),{}121,,,,1m m r m αααα-=- ,而{}121,,,1m r m ααα-<- 故{}{}121121,,,,,,,m m m r r ααααααα--≠m α不能由121,,,-m ααα 线性表示.4. 设nn RA ⨯∈, n R ∈α(0≠α), 0=αk A , 01≠-αk A , 证明向量组{}21,,,,k A A Aαααα-线性无关.证 设0112210=++++--ααααk k A k A k A k k上式两边左乘1-k A得010=-αk A k ,由于01≠-αk A,得00k =,因此011221=+++--αααk k A k A k A k上式两边左乘2-k A ,类似可推出01=k . 进而再推出210k k k -=== .5. 设nn RA ⨯∈,n R ∈321,,ααα(01≠α), 如果11αα=A , 212ααα+=A , 323ααα+=A证明321,,ααα线性无关.证 由题设23121)(,)(,0)(ααααα=-=-=-E A E A E A设0332211=++αααk k k两边左乘E A -得02312=+ααk k再左乘E A -得013=αk由01≠α得03=k ,往上逐一代入210,0k k ==. 故321,,ααα线性无关.6. 设向量组12:,,,m S ααα 线性无关, 1β能由S 线性表示, 而2β不能由S 线性表示,证明:(1)向量组122,,,,m αααβ 线性无关.(2)对R k ∈∀, 向量组1221,,,,m k αααββ+ 线性无关.证 (1)由于12,,,m ααα 线性无关,而2β不能由12,,,m ααα 线性表示,故221,,,,βαααm 线性无关. 否则,由唯一表示定理,2β能由12,,,m ααα 唯一表示,与假设矛盾.(2)由(1)122rank[,,,,]1m m αααβ=+再由1β可由12,,,m ααα 线性表示,得1221122[,,,,][,,,,]cm m k αααββαααβ+−−→从而1221rank[,,,,]m k αααββ+= 122rank[,,,,]1m m αααβ=+1221,,,,m k αααββ+ 线性无关.7. 设12,,,,m αααβ nR ∈(0β≠)且0(1,2,,)T i i m βα== , 证明: (1) β不能由12,,,m ααα 线性表示;(2) 如果12,,,m ααα 线性无关, 则12,,,,m αααβ 也线性无关. 证 (1) 反证. 设β可由12,,,m ααα 线性表示1122m m k k k βααα=+++两边左乘Tβ得0Tββ=,这与0β≠矛盾.(2) 反证. 如果12,,,,m αααβ 线性相关,则由唯一表示定理,β由12,,,m ααα 唯一表示. 与(1)矛盾.8. 已知321,,ααα线性无关, 试问常数k m ,满足什么条件时, 向量组{}213213,,k m αααααα---线性无关?方法1设0)()()(313232121=-+-+-ααααααx m x k x整理得0)()()(332221113=-+-+-αααx m x x k x x x由于321,,ααα线性无关,故上式又等价于⎪⎩⎪⎨⎧=-=-=+-000322131x m x x kx x x ⇔ 12310110001x k x m x -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦312312,,αααααα---m k 线性无关的充要条件是上面方程组只有零解. 即1011010101kmk mk m --=-≠⇔≠- 方法2 记313232121,,ααβααβααβ-=-=-=m k . 写成矩阵形式[][]123123101,,,,1001k m βββααα-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦由例4.14,321,,βββ线性无关⇔101rank 10301k m -⎡⎤⎢⎥-=⎢⎥⎢⎥-⎣⎦⇔1≠mk9. 已知向量组m ααα,,,21 (2≥m )线性无关. 设111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m试讨论向量组m βββ,,,21 的线性相关性.证 把题设写成矩阵形式[][]1212,,,,,,m m C βββααα=其中100111011011m m⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦C 经计算12,1(1)0,m m C m +⎧=+-=⎨⎩若为奇数若为偶数同上一题完全类似,有两种方法. 结论是m βββ,,,21 线性无关⇔0C ≠⇔m 为奇数时 m βββ,,,21 线性相关⇔0C =⇔m 为偶数时10. 设,m n n p A B ⨯⨯是满足AB O =的两个非零矩阵,证明A 的列向量组线性相关, 且B 的行向量组线性相关.方法1 B 的列向量都是方程组0=Ax 的解,又B 为非零矩阵,说明0=Ax 存在非零解,所以n A r <)(,从而A 的列向量组线性相关.考虑0=TT A B ,又知TB 的列向量组即B 的行向量组线性相关.方法2 由例题,()()r A r B n +≤又()0,()0r A r B >>,所以(),()r A n r B n <<,于是A 的列向量组线性相关,且B 的行向量组线性相关.11. 证明:rank rank rank ⎡⎤=+⎢⎥⎣⎦A O AB O B .方法1 把,A B 用初等行变换化为阶梯矩阵,设12,00r rU U A B ⎡⎤⎡⎤−−→−−→⎢⎥⎢⎥⎣⎦⎣⎦其中12,U U 的行向量都是非零行向量. 则1122000000000000r r U U U U ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥−−→−−→⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦A O OB 显然上式右边也是阶梯形矩阵,从而1122rank rank rank rank U U U U ⎡⎤⎡⎤==+=+⎢⎥⎢⎥⎣⎦⎣⎦O A O A B O O B 的行数的行数方法2 设12rank ,rank r r ==A B ,A 有子式10r A ≠,B 有子式20r B ≠,因此⎡⎤⎢⎥⎣⎦A O OB 有子式1122000r r r r A A B B =≠,从而12rank r r ⎡⎤≥+⎢⎥⎣⎦A O O B又12rank rank rank r r ⎡⎤⎡⎤⎡⎤≤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A O A O OB O B 所以12rank rank rank r r ⎡⎤=+=+⎢⎥⎣⎦A O AB O B12. 设*A 是n 阶方阵A 的伴随矩阵()2≥n , 证明:,()()1,()10,()1n r A nr A r A n r A n *=⎧⎪==-⎨⎪<-⎩证 当n A r =)(时,0≠A ,由行列式的展开定理:E A A A =*,立即知A *是可逆矩阵,即()r A n *=.当1)(-<n A r 时,A 的所有1-n 阶子式都等于零,这时*A 是零矩阵,故0)(=*A r . 当1)(-=n A r 时,0=A ,由行列式的展开定理0==*E A A A由例题n A r A r ≤+*)()(()1r A *⇒≤再由1)(-=n A r 知A 有一个1-n 阶子式不等于零,故*A 至少有一个元素不为零,因此()0r A *>. 综上,1)(=*A r .13.设rank m n A m ⨯=, 证明存在矩阵m n B ⨯, 使m m n n m E B A =⨯⨯.方法1 由题设m A r n m =⨯)(和例题,对任意的mb R ∈,线性方程组Ax b =都有解. 特别地取b 为标准单位向量12,,,m m e e e R ∈ ,方程组m n i A x e ⨯=(1,2,,)i m =的解记为12,,,n m b b b R ∈ ,令()12,,,n m m B b b b ⨯=则m m n n m E B A =⨯⨯易知()n m r B m ⨯=证法 2 由题设m A r n m =⨯)((此时m n ≤),故只用列变换就可将A 化为标准形,即存在可矩阵n Q 使得()m AQ E O =把Q 分块,()1n mQ B Q ⨯=,则m m n n m E B A =⨯⨯易知()n m r B m ⨯=14. 证明Sylvester 不等式:r()r()r()m n n p n ⨯⨯+-≤A B A B方法1 设r AB r t B r s A r p n n m ===⨯⨯)(,)(,)(由等价标准形定理知有可逆矩阵Q P ,使⎥⎦⎤⎢⎣⎡=000sEPAQ 因此11120()()000sB E s B s PAB PAQ Q B B n s n s -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1()()()r AB r PAB r B ==112()()B t r B r Q B r B -⎡⎤===⎢⎥⎣⎦122()()()()()r B r B r AB r B r n s ≤+=+≤+-移项得r n t s ≤-+,即r()r()r()n +-≤A B AB15. 设rank m n n ⨯=P ,证明rank()rank =PA A . 证法1 记C PA =,则()()()r C r PA r A =≤再由习题13,存在矩阵M 使得MP E =. 在C PA =两边左乘M 得MC A =从而()()()r A r MC r C =≤综上,()()()r C r PA r A ==.证法2 设A 是m n ⨯阶矩阵,()r m =P ,由Sylvester 不等式()()()r A r P r A m =+-≤()()r PA r A ≤从而r()r()=PA A16. 设n 阶矩阵A 满足2A A =,证明()()r A r A E n +-= 证 由()-=A E A O 和例题r()r()n +-≤A E A又[]()r()r ()r r()n ==+-≤+-E A E A A E A综上r()r()n +-=A E A .17. 证明满秩分解定理: 设rank m n A r ⨯=, 则A 有如下分解:m r r n A H L ⨯⨯=其中rank rank H L r ==.方法1 由等价标准形定理,存在可逆矩阵m P 和n Q 使得[]1111000rr r r n m rEE A P Q P E O Q O ----⨯⨯⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦令[]11,r rE H P L E O Q O --⎡⎤==⎢⎥⎣⎦则n r r m L H A ⨯⨯=,且显然有r L r H r ==)()(.方法2 不妨设A 的列向量组的极大无关组为12,,,r ααα ,并记矩阵[]12,,,m r r H ααα⨯=则A 的所有列向量都可由12,,,r ααα 线性表示,即存在矩阵r n L ⨯使得n r r m L H A ⨯⨯=又()()()()m r r n m r r r A r H L r H r r H r ⨯⨯⨯==≤≤⇒=同理()r L r =.18. 证明:r()r()r()r()ABC AB BC B ≥+-. 证 设rank()n k B r ⨯=,B 的满秩分解为B MN =由Sylvester 不等式rank()rank[()()]rank()rank()r ABC AM NC AM NC =≥+- rank()rank()r rank()rank()rank()AMN MNC AB BC B ≥+-=+-19. 设12,V V 都是nR 的子空间, 令{}12121122|,V V V V ααααα+==+∈∈, {}1212|V V V V ααα=∈∈ 且证明12V V +与12V V 都是nR 的子空间. 举例说明{}1212|V V V V ααα=∈∈ 或不是nR 的子空间.证 易(略)20. 证明基的扩张定理定理4.14:设1,,m αα 是nR 的一个线性无关组, m n <, 则存在n m -个向量1,,m n a α+ , 使得11,,,,,m m n αααα+ 成为n R 的一个基.证 由于m n <,故12,,,m ααα 不是nR 的基,从而至少有一个向量1m +α不能由12,,,m ααα 线性表示. 则121,,,,m m +αααα 必线性无关(否则,由唯一表示定理得出矛盾).如果1m n +=,则证毕. 否则,如果1m n +<,同上知,存在向量2m +α使得1212,,,,,m m m ++ααααα 线性无关. 依此类推,得证. 21. 若矩阵()ij n n A a ⨯=满足1(1,2,,)nii ij j j ia a i n =≠>=∑则称A 是严格对角占优矩阵. 证明严格对角占优矩阵必是可逆矩阵.证 反证. 假设A 是不可逆矩阵, 则0Ax =有非零解, 记一个非零解为12(,,,)T n x x x x = . 再记1max 0k i i nx x ≤≤=>考察0Ax =的第k 个方程11220k k kn n a x a x a x +++=即1nkk k kj j j j ka x a x =≠=-∑两边取绝对值111nnnk kk kj j kkjkk kj j j j j kj kj kx a a x x aa a ===≠≠≠≤≤⇒≤∑∑∑这与假设矛盾. 因此A 是可逆矩阵. 22. 证明方程组TTA Ax A b =一定有解.证 只需证方程组系数矩阵的秩与增广矩阵的秩相等. 由例题()T T T T Tr()r()r ,r (,)r()r()⎡⎤=≤=≤=⎣⎦A A A A A A b A A b A A故()T T T r()r ,=A A A A A b从而方程组b A Ax A T T =一定有解.23. 设=Ax 0与=Bx 0都是n 元的齐次方程组, 证明下面三个命题等价: (1)=Ax 0与=Bx 0同解; (2)rank rank rank ⎡⎤==⎢⎥⎣⎦A AB B ; (3)A 的行向量组与B 的行向量组等价. 证 记(I )=Ax 0,(II )=Bx 0,(III )=⎧⎨=⎩Ax Bx 0(1)⇒(2) 由于(I )的解都是(II )的解,所以(I )的解也都是(III )的解. 又显然(III )的解都是(I )的解. 因此,(I )与(III )同解. 同样的道理,(II )与(III )也是同解的. 因此它们基础解系所含向量个数相等,即()()r r r n n n ⎛⎫-=-=- ⎪⎝⎭A AB B于是()()r r r ⎛⎫== ⎪⎝⎭A AB B(2)⇒(3) 命题(2)等价于()()()T T T T r r r ,==A B A B由定理4.3,TA 的列向组与TB 的列向量组等价. 即A 的行向量组与B 的行向量组等价.(3)⇒(1) 这是显然.24.设B A ,均是n 阶的方阵,证明)()(B r AB r =的充要条件是方程组0)(=x AB 与方程组0=Bx 同解.证 (⇒)显然0=Bx 的解必是0)(=x AB 的解. 又)()(B r AB r =,0=Bx 的基础解系也是0)(=x AB 的基础解系. 所以,方程组0)(=x AB 与方程组0=Bx 同解.(⇐)易25. 若n 阶矩阵[]121,,,,n n A αααα-= 的前1n -个列向量线性相关,后1n -个列向量线性无关,12n βααα=+++ ,证明:(1)方程组Ax β=必有无穷多解;(2)若T 12(,,,)n k k k 是Ax β=的任一解,则1n k =. 证 (1)由12n βααα=+++ , 知(1,1,,1)T x = 是Ax β=的一个解. 又()1r A n =-,故Ax β=有无穷多解.(2)121,,,n ααα- 线性相关,存在不全为零的数121,,,n l l l - 使1122110n n l l l ααα--++=说明()121,,,,0Tn l l l - 是0Ax =基础解系. Ax β=的通解为()()121(1,1,,1),,,,0,,,1T TT n k l l l -+=⨯⨯26. 设线性方程组(I)⎪⎩⎪⎨⎧=+++=+++m n mn m m n n bx a x a x a b x a x a x a 221111212111 (II)⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++100221122*********m m m nm n n m m y b y b y b y a y a y a y a y a y a证明:方程组(I )有解⇔方程组(II )无解.证 记方程组(I )为=Ax b ,则方程组(II )可写成T T 1⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A y b 0易知TTT r r()1r()11⎛⎫=+=+ ⎪⎝⎭A A A b0 这样(II)无解⇔TT T TT T r r 1r()1r 11⎛⎫⎛⎫⎛⎫=+⇔+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A A A A b b b 0 ()T T r()r r()r ⎛⎫⇔=⇔=⇔ ⎪⎝⎭A A A A b b (I )有解27. 设线性方程组(I) ⎪⎩⎪⎨⎧=+++=+++m n mn m m n n bx a x a x a b x a x a x a 221111212111(II) ⎪⎩⎪⎨⎧=+++=+++022111221111m nm n n m m y a y a y a y a y a y a(III) 02211=+++m m y b y b y b证明:方程组(I )有解⇔方程组(II )的解都是方程组(III )的解.证 记n m ij a A ⨯=)(,T n x x x x ),,,(21 =,T m y y y y ),,,(21 =,T m b b b b ),,,(21 =则三个方程可写为(I) b Ax =,(II) 0=y A T ,(III) 0=y b T因此(I)有解⇔],[)(b A r A r =⇔⎥⎦⎤⎢⎣⎡=T T Tb A r A r )((由例5.2)⇔(II )的解都是(III )的解28. 设齐次方程组123423412422000x x x x x cx cx x cx x +++=⎧⎪++=⎨⎪++=⎩ 解空间的维数是2, 求其一个基础解系.解 由dim N()r()n =-A A 知,系数矩阵的秩r()422=-=A .221212101222010110100(1)(1)r c c A c c cc c c c --⎛⎫⎛⎫⎪ ⎪=−−→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭由r()2=A ,得1c =. 原方程组的等价方程组为13234x x x x x =⎧⎨=--⎩ 取3410,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 得一个基础解系为T T 12(1,1,1,0),(0,1,0,1)=-=-αα29. 设四元齐次线性方程组(I) ⎩⎨⎧=-=+004221x x x x还知道另一齐次线性方程组(II)的通解为T T k k )1,2,2,1()0,1,1,0(21-+求方程组(I )与(II )的公共解.解法1 将方程组(II)的通解T T k k x )1,2,2,1()0,1,1,0(21-+=212122(,2,2,)T k k k k k k =-++代入组方程组(I)得到关于21,k k 的线性方程组2121212220020k k k k k k k k -++=⎧⇔+=⎨+-=⎩ 令k k =2,则k k -=1,故方程组(I)与方程组(II)的公共解为T T T k k k x )1,1,1,1()1,2,2,1()0,1,1,0(21-=-+=(R k ∈)解法2 易求方程组(I)的基础解系为T )0,1,0,0(1=α,T )1,0,1,1(2-=α其通解为3142x k k αα=+令两个方程组的通解相等T T k k x )1,2,2,1()0,1,1,0(21-+=T k )0,1,0,0(3=T k )1,0,1,1(4-+得关于4321,,,k k k k 的方程组⎪⎪⎩⎪⎪⎨⎧=-=-+=-+=+-0020********2142k k k k k k k k k k 解之得k k k k k k k k ===-=4321,,,因此两个方程组公共解为T T T k k k x )1,1,1,1()1,2,2,1()0,1,1,0(-=-+-=30. 设n n ij a A ⨯=)(, 0≠A , 证明:n r <时, 齐次方程组⎪⎩⎪⎨⎧=+++=+++0022111212111n rn r r n n x a x a x a x a x a x a 的一个基础解系为T jn j j j A A A ),,,(21 =ξ,(n r j ,,1 +=) 其中jk A 为A 的),(k j 元的代数余子式(n k j ,,2,1, =).证 由行列式展开定理02211=+++jn in j i j i A a A a A a (n r j r i ,,1;,,1 +==)所以j ξ(n r j ,,1 +=)是齐次方程组的解(共r n -个).由0≠A ⇒齐次方程组系数矩阵的秩为r ,所以齐次方程组基础解系所含向量个数为r n -. 再由0≠A n A r =⇒)(*⇒*A 的r n -个行向量的转置n r ξξ,,1 +线性无关.综上可知,n r ξξ,,1 +是齐次方程组的一个基础解系.31. 设rank m n A r ⨯=, *η是非齐次方程组b Ax =的一个特解, 12,,,n r ξξξ- 是其对应的齐次方程组0=Ax 的一个基础解系. 证明{}****12,,,,n r ηηαηαηα-+++是Ax b =解集V 的一个极大无关组, 从而rank 1V n r =-+.证 记{}****12,,,,n r T ηηαηαηα-=+++显然T 中的向量都是b Ax =的解,即T V ⊂.下面证明T 线性无关. 设0)()()(12211=++++++++---ηξηξηξηr n r n r n k k k k把上式整理为0)(1212211=+++++++++----ηξξξr n r n r n r n k k k k k k k上式两边左乘A 得0)(121=+++++--b k k k k r n r n由0≠b 得0121=+++++--r n r n k k k k往上代入得02211=+++--r n r n k k k ξξξ由r n -ξξξ,,,21 线性无关性得021====-r n k k k再往上代入又得01=+-r n k . 这说明T 是线性无关的向量组.下面再证明V 中的任一向量都可由T 线性表示. 由于V 中的任一向量都可写为r n r n k k k x --++++=ξξξη 2211即)()()()1(221121r n r n r n k k k k k k x ---+++++++----=ξηξηξηη这说明V 中的任一向量都可由T 线性表示. 综上,向量组T 是Ax b =解集V 的一个极大无关组,rank r()1S n =-+A .32. 已知T T T 111121,2221222,212,2(,,),(,,,),,(,,,)n n n n n n n b b b b b b b b b ===βββ是方程组1111221,222112222,221122,2200 0n n n nn n n n n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的基础解系. 证明T T T 111121,2221222,212,2(,,),(,,,),,(,,,)n n n n n n n a a a a a a a a a ===ααα是方程组1111221,222112222,221122,22000n n n nn n n n n b x b x b x b x b x b x b x b x b x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的基础解系.证 记矩阵T 1T 2T n ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ααA α ,T 1T 2T n ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ββB β则方程组(I )和(II )可分别写为(I )=Ax 0 和 (II )=Bx 0(2n∈x R )因为12,,,n βββ 是方程组=Ax 0的基础解系,所以r ()2n n n =-=A ,从而12,,,n ααα 线性无关. 而且,12,,,n βββ 线性无关,r()n =B . 因此,方程组=Bx 0的基础解系所含解向量的个数为2r()n n -=B .由假设()T T 12,,,n =⇒=⇒=A βββO AB O BA O()T 12,,,n ⇒=⇒=BA O B αααO知12,,,n ααα 是方程组=Bx 0的n 个线性无关的解. 因此,12,,,n ααα 就是方程组=Bx 0的一个基础解系.。

线性代数N维向量空间基与维数

线性代数N维向量空间基与维数

§ 4.4 向量空间
12 解: 0 1
1 0
1 1 1
1 1 1
初等 行变换
1 0 0
2 1 0
1 1 0
1 1 0
可见dim L(A1, A2, A3, A4) = 2, A1, A2是L(A1, A2, A3, A4)的一组基.
注: 此外A1, A3也是L(A1, A2, A3, A4)的一组基. 还有A1, A4.
分别为x, y, 则
x = Py, y = P1x.
证明: = (1, 2, …, r)x = (1, 2, …, r)y = (1, 2, …, r)Py
(1, 2, …, r)(x Py) = 0. 又因为1, 2, …, r线性无关,
所以x Py = 0, 即x = Py, 进而y = P1x.
L(A1, A2, …, As)——A的列空间(column space) dimL(A1, A2, …, As) = 秩(A).
1 2 1 1Biblioteka 例3. 设A = [A1, A2, A3, A4] = 0 1 1 1 ,
1 0 1 1
求L(A1, A2, A3, A4)的一组基和维数.
第四章 n维列向量空间
事实上, 对于这个例子, 除了A3, A4以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基.
第四章 n维列向量空间
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
§ 4.4 向量空间
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr .
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义4.1 所有 n 维实向量的集合称为n维
实向量空间,记为Rn :
Rn
1 , 2 ,
,n T 1,2,
,
为实数
n
所有n 维复向量的集合称为n维复向量空间,
记为C n:
Cn z1, z2, ,zn T z1, z2, ,zn 为复数
第二节 向量的线性表示与线性相关
定义4.2 设1,2, ,m ,β都是n维向量,
第四章 n维向量空间
第一节 第二节 第三节 第四节 第五节
n维向量的概念 向量的线性表示与线性相关 等价向量组 线性方程组的结构 向量空间的子空间
第一节 n维向量的概念
行向量 (1 n矩阵)
列向量 (n 1矩阵)
统称:n维向量 a1 , a2 , , an T n个数构成的有序数组
向量α 1,2, ,n T 和β b1,b2, ,bn T 相等
存在m个数x1, x2, , xm,使得
xα1 1 xα2 2 xmαm
方程组 AX 有解
其中A (α1,α2, ,αm ), X (x1,x2, ,xm )T
矩阵A (α1,α2, ,αm ), A (α1,α2, ,αm , )
rank( A) rank( A)
解:可求得 r(1 2 3 )= r(1 2 3)=3, 故当t取任何值时, 都可由1, 2, 3 线性表示
例:已知=(3,10,b,4)T,1= (1,4,0,2)T , 2 =(2,7,1,3)T , 3 = (0,1,-1,a)T . 讨论 1) a,b取何值时, 不能由1, 2, 3 线性表示
矩阵A (α1,α2 , ,αm ), A (α1,α2 , ,αm , )
rank( A) rank( A) m
即:rank(α1,α2, ,αm ) rank(α1,α2, ,αm , ) m
例4.2 设1 (1, 2, 3,1)T ,2 (5, 5,12,11)T
3 (1, 3, 6,3)T ,4 (2, 1,3, 4)T
问:
4是否可由1,
2,
线性表示?
3
1 5 1 2 1 5 1 2
解:1,
2,
3,
4
2 3
5 12
3 6
1 3
0 0
3 0
1 0
1
0
1
11
3
4
0
0
0
0
rank(1,2,3) rank(1,2,3,4 ) 2 3
4可由1,
2,
线性表示,
3
但表示式子不惟一
例:当t取何值, (5,9,t)T 可由1 (4, 4,3)T ,2 (7, 2,1)T ,3 (4,1, 6)T 线性表示?
定理4.1 (1)向量β可由向量α1,α2 , ,αm线性表示
的充要条件是:
rank(α1,α2 , ,αm ) rank(α1,α2 , ,αm , ) (2)向量β可由向量α1,α2 , ,αm惟一地线
性表示的充要条件是:
rank(α1,α2 , ,αm ) rank(α1,α2 , ,αm , ) m 证:(1) β可由向量α1,α2 , ,αm线性表示
对应分量都相等
α,β的和:
i bi 1 i n
αβ 1 b2 ,2 b2 ,
向量0,0, ,0T 称为零向量
,n bn T
α的负向量 -1, 2 , , n T
向量与数k数乘 k k1, k2, kn T
向量加法和向量与数的数乘运算规律:
1加法交换律:αβ βα; 2加法结合律 : αβ γ α βγ; 3α O α; 4α α O; 5 1 α α; 6 k αl kl α; 7 k αβ kα kβ 8k l α kα αl
=-1+2 2+0 3 3)当b=2, a=1时,由1, 2, 3 线性表示, 不惟一。
解得 x1=-1-2x3, x2=2+x3 ,故 =(-1-2k)1+(2+k) 2+k 3 ,k为任意数
向定义量4的.3 线设性有n相维关向与量组线A性:无1,关2, ,m
给定具有m个变量的n个线性方程组成的方程组
a11x1 a12 x2 a21x1 a22 x2 an1x1 an2 x2
a1m xm b1 a2m xm b2
anm xm bn

a11
a12
α1
a21
, α2
a22
,
an1
anm
a1m
x1
b1
,αm
2) a,b取何值时, 能由1, 2, 3 线性表示,并写 出表示式
1 2 0 3 1 0 2 1
解:(1
,
2
,
3
,
)
4 0
7 1
1
10
0
1 b 0
1 0
1 a 1
2
0
2
3
a
4
0

0
b
2
可见 1)当b#2时,不能由1, 2, 3 线性表示 2)当b=2, a#1时,由1, 2, 3 惟一线性表示,
可由e1, e2 , e3, e4线性表示: =-3e1 2e2 0e3 5e4
一般地,
e1 (1, 0, , 0), e2 (0,1, , 0), , en (0, 0, ,1)
对任意n维向量 x1, x2, , xn
x1e1 x2e2 xnen
向量线性表示与线性方程组的关系
若存在数k1, k2 , , km ,使得:
β k11 k22 kmm
称β可由1,2 ,
,
线性表示
m
或称β是1,2 ,
,
的线性组合
m
例 向量 = 3,2,0,5T ,
e1 (1, 0, 0, 0)T , e2 (0,1, 0, 0)T , e3 (0, 0,1, 0)T , e4 (0, 0, 0,1)T .
a2m
,
X
x2

b2
anm
xm
bn
x11 x22
a11x1 a12 x2
xm m
a21x1
a22 x2
an1x1 an2 x2
a1m xm
a2m
xm
anm xm
方程组写成: x11 x22 xmm 即: (1,2 , ,m )X
即:rank(α1,α2, ,αm ) rank(α1,α2, ,αm , )
(2) β可由向量α1,α2 , ,αm惟一地线性表示
存在m个惟一的数x1, x2 , , xm,使得
xα1 1 x2α2 xmαm
方程组 AX 有惟一解
其中A (α1,α2 , ,αm ), X (x1,x2 , ,xm )T
相关文档
最新文档