4-4向量空间的基和维数
向量空间的基底与维数

向量空间的基底与维数在线性代数中,向量空间是一个具有特定运算规则的集合。
在向量空间中,基底是一组线性无关的向量,它们可以生成该向量空间中的任意向量。
维数则是指向量空间中基底的个数。
本文将介绍向量空间的基底与维数的概念及其相关性质。
一、基底的定义与性质基底是向量空间中的一组线性无关的向量。
具体来说,如果向量空间V中的向量集合B={b1, b2, ..., bn}满足以下两个条件:1. B中的向量相互独立,即对于任意不全为0的标量c1, c2, ..., cn,有c1b1 + c2b2 + ... + cnbn ≠ 0;2. B中的向量可以生成向量空间V中的任意向量,即对于向量v∈V,存在标量c1, c2, ..., cn,使得v = c1b1 + c2b2 + ... + cnbn。
根据基底的定义,我们可以得出一些基本性质:1. 基底中的向量个数是唯一的。
换言之,一个向量空间只有一个维数。
2. 基底中的向量个数与向量空间中的任意一组基底的向量个数相等。
3. 如果一个向量空间有有限维,则其基底中的向量个数也是有限的。
二、维数的定义与性质维数是指向量空间中基底的个数。
记作dim(V)。
如果向量空间V中存在一组基底包含m个向量,那么V的维数就是m。
维数具有以下性质:1. 维数是向量空间的基本属性,不依赖于具体的表示方式。
2. 同一个向量空间中的不同基底具有相同的维数。
3. 对于向量空间R^n,其维数为n。
三、基底和维数的关系与应用基底和维数在线性代数中具有重要的应用价值。
首先,基底的存在性保证了向量空间中的向量可以用基底中的向量线性表示出来,这对于求解线性方程组、解决线性相关与线性无关的问题非常有帮助。
其次,维数在研究向量空间的结构和性质时起到了关键作用。
例如,两个向量空间V和W的维数相等,则它们同构;若维数不相等,则它们不同构。
此外,在计算机科学、信号处理以及物理学等领域中,基底和维数的概念也被广泛应用,如图像压缩、数据降维等。
基与维数的几种求法

线性空间基和维数的求法方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1 满足:(1)n ααα,2,1 线性无关。
(2)V 中任一向量α总可以由n ααα,,21, 线性表示。
那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n =,并称n ααα,,2,1 为线性空间V 的一组基。
如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。
例1 设{}0V X AX ==,A 为数域P 上m n ⨯矩阵,X 为数域P 上n 维向量,求V 的维数和一组基。
解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。
例2 数域P 上全体形如0a a b ⎛⎫⎪-⎝⎭的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基。
解 易证0100,1001⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭为线性空间0,a V a b p a b ⎧⎫⎛⎫=∈⎨⎬ ⎪-⎝⎭⎩⎭|的一组线性无关的向量组,且对V 中任一元素0a a b ⎛⎫ ⎪-⎝⎭有00100+1001a a b a b ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 按定义0100,1001⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭为V 的一组基,V 的维数为2。
方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。
例3 假定[]n R x 是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明:()()()211,1,1,,1n x x x ----构成[]n R x 的基。
证明 考察()()1121110n n k k x k x -⋅+-++-=由1n x-的系数为0得0n k =,并代入上式可得2n x -的系数10n k -=依此类推便有110n n k k k -====,故()()11,1,,1n x x ---线性无关又[]nR x 的维数为n ,于是()()11,1,,1n x x ---为[]nR x 的基。
空间向量的基

1 , 2 , , r 是向量空间V的一个基,则 V 可表示为 (3)若向量组
V x 1 1 2 2 r r 1 , , r R
例如,在Rn中, (1 , 2 , n ) 是它的一组基 ,称为标准基,因此
Rn 是n维向量空间。
数理学院
设R n中的向量 在这两组基下的坐标分别为( x1 ,
xn )与( x '1 ,
x 'n )
则 (e1 , e2 ,
x1 x en ) 2 (e '1 , e '2 , xn
x '1 x' e 'n ) 2 (e1 , e2 , x 'n
4
2 0 2 1 1 1 1 3 (2)1 , 2 , 3 , 4 . 0 2 1 1 1 2 2 2 求基(1)到基(2)的过渡矩阵, 并求坐标变换公式.
SCHOOL OF MATHEMATICS AND PHYSICS
由定义可知,向量空间的基不是惟一的,但其维数是确定
的。并且向量空间可以由它的任一组基 (1 , 2 , n ) 生成。因 此,任给 V ,有惟一的表达式 x11
xn n ,称 ( x1 ,
xn )
为 在基 (1 , 2 , n ) 下的坐标。
由于基不是惟一的,所以同一向量在不同的基下的坐标是 不同的。下面我们来讨论同一向量在不同基下坐标之间的关系。
数理学院
SCHOOL OF MATHEMATICS AND PHYSICS
设 (e1 , e2 , en ) 和 (e '1 , e '2 , 即可以相互表示。 e1 e 2 设 en
单招涉及的向量知识点总结

单招涉及的向量知识点总结一、基本概念1. 向量的定义向量是一个有方向和大小的量,通常用箭头表示。
在数学中,向量通常用一个由其分量构成的数组来表示。
2. 向量的加法和减法向量之间的加法和减法是按分量进行对应相加或相减的运算。
例如,对于两个向量 a=(a1, a2) 和 b=(b1, b2),它们的和是 c=(a1+b1, a2+b2),差是 d=(a1-b1, a2-b2)。
3. 向量的数量积向量的数量积又称点积,是指两个向量相乘后相加的结果。
具体计算方式是将两个向量的对应分量相乘后相加,得到一个标量。
例如,对于向量 a=(a1, a2) 和 b=(b1, b2),它们的数量积是 a·b=a1b1+a2b2。
4. 向量的数量积的性质向量的数量积具有交换律、分配律和结合律等性质,即 a·b=b·a,a·(b+c)=a·b+a·c,(ka)·b=k(a·b)。
这些性质使得向量的数量积在计算过程中更加方便和灵活。
5. 向量的夹角向量的夹角是指两个向量之间的夹角,其大小可以通过向量的数量积来计算。
具体的计算公式是cosθ=a·b/|a||b|,其中 a 和 b 分别是两个向量,θ 是它们的夹角。
6. 向量的叉积向量的叉积又称向量积,是指两个向量相乘得到一个新的向量。
具体计算方式是根据右手法则,逆时针方向相互垂直的两个向量相乘,得到一个新的向量,该新的向量垂直于原来的两个向量。
二、向量的应用1. 向量的平移在空间中,可以通过将一个向量加到另一个向量上,从而实现向量的平移。
这种方法在几何问题中经常会用到,可以方便地求解各种几何关系。
2. 向量的力学应用在物理学中,向量经常被用来描述力和速度等物理量。
力可以用向量来表示,根据牛顿第二定律 F=ma,力和加速度之间的关系可以用向量表示。
3. 向量的几何应用在几何学中,向量经常被用来描述对象的位置、方向和大小等几何特征。
4.4向量空间的基和维数

一、向量空间的基与维数 定义4.1 设V为向量空间,若存在1, 2, …, r V.
且满足: (1) 1, 2, …, r 线性无关;
(2) V 中任一向量都可以由1, 2, …, r 线性表示;
则称1, 2, …, r 为V的一组基底,简称基, r 为V的维数,并称 V 为 r 维向量空间。
1
注1: 若将向量空间V看成无穷个向量组成的向
量组,其基就是其极大线性无关组,其规定其维数为0。
2
例如:对于Rn
(1) 基本单位向量组 1 , 2 ,, n 是一组基,称为标 准基。 (2) 1 = (1, 0, 0,…, 0), 2 = (1, 1, 0,…, 0), …,
n = (1, 1,…, 1) 也是基。
3
二、向量在给定基下的坐标
定义4.2 设1, 2, …, n 是向量空间 V 的一组基,
任取 V, 都有
= x11 + x22 + … + xnn
且组合系数 x1, x2, …, xn 唯一,称为向量 在
基 1, 2, …, n 下的坐标,记为 (x1, x2, …, xn)
4
例如:在 R3 中,
= (2, -3, 1)T = 2ε1-3 ε2 + 1 ε3
注:1、基并不是唯一的 2、向量在不同基坐标也不同
5
例
求向量 ( x1 , x2 ,, xm ) 在基
1 (1,0,..., 0), 2 (1,1,..., 0), , m (1,1,...,1)
下的坐标.
6
向量空间的基与维数

向量空间的基与维数结论1 设,当下述三个条件有两条满足时,{}就是V的一个基.(i)零向量可由唯一地线性表示;(ii)V中每个向量都可由唯一地线性表示;(iii).结论 2 设,都是F上向量空间V的子空间. 若,,则,且.例 1 设和都是数域,且,则是上的向量空间.域F是F上向量空间,基是{1},.C是R向量空间,{ 1 , i} 是基,.R是有理数域上的无限维向量空间,这是因为对任意的正整数t,是线性无关的,这里.令,则F是一个数域,F是Q上的向量空间.1)1,线性无关:设,. 则(否则,,矛盾),因此.2) 1,,线性无关:设,,i=1,2,3 . ( 1 ),两端平方得,由于1,线性无关,故假如,则,且,即. 矛盾.因而故假如,则得,这与是无理数相矛盾. 因而将代入(1),便得这说明1,,线性无关.3) 1,,,线性无关:设,,i=1,2,3,4 . 则有. ( 2 )假如不全为零,则得到“1,,线性相关”的结论,矛盾. 所以与应全为零,将代入(2)得又由1,线性无关得. 这样,我们证得了1,,,线性无关.故{1,,,}是F的一个基..例2 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数}. C[a,b]是R上的向量空间.对任意的正整数n,可证得线性无关:设,使( 3 )取n+1个实数,使a b.由(3)知.即其中而. 用左乘(4)两端,得这说明线性无关.故C[a,b]是R上无限维向量空间.引理设V是F上向量空间,是V的子空间,V,i=1,2,…,s. 试证明证对s作数学归纳.当s=1 时,结论显然成立.设,且对个V的不等于V的子空间结论成立.下考虑V的子空间,,. 由归纳假设知故存在1) 当时,,故;2) 当时,由于,因此显然,,…,.且存在,使(否则,如果,,…,,, ,,使,,所以,即有,这与矛盾).这样,故例3 设.存在集合, 使S含无穷多个向量,且S中任意n个不同的向量都是V 的一个基.证取V的一个基,令. 对任意从中删去后剩下的个向量生成的V的子空间记为,则由引理知, 故存在令, 中任n个不同的向量线性无关,是V的基.设,有,且中任意n个不同的向量构成V的一个基.对任意,有.这样的子空间共有个. 由引理知存在令. 则||=k+1,且中任意n个不同的向量是V的基.这个过程进行下去,满足条件的无限集S即可找到.另证:设是V的一个基,令令让,,…,F互不相同,则由于其行列式是Vandermonde行列式,即故线性无关,是V的一个基. S中含无穷多个向量.例4设是F上n(>0)维向量空间V的子空间,且i=1,2,3,…,s. 则存在V的一个基,使得该基中每一个向量都不在中.证:对s作数学归纳.当时,取的一个基,,将其扩充为V的一个基. 可证明出线性无关,是V的基,且, i=1,2,…,r,设,且对个V的子空间结论成立. 现考虑V的s个子空间,由归纳假设知存在V的一个基,使1)如果,那么即满足要求;2)如果. 不妨设∈, , 由最多有一个F中的数,使, (否则,如果有两个不同的数, , 使,则,故,矛盾),所以除可能的之外,F 中有非零数,使同理有 F 中非零数,使显然易证线性无关,是V的基,且满足要求.例 5 设W是的由全体形如的向量所生成的子空间, 证明证令(j)是第i行第j列位置元素是1,而其余的个元素全是零的n阶方阵.对, i≠t,对, (j) ∈W.(j)容易验证}是线性无关的(共个向量)故而W中每个矩阵其迹为0. 因此,故引理 设是向量空间V 的子空间,则(i)(ii)例 6 设是F 上向量空间V 的子空间.(i) 证明:(ii)举一个例子,使上述严格不等式成立. 证(i)===(ii) 在中,令1w +2w +3w=(1,0,0),(-1,0,1)),而1w ⋂2w =2w ⋂3w =1w ⋂3w ={0}, 1w ⋂2w ⋂3w =={0},此时∑=31dim i i w =2<3=∑=31dim i i w -()∑≤≤≤⋂nj i jiw w 1dim +dim(1w⋂2w ⋂3w ).例7 设A )(F M m s ⨯∈,B )(F M n m ⨯∈.令0w ={α∈n F ∣AB α=10⨯s },1w = {B α∣α∈0w }, 求证1w 是m F 的子空间,且dim 1w =秩B-秩(AB).证 显然10⨯n ∈0w ,故B 10⨯n =10⨯m ∈1w ,即1w ≠∅, ∀1α,2α∈ 0w ,B 1α,B 2α是1w 的任意向量,∀1α,2α∈F,AB(2211ααa a +)= 2211AB AB ααa a +=0,∴2211ααa a +∈ 0w ,∴B(2211ααa a +)∈1w ⇒2211B B ααa a +∈1w ,因而1w 是m F 的子空间 .01当秩B=秩(AB)时,齐次线性方程组AB 1⨯n X =10⨯s 与B 1⨯n X =10⨯m 同解.因此1w ={0},故dim 1w =0=秩B -秩(AB).02以下我们假设秩B>秩(AB).ABX=0与BX=0不是同解的. 0w ≠{0},1w ≠{0}.)1秩B=n.此时0w ≠{0},设{1β,2β,…t β}为0w 的一个基,其中 t=n- 秩(AB) .则有1w =(B 1β,B 2β,…B t β). 设1b B 1β+2b B 2β+…+t b B t β=0,i b ∈F,i=1,2,…t. 则B(1b 1β+2b 2β+…+t b t β)=0,而BY=0只有零解,故1b 1β+2b 2β+…+t b t β=0, 又1β,2β,…t β线性无关.所以i b =0,i=1,2,…n. 这说明{B 1β,B 2β,…B t β}是1w 的一个基.dim 1w =t=n-秩(AB)=秩B-秩(AB).)2秩B<n.令'0w ={γ∈n F B γ=10⨯m },'0w 是B 1⨯n Y =10⨯m 的解空间,dim '0w =n- 秩B>0.显然'0w ⊆0w .由于我们事先假设了秩B ≠秩(AB),所以'0w ≠0w .设{1β,2β,…P β}是'0w 的一个基. P=n-秩B>0.扩充成0w 的一个基,1β,2β,…P β,1+p β,…,t β, t=n-秩(AB). 而1w =(B 1β,B 2β,…B P β,B 1+p β,…,B t β)= (B 1+p β,…,B t β). 设j j tp j B b β∑+=1=0, j b ∈F, j=p+1,…,t.则B(j j tp j b β∑+=1)=0.即j j tp j b β∑+=1∈'w 故存在1b ,p b b ,...,2∈F ,使j j tp j b β∑+=1=i i pi b β∑=1.i i pi b β∑=1+jjtp j b β)(1∑+=-=0.而1β,2β,…P β,1+p β,…,t β线性无关,所以k b =0,k=1,2,,…,t; 这说明B 1+p β,B 2+p β,…,B t β线性无关,是1w 的一个基. 因此 dim 1w =t-p=[n-秩(AB)]-【n-秩B]= 秩B-秩(AB).例8 设1w ,2w 是向量空间v 的子空间,且dim(1w +2w )=dim(1w ⋂2w )+1 证明,下述两条必有一条成立: (ⅰ) 1w +2w =1w ,1w ⋂2w =2w ; (ⅱ) 1w +2w =2w ,1w ⋂2w =1w .。
线性代数课件向量空间的基和维
如果只有当$k_1 = k_2 = ldots = k_s = 0$时,才有$k_1alpha_1 + k_2alpha_2 + ldots + k_salpha_s = 0$,则称向量组$V$线性无关。
极大线性无关组
极大线性无关组的定 义:如果向量组$V$ 的一个部分组$V_1$ 满足
2. 向量组$V$中任意 一个向量都可以由 $V_1$线性表示。
特征值与特征向量的性质
不同特征值对应的特征向量线性无关;k重特征 值至多对应k个线性无关的特征向量。
3
特征值与特征向量的应用
在矩阵对角化、矩阵的幂运算、微分方程求解等 问题中,特征值与特征向量具有重要作用。
二次型化标准型及规范型
二次型的标准型
通过可逆线性变换,将二次型化为只含有平方项的二次型,称为二次型的标准型。
正交矩阵的性质
正交矩阵的行列式为±1;正交矩阵 的逆和转置都是正交矩阵;正交矩阵 保持向量的长度和夹角不变。
正交变换与正交矩阵的关系
正交变换在标准正交基下的矩阵表示 是正交矩阵;正交矩阵对应的线性变 换是正交变换。
06
向量空间的应用举例
线性方程组解的结构
线性方程组解的存在性
当系数矩阵的秩等于增广矩阵的秩时,线性方程组有解。
子空间的交与和
子空间的交
两个子空间的交集仍是一个子空 间,它包含同时属于两个子空间
的所有向量。
子空间的和
由两个子空间中所有向量线性组 合生成的向量空间,称为这两个
子空间的和。
性质
子空间的交与和都是子空间,但 两个子空间的和不一定等于它们
所在的向量空间的全部。
05
向量空间中的正交性
向量空间的基和维数
向量空间的基和维数 定义 设V 是向量空间,若 1,2,K ,r V , 且满足
1) 1,2 ,K ,r 线性无关; 2)V 中的每个向量都可由 1,2 ,K ,r 线性表示;
则向量组 1,2 ,K ,r 就称为向量空间V 的一个基,基中 所含向量的个数 r 称为向量空间的维数.
等价并且线性无关的向量组所含向量个数相同.
0 0
0 0
0 0 0
1
0 0
1,2,4 线性无关;
k11 k2 2 k33 k44 V, V中的每个向量都可由1,2,4 线性表示.
1,2,4 为V的一个基, V的维数是3.
线 性 代 数 11
总结 定义 设V 是向量空间,若 1,2,K ,r V , 且满足
1) 1,2 ,K ,r 线性无关; 2)V 中的每个向量都可由 1,2 ,K ,r 线性表示;
线性代数
向量空间的基和维数 定义 设V 是向量空间,若 1,2,K ,r V , 且满足
1) 1,2 ,K ,r 线性无关; 2) V 中的每个向量都可由 1,2 ,K ,r 线性表示;
则向量组 1,2 ,K ,r 就称为向量空间V 的一个基,基中 所含向量的个数 r 称为向量空间的维数.
等价并且线性无关的向量组所含向量个数相同.
V {0}维数为0.
线性代数
向量空间的基和维数
例 下述向量组是Rn 的一组基.
1
0
0
0
0
1
0
0
1
=
0
,
2
=
0
,
3
=
1
,L
,
n
=
0
M
M
M
向量空间的基与维数
例6
向 量
解析几何
线性代数
既有大小又有方向的量
有次序的实数组成的数组
几何形象: 可随意 平行移动的有向线段
代数形象: 向量的 坐 标 表 示 式
坐标系
四、向量与向量空间
空 间
解析几何
线性代数
点空间:点的集合
向量空间:向量的集合
坐标系
代数形象: 向量空 间 中 的 平 面
说明
2. 维向量的集合是一个向量空间,记作 .
1.集合 对于加法及乘数两种运算封闭指
一、向量空间的概念
定义1 设 为 维向量的集合,如果集合 非空, 且集合 对于加法及乘数两种运算封闭,那么就称 集合 为向量空间.
.
,
3
3
是一个向量空间
维向量的全体
R
例1
例2 判别下列集合是否为向量空间.
几何形象: 空间 直线、曲线、空间 平面或曲面
一 一 对 应
叫做 维向量空间.
时, 维向量没有直观的几何形象.
叫做 维向量空间 中的 维超平面.
确定飞机的状态,需 要以下6个参数:
飞机重心在空间的位置参数P(x,y,z)
机身的水平转角
机身的仰角
机翼的转角
所以,确定飞机的状态,需用6维向量
m
m
m
m
m
m
l
l
l
l
l
l
L
L
L
L
L
L
例5
定义2 设有向量空间 及 ,若向量空间 , 就说 是 的子空间.
实例
设 是由 维向量所组成的向量空间,
二、子空间
那末,向量组 就称为向量 的一个
向量空间的基与维数
向量空间的基与维数在线性代数中,向量空间是一个具有特定性质的数学结构,它由一组向量组成,并满足一些线性运算规则。
在向量空间中,我们经常讨论两个重要的概念,即基和维数。
一、基的定义和性质向量空间的基是指一组线性无关的向量,它们能够生成该向量空间中的所有向量。
具体而言,设V是一个向量空间,S={v1,v2,...,vn}为V 中的向量组,如果满足以下两个条件:1. 向量组S中的向量线性无关;2. 向量空间V中的每一个向量都可以由向量组S线性表示,则称S 为向量空间V的基。
基的性质包括:1. 基的向量个数是确定的。
如果两个基包含的向量个数不同,那么它们所在的向量空间也是不同的。
2. 基的向量组中的向量个数是向量空间的维数。
二、维数的定义和性质在向量空间中,维数是指该向量空间的基中所含向量的个数。
通常用符号dim(V)表示,其中V是一个向量空间。
维数的性质包括:1. 如果V是一个向量空间,那么V的两个基所含向量的个数相同。
也就是说,向量空间的维数是唯一确定的。
2. 一个向量空间的维数是非负整数。
3. 如果向量空间的维数是有限的,则称该向量空间为有限维向量空间。
否则,称该向量空间为无限维向量空间。
三、例子和应用1. 二维平面上的向量空间R^2,其基可以选择为{(1,0),(0,1)},其中(1,0)和(0,1)分别是R^2的两个标准单位向量。
因此,R^2的维数为2。
2. 三维空间中的向量空间R^3,其基可以选择为{(1,0,0),(0,1,0),(0,0,1)},其中(1,0,0)、(0,1,0)和(0,0,1)分别是R^3的三个标准单位向量。
因此,R^3的维数为3。
基和维数的概念不仅在线性代数中有着重要的应用,也在其他数学领域和物理学、工程学等各个领域得到广泛应用。
它们帮助我们更好地理解和描述向量空间的结构和性质,为解决实际问题提供了强有力的工具和方法。
总结起来,向量空间的基是一组线性无关的向量,它们能够生成该向量空间中的所有向量;维数是该向量空间基所含向量的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
例:V1 {(x1, x2 , x3 )T | x1 x2 x3 0}
对于向量的加法和数乘是否是R上的向量空间?
显然零向量在此集合,下证证明加法和数乘的封闭性
(x1, x2 , x3 )T , ( y1, y2 , y3 )T , V1, V1, k R
(x1 y1, x2 y2 , x3 y3 )T ,Q x1 x2 x3 0, y1 y2 y3 0,
r 为V的维数,并称 V 为 r 维向量空间。
5
注1:若将向量空间V看成无穷个向量组成的向
量组,其基就是其极大线性无关组,其维 数就是其秩。
注2:零空间 {}没有基பைடு நூலகம்规定其维数为0。
6
例如:对于Rn
(1) 基本单位向量组 1,2,K ,n 是一组基,称为标准 基。
(2) 1 = (1, 0, 0,…, 0), 2 = (1, 1, 0,…, 0), …, n = (1, 1,…, 1) 也是基。
向量空间、基和维数
1
一、向量空间概念
定义 设V是非空的n维向量的集合,如果 (1)V对加法运算具有封闭性,
即 , V , 有 V
(2) V对数乘运算具有封闭性,
即 R, V ,有 V
则称V是向量空间
2
特例:
1、 只有一个零向量所构成的向量空间 {}
称为零空间。
2、所有的n维向量全体构成一个最大的向
原因是什么?
7
三、向量在给定基下的坐标
定义4.2 设1, 2, …, n 是向量空间 V 的一组基,
任取 V, 都有
= x11 + x22 + … + xnn 且组合系数 x1, x2, …, xn 唯一,称为向量 在 基 1, 2, …, n 下的坐标,记为 (x1, x2, …, xn)
为什么唯一
x1 y1 (x2 y2 ) x3 y3 0, V1
k (kx1, kx2 , kx3 )T , kx1 kx2 kx3 k(x1 x2 x3 ) 0, k V1
4
二、向量空间的基与维数
定义 设V为向量空间,若存在1, 2, …, r V.
且满足:
(1) 1, 2, …, r 线性无关; (2) V 中任一向量都可以由1, 2, …, r 线性表示; 则称1, 2, …, r 为V的一组基底,简称基,
8
例如:在 R3 中,
= (2, -3, 1)T = 2ε1-3 ε2 + 1 ε3
注:1、基并不是唯一的 2、向量在不同基坐标也不同
9
例 求向量 (x1, x2 , xn ) 在如下基下的坐标 1 (1, 0,K 0),2 (1,1,K 0),K n (1,1,K 1)
10