线性代数 N维向量空间 第4节 基与维数

合集下载

线性代数之第4章.向量空间与线性变换

线性代数之第4章.向量空间与线性变换

4.1 Rn的基与向量关于基的坐标
Rn的基与向量关于基的坐标 显然Rn的基不是唯一的,而α关于给定的基的坐标是唯 一确定的。以后,我们把n个单位向量组成的基称为自 然基或标准基。 在三维几何向量空间R3中,i, j, k是一组标准基,R3中任 一个向量α可以唯一地表示为: α=a1i +a2j +a3k 有序数组(a1, a2, a3 )称为α在基i, j, k下的坐标。如果α的 起点在原点,(a1, a2, a3 )就是α的终点P的直角坐标(以 后我们常利用R3中向量α与空间点 P 的一一对应关系, 对Rn中的一些问题及其结论在R3中作几何解释)。
4.1 Rn的基与向量关于基的坐标
基之间的变换举例 解:由 β1 ε1 2ε2 ε3
β2 ε1 ε2 β ε ε3 3 1

1 1 1 ( β1 , β2 , β3 ) ( ε1 , ε2 , ε3 ) 2 1 0 1 0 1
n n
只有零解xj=0 (j=1, 2, … , n) 。
4.1 Rn的基与向量关于基的坐标
基之间的变换 由于α1, α2, „, αn线性无关,由上式得:
a x
j 1 ij
n
j
0 i 1, 2, , n
因此,前方程只有零解(即上面齐次线性方程组只有零 解)的充要条件是上面齐次线性方程组的系数行列不等 于零,即定理中条件式成立。
4.1 Rn的基与向量关于基的坐标
基之间的变换 定义:设Rn的两组基B1={α1,α2,… ,αn}和 B2={η1,η2,… ,ηn}满足下式式的关系,
a11 a η1, η2 , , ηn α1, α2 , , αn 21 an1 a12 a1n a22 a2 n α α , , α A 1, 2 n an 2 ann

向量空间的基底与维数

向量空间的基底与维数

向量空间的基底与维数在线性代数中,向量空间是一个具有特定运算规则的集合。

在向量空间中,基底是一组线性无关的向量,它们可以生成该向量空间中的任意向量。

维数则是指向量空间中基底的个数。

本文将介绍向量空间的基底与维数的概念及其相关性质。

一、基底的定义与性质基底是向量空间中的一组线性无关的向量。

具体来说,如果向量空间V中的向量集合B={b1, b2, ..., bn}满足以下两个条件:1. B中的向量相互独立,即对于任意不全为0的标量c1, c2, ..., cn,有c1b1 + c2b2 + ... + cnbn ≠ 0;2. B中的向量可以生成向量空间V中的任意向量,即对于向量v∈V,存在标量c1, c2, ..., cn,使得v = c1b1 + c2b2 + ... + cnbn。

根据基底的定义,我们可以得出一些基本性质:1. 基底中的向量个数是唯一的。

换言之,一个向量空间只有一个维数。

2. 基底中的向量个数与向量空间中的任意一组基底的向量个数相等。

3. 如果一个向量空间有有限维,则其基底中的向量个数也是有限的。

二、维数的定义与性质维数是指向量空间中基底的个数。

记作dim(V)。

如果向量空间V中存在一组基底包含m个向量,那么V的维数就是m。

维数具有以下性质:1. 维数是向量空间的基本属性,不依赖于具体的表示方式。

2. 同一个向量空间中的不同基底具有相同的维数。

3. 对于向量空间R^n,其维数为n。

三、基底和维数的关系与应用基底和维数在线性代数中具有重要的应用价值。

首先,基底的存在性保证了向量空间中的向量可以用基底中的向量线性表示出来,这对于求解线性方程组、解决线性相关与线性无关的问题非常有帮助。

其次,维数在研究向量空间的结构和性质时起到了关键作用。

例如,两个向量空间V和W的维数相等,则它们同构;若维数不相等,则它们不同构。

此外,在计算机科学、信号处理以及物理学等领域中,基底和维数的概念也被广泛应用,如图像压缩、数据降维等。

线性代数§6.2线性空间的维数、基与坐标

线性代数§6.2线性空间的维数、基与坐标

0 0
10,
E 21


0 1
00,
E 22


0 0
10,

k1E11
+
k2E12
+
k3E21
+
k4E22
=O


0 0
0 0
,

k1E11 +
k2E12 + k3E21 +
k4E22 =

k1 k3
k k
2 4
,
因此, 有
k1=k2=k3=k4=0.
p(x) =(a0, a1, a2, a3, a4)T.
若取另一个基: q0=1, q1=1+x, q2=2x2, q3=x3, q4=x4,

p( x)

(a0

a1 )q0

a1q1

1 2 a2q2

a3q3

a4q4 .
因此, p(x)在这个基下的坐标为
p( x)

(a0
a1 ,
a1 ,
间V的维数.
维数为n的线性空间V称为n维线性空间, 记作Vn. 当一个线性空间V中存在任意多个线性无关的向
量时, 就称V是无限维的.
若1, 2, ···, n为Vn的一个基, 则Vn可表示为:
Vn = { = x11+x22+···+xnn | x1, x2, ···, xnR }
生成的子空间的基与维数.
思考题解答
f2(x) = 2x3–3x2+9x–1, f4(x) = 2x3–5x2+7x+5

线性代数N维向量空间基与维数

线性代数N维向量空间基与维数

§ 4.4 向量空间
12 解: 0 1
1 0
1 1 1
1 1 1
初等 行变换
1 0 0
2 1 0
1 1 0
1 1 0
可见dim L(A1, A2, A3, A4) = 2, A1, A2是L(A1, A2, A3, A4)的一组基.
注: 此外A1, A3也是L(A1, A2, A3, A4)的一组基. 还有A1, A4.
分别为x, y, 则
x = Py, y = P1x.
证明: = (1, 2, …, r)x = (1, 2, …, r)y = (1, 2, …, r)Py
(1, 2, …, r)(x Py) = 0. 又因为1, 2, …, r线性无关,
所以x Py = 0, 即x = Py, 进而y = P1x.
L(A1, A2, …, As)——A的列空间(column space) dimL(A1, A2, …, As) = 秩(A).
1 2 1 1Biblioteka 例3. 设A = [A1, A2, A3, A4] = 0 1 1 1 ,
1 0 1 1
求L(A1, A2, A3, A4)的一组基和维数.
第四章 n维列向量空间
事实上, 对于这个例子, 除了A3, A4以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基.
第四章 n维列向量空间
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
§ 4.4 向量空间
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr .
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.

线性代数基和维数

线性代数基和维数

定义4.5.1 R n 的非零子空间H的线性无关生成 集称为H的基(basis).
n R 例4.5.2 可逆n阶方阵的n个列向量构成 的基.
证明:设可逆方阵 A 1,2 ,...,n , 其列向量组线性无 关. 对 R n 中的任意向量 ,由性质4.2.5, 1,2 ,...,n , 线性相关. 由例4.2.7知, 可由1 ,2 ,...,n 线性表出, 1 ,2 是 ,...,n 的基 Rn . 因此
证明:证明方法类似于上例中的讨论. 令B是A的行最简形矩阵. B的主元列线性无关, 而A行等价于B,由定理4.5.2可知,A的主元列线性 无关.
B的非主元列可表成B的主元列的线性组合,则A 的非主元列也可表成A的主元列的线性组合,因而 可以从ColA的生成集中删除. 这样,A的主元列构成了ColA的基.
如果 能用两种方式表成1,2 ,..., p 的线性 组合,即
k11 k22 ... k p p ,
l11 l22 ... l p p .
两式相减,有
0 (k1 l1 )1 (k2 l2 )2 ... (k p l p ) p .
例4.5.7 NulA的维数是方程组Ax=0中自由变 量的个数. ColA的维数是A的主元列的数目.
n R 定理4.5.6 若H是 的子空间,dim H p. 则
(1)H中任意p个线性无关的向量构成H的一 组基; (2)如果H中p个向量构成H的生成集,则这 p个向量也构成H的一组基.
子空间H的基相对于生成集的另一个优点是: H中的每个向量仅能用一种方式写成基向量 的线性组合,即表出是唯一的. 定理4.5.8 若 1 , 2 ,..., p 是子空间H的基,则H 中的任一向量能且仅能用一种方式表为 1 ,2 ,..., p 的线性组合. 证明:因为 1 , 2 ,..., p 是H的生成集,H中任 一向量 必可表为 1,2 ,..., p 的线性组合.

线性空间的基与维数

线性空间的基与维数

线性空间的基与维数线性空间是线性代数中的重要概念,它是指具有加法和数乘运算的集合,并满足线性空间的定义和性质。

在线性空间中,基和维数是两个核心概念,它们对于理解线性空间的结构和性质具有重要意义。

一、线性空间的定义和性质线性空间是指满足以下定义和性质的集合:1. 集合中存在加法运算,即对于任意两个元素x和y,存在相应的元素x+y;2. 集合中存在数乘运算,即对于任意元素x和数k,存在相应的元素kx;3. 加法和数乘运算满足封闭性,即对于任意元素x和y,x+y和kx 仍然属于该集合;4. 加法满足结合律和交换律,即对于任意元素x、y和z,(x+y)+z=x+(y+z)和x+y=y+x;5. 加法满足单位元存在性,即存在一个元素0,对于任意元素x,有x+0=x;6. 加法满足逆元存在性,即对于任意元素x,存在相应的元素-y,使得x+(-y)=0;7. 数乘运算满足结合律和分配律,即对于任意元素x和k、l,有k(lx)=(kl)x和(k+l)x=kx+lx;8. 数乘运算满足单位元存在性,即对于任意元素x,有1x=x。

二、在线性空间中,基是指一个线性无关且能生成整个空间的向量组。

即对于线性空间V,存在向量组{v1, v2, ..., vn},满足以下条件:1. 线性无关性:向量组中的任意有限个向量线性无关,即不存在非零标量c1, c2, ..., cn,使得c1v1 + c2v2 + ... + cnvn = 0;2. 生成性:向量组的线性组合能够生成整个线性空间V,即对于任意向量v∈V,存在标量c1, c2, ..., cn,使得v = c1v1 + c2v2 + ... + cnvn。

线性空间的维数是指基中向量的个数,用n表示。

记作dim(V) = n。

三、线性空间的基与维数的性质线性空间的基与维数具有以下性质:1. 基的个数是唯一的:线性空间V的任意两个基所含向量个数相同;2. 维数的唯一性:线性空间V的维数唯一,与基的选择无关;3. 向量组的性质:线性空间V中的任意向量组若线性无关,则含有的向量个数不超过维数;4. 维数与子空间:线性空间V的任意非零子空间的维数小于等于V的维数;5. 维数与线性变换:线性空间V到线性空间W的线性映射T是满射时,有dim(W) ≤ dim(V);当T是一一映射时,有dim(W) ≥ dim(V)。

基和维数的关系

基和维数的关系

基和维数的关系
基和维数是线性代数中的两个重要概念,它们之间有着密切的关系。

在矩阵论中,基的数量决定了矩阵的列空间的维数,也就是列向量的线性独立的数量。

因此,如果一个矩阵的列向量数量为 n,但其列向量中有重复的向量,那么矩阵的列空间的维数就会小于 n。

这时,我们需要找到一组线性无关的向量作为基,从而得到列空间的基和维数。

另一方面,矩阵的行空间的维数也和其基的数量有关系。

矩阵的行空间是由其行向量张成的向量空间,而行向量的数量和它们的线性独立的数量相同。

因此,矩阵的行空间的维数取决于它的行向量的线性独立的数量,也就是它的基的数量。

除了列空间和行空间,矩阵还有一个重要的概念——零空间。

零空间是由矩阵的所有零空间向量张成的向量空间。

零空间向量是指矩阵乘以该向量得到的结果为零向量的向量。

矩阵的零空间的维数也和其基的数量有关系。

根据线性代数的基本定理,矩阵的列空间和零空间的维数之和等于矩阵的列数。

因此,如果知道了矩阵的列空间的维数,就可以求得它的零空间的维数。

总之,基和维数在线性代数中起着至关重要的作用。

它们的关系非常紧密,互相影响。

通过矩阵的基和维数,我们可以更好地理解矩阵的性质和特征。

向量空间的基与维数

向量空间的基与维数

向量空间的基与维数在线性代数中,向量空间是一个具有特定性质的数学结构,它由一组向量组成,并满足一些线性运算规则。

在向量空间中,我们经常讨论两个重要的概念,即基和维数。

一、基的定义和性质向量空间的基是指一组线性无关的向量,它们能够生成该向量空间中的所有向量。

具体而言,设V是一个向量空间,S={v1,v2,...,vn}为V 中的向量组,如果满足以下两个条件:1. 向量组S中的向量线性无关;2. 向量空间V中的每一个向量都可以由向量组S线性表示,则称S 为向量空间V的基。

基的性质包括:1. 基的向量个数是确定的。

如果两个基包含的向量个数不同,那么它们所在的向量空间也是不同的。

2. 基的向量组中的向量个数是向量空间的维数。

二、维数的定义和性质在向量空间中,维数是指该向量空间的基中所含向量的个数。

通常用符号dim(V)表示,其中V是一个向量空间。

维数的性质包括:1. 如果V是一个向量空间,那么V的两个基所含向量的个数相同。

也就是说,向量空间的维数是唯一确定的。

2. 一个向量空间的维数是非负整数。

3. 如果向量空间的维数是有限的,则称该向量空间为有限维向量空间。

否则,称该向量空间为无限维向量空间。

三、例子和应用1. 二维平面上的向量空间R^2,其基可以选择为{(1,0),(0,1)},其中(1,0)和(0,1)分别是R^2的两个标准单位向量。

因此,R^2的维数为2。

2. 三维空间中的向量空间R^3,其基可以选择为{(1,0,0),(0,1,0),(0,0,1)},其中(1,0,0)、(0,1,0)和(0,0,1)分别是R^3的三个标准单位向量。

因此,R^3的维数为3。

基和维数的概念不仅在线性代数中有着重要的应用,也在其他数学领域和物理学、工程学等各个领域得到广泛应用。

它们帮助我们更好地理解和描述向量空间的结构和性质,为解决实际问题提供了强有力的工具和方法。

总结起来,向量空间的基是一组线性无关的向量,它们能够生成该向量空间中的所有向量;维数是该向量空间基所含向量的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 n维列向量空间
§ 4.4 向量空间
2. 设V是Rn的非空子集, 且对向量的加法及数 乘封闭(closed), 即 , V, kR, 有+V, kV,
closure conditions
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.
事实上, 对于这个例子, 除了A3, A4以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基.

第四章 n维列向量空间
§ 4.4 向量空间
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr . {k1, k2, …, kr}T —— 在1, 2, …, r 这组
1, 2, …, s——生成元(generator).

第四章 n维列向量空间
§ 4.4 向量空间
二. 向量空间的基(basis)与维数(dimension) 1, 2, …, r ——V的一组基:
① 1, 2, …, r线性无关, ② V都能由1, 2, …, r线性表示. r称为V的维数. 记为维(V)或dim(V). n维基本单位向量组就是Rn的一组基, dim{Rn} = n; 零空间没有基, 规定dim{0} = 0. 例2. 求例1中的各向量空间的基与维数.
Rn和{0}称为Rn的平凡(trivial)子空间.

第四章 n维列向量空间来自§ 4.4 向量空间例1. 检验下列集合是否构成向量空间. (1) V = {(x, y, 0) | x, y R};
(2) V = {(x, y, z) | x, y, z R, x+yz = 0};
(3) ARmn, bRm, b0, KA = {Rn | A = 0}; SB = {Rn | A = b}.
基下的坐标(coordinate).

第四章 n维列向量空间
§ 4.4 向量空间
四. 基变换与坐标变换 设1, 2, …, r和1, 2, …, r是V 的两组基,
则存在rr矩阵P使
(1, 2, …, r) = (1, 2, …, r)P. 称P为从基1, 2, …, r到1, 2, …, r的过 渡矩阵(transition matrix).

第四章 n维列向量空间
§ 4.4 向量空间
定理2.7. 1, 2, …, s的极大无关组是 L(1, 2, …, s)的基 dimL(1, …, s) = r(1, …, s). 特别地, A = (A1, A2, …, As),
L(A1, A2, …, As)——A的列空间(column space)
1 2 1 1 例3. 设A = [A1, A2, A3, A4] = 0 1 1 1 , 1 0 1 1 求L(A1, A2, A3, A4)的一组基和维数.

dimL(A1, A2, …, As) = 秩(A).
第四章 n维列向量空间
§ 4.4 向量空间
1 2 1 1 1 2 1 1 初等 解 : 0 1 1 1 0 1 1 1 1 0 1 1 行变换 0 0 0 0 可见dim L(A1, A2, A3, A4) = 2, A1, A2是L(A1, A2, A3, A4)的一组基. 注: 此外A1, A3也是L(A1, A2, A3, A4)的一组基. 还有A1, A4.

第四章 n维列向量空间
§ 4.4 向量空间
(4) 1, 2, …, sRn, L(1, 2, …, s) = { kii | 诸kiR}.
i=1
s
——由1, 2, …, s生成的向量空间 (generated/spanned by 1, …)或
{1, 2, …, s}的线性包(linear closure).
由r = r(1, 2, …, r) r(P) r可得r(P) = r.
故|P| 0, 即P可逆.

相关文档
最新文档