【课堂设计】高二数学北师大版选修4-4课件2.2.2 圆的参数方程 椭圆的参数方程 双曲线的参数方程

合集下载

2.1 椭圆的参数方程 课件 (北师大选修4-4)

2.1 椭圆的参数方程 课件 (北师大选修4-4)

l:x-y+4=0的距离最小.
y
分析1: P( 8 8y 2 , y), 设
则d | 8 8y 2 y 4 | 2
O x
分析2:设P(2 2 cos, sin ),
则d | 2 2 cos sin 4 | 2
P
分析3:平移直线 l 至首次与椭圆相切,切点即为所求. 小结:借助椭圆的参数方程,可以将椭圆上的任意一
2
2
y A
B O M N
φ
x
a b x a cos (为参数) 椭圆的参数方程: y b sin
椭圆的参数方程中参数φ的几何意义: 是∠AOX=φ,不是∠MOX=φ.
圆的标准方程: x2+y2=r2
y
P θ
x r cos 圆的参数方程: (为参数) y r sin θ的几何意义是 ∠AOP=θ
x a cos y b sin 是椭圆的参
另外, 称为离心角,规定参数 的取值范围是 [0, 2 )
x a cos , x b cos , 焦点在X 轴 焦点在Y 轴 y b sin . y a sin .
知识归纳 x2 y2 椭圆的标准方程: 2 2 1
(3)
x 9
2
1 (4)
y 25
2
x 64
2

y 100
2
1
x 2cos 练习2:已知椭圆的参数方程为 ( 是 y sin
参数) ,则此椭圆的长轴长为( 4 ),短轴长为
( 2 ),焦点坐标是(( 3 , 0)),离心率是 (
3 2
)。
例2、如图,在椭圆x2+8y2=8上求一点P,使P到直线

高二数学北师大版选修4-4课件:第二章 参数方程 本章整合

高二数学北师大版选修4-4课件:第二章 参数方程 本章整合

参数方程
������ = 5cos������, ������ = 5sin������

π 2

������

π 2
表示的曲线是什么?
提示:先将参数方程化为普通方程再判断曲线的形状.
解:化为普通方程是 x2+y2=25,
∵-π2 ≤θ≤π2 , ∴0≤x≤5,-5≤y≤5.
∴表示以(0,0)为圆心,5 为半径的右半圆.
平行线,求所作两直线交点 P 的轨迹方程.
提示:借助于圆、椭圆的参数方程求解.
专题一
专题二
网络构建
专题归纳
解:设 A
2 2
cos������,
2 sin������
2
,B(5cos θ,4sin θ)(θ 为离心角),则所求轨迹的
������ = 5cos������, ①
参数方程为 ������ = 2 sin������②
������2 ������2
������2 - ������2
=
1(������
>
0,������
>
0)的双曲线参数方程为
������ = ������tan������,
������
=
������
1 (������为参数) cos������
代入消元法
参数方程与普通方程的互化 加减消元法
利用代数式三角函数中的恒等式消元参数
专题一
专题二
网络构建
专题归纳
专题二 参数方程的应用
1.在圆锥曲线中常涉及曲线上某点到另外一点的距离问题,利用参数方程可以转化到三角函数、二次函数 等问题来求解,利用三角函数的有界性及参数的范围得最大值或最小值.

2018年高中数学北师大版选修4-4课件: 圆,椭圆,双曲线的参数方程

2018年高中数学北师大版选修4-4课件: 圆,椭圆,双曲线的参数方程
������2 (1)椭圆 2 ������ ������2
2.椭圆的参数方程
【做一做 2-1】
������2 ������2 椭圆 + =1 的参数方程为 9 4
.
解析:根据题意,a=3,b=2, ������ = 3cos������, 所以参数方程为 (φ 为参数). ������ = 2sin������ ������ = 3cos������, 答案: (φ 为参数) ������ = 2sin������
.
M 目标导航
1 2 3
UBIAODAOHANG
Z 知识梳理
HISHISHULI
Z 重难聚焦
HONGNANJUJIAO
D 典例透析
IANLITOUXI
S 随堂演练
UITANGYANLIAN
3 .双曲线的参数方程 双曲线
������2 ������ 2
− 2 =1(a>0,b>0)的参数方程是
������
(1-������ )r 1+������ 2������������ 1+������
2 2 2
1.圆的参数方程
,
������ =
(k 为参数).
参数 k 的几何意义是直线 AP 的斜率.
M 目标导航
1 2 3
UBIAODAOHANG
Z 知识梳理
HISHISHULI
Z 重难聚焦
HONGNANJUJIAO
D 典例透析
IANLITOUXI
S 随堂演练
UITANGYANLIAN
������ = 2cos������, 【做一做 1-1】 直线 3x-4y-9=0 与圆 (θ 为参数)的位置关系 ������ = 2sin������ 是( ). A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 解析:由圆的参数方程知圆心坐标为(0,0),半径 r=2. 所以圆心到直线 3x-4y-9=0 的距离 d=

高二数学北师大版选修4-4课件:2.2.2 圆的参数方程 椭圆的参数方程 双曲线的参数方程

高二数学北师大版选修4-4课件:2.2.2 圆的参数方程 椭圆的参数方程 双曲线的参数方程

思维脉络
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
1
2
3
1.圆的参数方程
圆的普通方 程
圆的参数方程
参数的几何意义
x2+y2=r2
x = r������������������ y = r������������������
∵0<θ<43π
,
π 3
<θ+π3
<
5π 3
,-1≤cos
������ + π
3
∴0≤x<32.
<
1 2
,
故△ABC 的重心 G 的轨迹方程是圆(x-1)2+y2=1 中 0≤x<32的一段圆
弧.
探究一
探究二
探究三
首页
探究四
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
=2+sin 2α-cos 2α
=2+
2sin
2������− π
4
.
则当 α=kπ+38π(k∈Z)时,x2+2xy+3y2 取最大值为 2+ 2,当 α=kπ-π8(k∈
Z)时,x2+2xy+3y2 取最小值为 2- 2.
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE

2.2 圆的参数方程 课件 (北师大选修4-4)

2.2 圆的参数方程 课件 (北师大选修4-4)

观察2
圆 心 为 O1 ( a , b )、 半 径 为 r的 圆 可 以 看 作 由 圆 心 为 原 点 O 、 半 径 为 r的 圆 平 移 得 到 , 设 圆 O1上 任 意 一 点 P ( x , y ) 是 圆 O 上 的 点 P1 ( x1 , y1 ) 平 移 得 到 的 , 由平移公式,有 x x1 a y y1 b
y
例3、已知点P(x,y)是圆x2+y2- 6x- 4y+12=0上动 点,求(1) x2+y2 的最值,
(2)x+y的最值,
(3)P到直线x+y- 1=0的距离d的最值。
解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1, 用参数方程表示为 x 3 cos y 2 sin 由于点P在圆上,所以可设P(3+cosθ,2+sinθ) (1) x2+y2 = (3+cosθ)2+(2+sinθ)2
=14+4 sinθ +6cosθ=14+2
sin(θ +ψ). 13
(其中tan ψ =3/2)
∴ x2+y2 的最大值为14+2 13 ,最小值为14- 2 13 。 (2) x+y= 3+cosθ+ 2+sinθ=5+
2 sin(θ +
2
) 4 。

4 )

∴ x+y的最大值为5+ 2 ,最小值为5 3 cos 2 sin 1 2
2
一段抛物线; ( 3) x y 4 , 双曲线;

【课堂设计】高二数学北师大版选修4-4课件2.2.1 直线的参数方程

【课堂设计】高二数学北师大版选修4-4课件2.2.1 直线的参数方程

为参数)
做一做3
经过点Q(1,2),P(3,7)的直线的参数方程为( )
A.
������ = ������
2+3������ , 1+������ 1+7������ (λ = 1+������
为参数,λ≠-1)
B.
������ = ������
1+3������ , 1+������ 2+7������ (λ = 1+������ 1−3������ , 1+������ 2−7������ (λ 1+������
1+3������ , 1+������ 2+7������ (λ 1+������
������������ ,则直线 ������������
为参数,λ≠-1).
答案:B
探究一
探究二
探究三
探究一直线的参数方程与参数的几何意义
对于一般的参数方程 ,其中的参数可能不具有一定的几何意义 ,但是 直线参数方程中的参数有一定的几何意义.过定点 M0(x0,y0)、 倾斜角 ������ = ������0 + ������cos������, 为 α 的直线 l 的参数方程都可以写成 ������ = ������ + ������sin������ (t 为参数),其 0 中直线上的动点 M(x,y)到定点 M0 的距离等于参数 t 的绝对值.当点 M 在点 M0 的上方时,t>0;当点 M 在点 M0 的下方时,t<0;当点 M 与点 M0 重合时,t=0.很多与线段长度有关的问题,我们可以考虑应用直线 参数方程中 t 的几何意义去求解.
§2

高中数学 第二章 参数方程 2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程学案 北师大版选修44

2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程对应学生用书P24][自主学习]1.有向线段的数量如果P ,M 是l 上的两点,P 到M 的方向与直线的正方向一致,那么PM 取正值,否则取负值.我们称这个数值为有向线段2.直线参数方程的两种形式(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为:⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).其中M(x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M的位移,可以用有(2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1).其中M (x ,y )为直线上的任意一点,参数λ的几何意义是:动点M 量比QM MP.①当λ>0时,M 为内分点;②当λ<0且λ≠-1时,M 为外分点; ③当λ=0时,点M 与Q 重合.[合作探究]1.如何引入参数求过定点P (x 0,y 0)且与平面向量a =(a ,b )⎝⎛⎭⎪⎫或斜率为b a平行的直线的参数方程?提示:在直线l 上任取一点M (x ,y ),a,=(x -x 0,y -y 0),可得x -x 0a =y -y 0b ,设这个比值为t ,即:x -x 0a =y -y 0b=t ,则有:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t ∈R ).2.问题1中得到的参数方程中参数何时与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t ∈R )中参数t 具有相同的几何意义?提示:当a 2+b 2=1时.对应学生用书P24][例1] (1)写出直线l 的参数方程;(2)求直线l 与直线x -y +1=0的交点.[思路点拨] 本题考查如何根据已知条件确定直线的参数方程及运算求解能力,解答此题需要将条件代入⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α得到直线的参数方程,然后与x -y +1=0联立可求得交点.[精解详析] (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos 120°,y =4+t sin 120°(t 为参数),即⎩⎪⎨⎪⎧ x =3-12t ,y =4+32t (t 为参数).(2)把⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 代入x -y +1=0,得3-12t -4-32t +1=0,得t =0.把t =0代入⎩⎪⎨⎪⎧x =3-12t ,y =4+32t ,得两直线的交点为(3,4).1.已知直线经过的定点与其倾斜角,求参数方程利用⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).2.已知直线过两点,求参数方程利用⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy21+λλ为参数且λ≠-3.已知直线经过的定点与其方向向量a =(a ,b )(或斜率ba),则其参数方程可为:⎩⎪⎨⎪⎧x =x 0+ta ,y =y 0+tb(t 为参数).1.已知两点A (1,3),B (3,1)和直线l :y =x ,求过点A ,B 的直线的参数方程,并求它与直线l 的交点M 分AB 的比.解:设直线AB 与l 的交点M (x ,y ),且AMMB=λ,则直线AB 的参数方程为⎩⎪⎨⎪⎧x =1+3λ1+λ,y =3+λ1+λ(λ为参数且λ≠-1).①把①代入y =x 得1+3λ1+λ=3+λ1+λ,得λ=1,所以点M 分AB 的比为1∶1.[例2] 写出经过点M 0(-2,3),倾斜角为4的直线l 的参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.[思路点拨] 本题考查直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的应用,特别是参数几何意义的应用.解答此题需先求出直线上与点M 0相距为2的点对应的参数t ,然后代入参数方程求此点的坐标.[精解详析] 直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-2+t cos 3π4,y =3+t sin 3π4(t 为参数).①设直线l 上与已知点M 0相距为2的点为M 点,M 点对应的参数为t ,则|M 0M |=|t |=2, ∴t =±2.将t 的值代入①式:当t =2时,M 点在M 0点上方,其坐标为(-2-2,3+2); 当t =-2时,M 点在M 0点下方,其坐标为(-2+2,3-2).1.过定点P (x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),|t |P 与M 间的距离.2.过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (a ,b 为常数,t为参数).当a2+b 2=1时,|t |a 2+b 2≠1时,|t |的长度的1a 2+b 2.2.过点A (1,-5)的直线l 1的参数方程为⎩⎨⎧x =1+t ,y =-5+3t(t 为参数),它与方程为x-y -23=0的直线l 2相交于一点P ,求点A 与点P 之间的距离.解:将直线l 1的参数方程化为⎩⎪⎨⎪⎧x =1+12t ,y =-5+32t(t 为参数).⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1且32>0,令t ′=2t ,则将t ′代入上述方程得直线l 1的参数方程的标准式为⎩⎪⎨⎪⎧x =1+12t ′,y =-5+32t ′(t ′为参数).代入x -y -23=0得⎝ ⎛⎭⎪⎫1+12t ′-⎝ ⎛⎭⎪⎫-5+32t ′-23=0,解得t ′=43, ∴|AP |=|t ′|=4 3.[例3] 已知直线l 过点P (1,0),倾斜角为3,直线l 与椭圆3+y 2=1相交于A ,B 两点,设线段AB 的中点为M .(1)求P ,M 两点间的距离; (2)求线段AB 的长|AB |.[思路点拨] 本题考查直线的参数方程在解决直线与圆锥曲线相交中的中点、弦长等问题中的应用,解答此题需要求出直线的形如⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的方程,然后利用参数的几何意义求解.[精解详析] (1)∵直线l 过点P (1,0),倾斜角为π3,cos α=12,sin α=32.∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数).①∵直线l 和椭圆相交,将直线的参数方程代入椭圆方程 并整理得5t 2+2t -4=0,Δ=4+4×5×4>0.设这个二次方程的两个实根为t 1,t 2.由根与系数的关系得:t 1+t 2=-25,t 1t 2=-45,由M 为AB 的中点,根据t 的几何意义, 得|PM |=|t 1+t 22|=15. (2)|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=8425=2215.1.在解决直线与圆锥曲线相交关系的问题中,若涉及到线段中点、弦长、交点坐标等问题,利用直线参数方程中参数t 的几何意义求解,比利用直线l 的普通方程来解决更为方便.2.在求直线l 与曲线C :f (x ,y )=0的交点间的距离时,把直线l 的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α代入f (x ,y )=0,可以得到一个关于t 的方程f (x 0+t cos α,y 0+t sin α)=0.假设该方程的解为t 1,t 2,对应的直线l 与曲线C 的交点为A ,B ,那么由参数t 的几何意义可得|AB |=|t 1-t 2|.(1)弦AB 的长|AB |=|t 1-t 2|. (2)线段AB 的中点M 对应的参数t =t 1+t 22(解题时可以作为基本结论使用).3.(江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.本课时常考查直线参数方程的确定与应用,同时考查运算、转化及求解能力,高考、模拟常与极坐标方程及圆锥曲线的参数方程交汇命题.[考题印证](湖南高考)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.[命题立意] 本题主要考查对参数方程的理解、两直线的位置关系,以及平面直角坐标系下由两直线的位置关系确定参数值的方法.[自主尝试] 先把两直线的参数方程化成普通方程.直线l 1:x -2y -1=0,直线l 2:2x -ay -a =0.因为两直线平行,所以1×(-a )=-2×2,故a =4,经检验,符合题意.[答案] 4对应学生用书P26]一、选择题1.已知直线l 过点A (1,5),倾斜角为π3,P 是l t 为参数,则直线l 的参数方程是( )A.⎩⎪⎨⎪⎧ x =1+12t ,y =5-32tB.⎩⎪⎨⎪⎧ x =1-12t ,y =5+32tC.⎩⎪⎨⎪⎧x =1+12t ,y =5+32tD.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t解析:选D t t .则参数方程为⎩⎪⎨⎪⎧x =1+-t π3,y =5+-tπ3,即⎩⎪⎨⎪⎧x =1-12t ,y =5-32t .故选D.2.直线⎩⎪⎨⎪⎧x =3+t sin 20°,y =-t cos 20°(t 为参数)的倾斜角是( )A .20°B .70°C .110°D .160°解析:选C 法一:将原方程改写成⎩⎪⎨⎪⎧x -3=t sin 20°,-y =t cos 20°,消去t ,得y =tan 110°(x -3),所以直线的倾斜角为110°.法二:将原参数方程化为⎩⎪⎨⎪⎧x =3+-t ,y =-t ,令-t =t ′,则⎩⎪⎨⎪⎧x =3+t ′cos 110°,y =t ′sin 110°,所以直线的倾斜角为110°. 3.直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点P (-2,3)的距离等于2的点的坐标是( )A .(-4,5)B .(-3,4)C .(-3,4)或(-1,2)D .(-4,5)或(0,1)解析:选C 设直线上的点Q (-2-2t,3+2t )与点P (-2,3)的距离等于2, 即d =-2-2t +2++2t -2= 2.解得t =±22.当t =22时,⎩⎪⎨⎪⎧x =-2-2×22=-3,y =3+2×22=4,∴Q (-3,4).当t =-22时,⎩⎪⎨⎪⎧x =-2-2×⎝ ⎛⎭⎪⎫-22=-1,y =3+2×⎝ ⎛⎭⎪⎫-22=2,∴Q (-1,2).综上,符合题意的点的坐标为(-3,4)或(-1,2).4.直线l 经过点M 0(1,5),倾斜角为π3,且交直线x -y -2=0于点M ,则|MM 0|等于( )A.3+1 B .6(3+1) C .6+ 3D .63+1解析:选B 由题意可得直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =5+32t (t 为参数),代入直线方程x -y -2=0,得1+12t -⎝ ⎛⎭⎪⎫5+32t -2=0,解得t =-6(3+1).根据参数t 的几何意义可知|MM 0|=6(3+1). 二、填空题5.过P (-4,0),倾斜角为5π6的直线的参数方程为________. 解析:∵直线l 通过P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎪⎨⎪⎧x =-4+t cos 5π6,y =0+t sin 5π6,即⎩⎪⎨⎪⎧ x =-4-32t ,y =t 2.答案:⎩⎪⎨⎪⎧x =-4-32t ,y =12t6.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t(t 为参数)与直线4x +ky =1垂直,则常数k =________. 解析:直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t的斜率为-32,∴-4k ×⎝ ⎛⎭⎪⎫-32=-1,k =-6.答案:-67.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin θ,y =-2+t cos θ(t 为参数),其中角θ的范围是⎝ ⎛⎭⎪⎫π2,π,则直线l 的倾斜角是________.解析:将原参数方程改写成⎩⎪⎨⎪⎧x -1=t sin θ,y +2=t cos θ,消去参数t ,得y +2=(x -1)tan ⎝ ⎛⎭⎪⎫3π2-θ,由θ∈⎝ ⎛⎭⎪⎫π2,π和倾斜角的范围可知直线l 的倾斜角为3π2-θ. 答案:3π2-θ8.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=1有两个交点A ,B ,若点P 的坐标为(2,-1),则|PA |·|PB |=________.解析:把直线的参数方程代入圆的方程,得⎝ ⎛⎭⎪⎫2-12t 2+⎝⎛⎭⎪⎫-1+12t 2=1, 即t 2-6t +8=0,解得t 1=2,t 2=4,∴A (1,0),B (0,1).∴|PA |=12+12=2,|PB |=22+22=2 2.∴|PA |·|PB |=2×22=4.答案:4三、解答题9.已知P 为半圆C :x 2+y 2=1(0≤y ≤1)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3. (1)以O 为极点,x 轴的正半轴为极轴建立坐标系,求点M 的极坐标;(2)求直线AM 的参数方程.解:(1)由已知,M 点的极角为π3,且M 点的极径等于π3, 故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)M 点的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎪⎨⎪⎧ x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t (t 为参数). 10.已知直线l 经过点P (1,1),倾斜角α=π6. (1)写出直线l 的参数方程; (2)设l 与圆x 2+y 2=4相交于点A 和点B ,求点P 到A ,B 两点的距离之积. 解:(1)因为直线l 过P (1,1),且倾斜角α=π6,所以直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+32t ,y =1+12t (t 为参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数分别为t 1,t 2.将直线l 的参数方程代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫1+32t 2+⎝⎛⎭⎪⎫1+12t 2=4, 整理,得t 2+(3+1)t -2=0.因为t 1,t 2是方程t 2+(3+1)t -2=0的根,所以t 1t 2=-2.故|PA |·|PB |=|t 1t 2|=2.所以点P 到A ,B 两点的距离之积为2. 11.已知圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1,F 2是圆锥曲线的左、右焦点. (1)求经过点F 1垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.解:(1)圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ化为普通方程是x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =0-31-0=-3,于是经过点F 1垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧ x =-1+t cos30°,y =0+t sin30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t (t 为参数). (2)法一:直线AF 2的斜率k =0-31-0=-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则根据正弦定理得ρsin60°=1-θ, 即ρsin(120°-θ)=sin60°, 即ρsin θ+3ρcos θ= 3. 法二:直线AF 2的直角坐标方程是y =-3(x -1),将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入得直线AF 2的极坐标方程:ρsin θ=-3ρcos θ+3,即ρsin θ+3ρcos θ= 3.。

21椭圆的参数方程课件(北师大选修4-4)

求矩形ABCD的最大面积。
Y y D
解 : 设 A 1 0 c o s, 8 s i n
A D 2 0co s, A B 1 6sin S 2 01 6sinco s 1 6 0sin2
A1
B2
A
F1
C
O B1
B
F2
X A2 X
所 以 , 矩 形 A B C D 最 大 面 积 为 1 6 0
y A
B O M N
φ
x
是∠AOX=φ,不是∠MOX=φ.
圆的标准方程: x2+y2=r2
y
P θ
x rcos ( 为参数 ) 圆的参数方程: y rsin θ的几何意义是 ∠AOP=θ
O
A x
【练习1】把下列普通方程化为参数方程.
2 x y y 2 1 x 1 (2) (1) 4 9 16 x 2cos x co s ( 1 ) (2 ) y 3sin y 4sin
y x 练习3:已知A,B两点是椭圆 9 4 与坐标轴正半轴的两个交点,在第一象限的椭 圆弧上求一点P,使四边形OAPB的面积最大.
解 :椭 圆 参 数 方 程 设 点 P ( 3 c o s , 2 s i n ) SA 面 积 一 定 ,需 求 SA 最 大 即 可 B C B P 即 求 点 P 到 线 AB的 距 离 最 大 值
x2 y2 1上变化 ,求2x+3y的最 1、动点P(x,y)在曲线 9 4 大值和最小值 最大 6值 2 ,最 小 6 值 2 . 2、θ取一切实数时,连接A(4sinθ,6cosθ)和B(-4cosθ,
6sinθ)两点的线段的中点轨迹是 B .
练习4

高中数学(北师大版)选修4-4 同步教学课件+练习+作业:第二讲 参数方程 2.2

(1)求曲线 C1 的普通方程; (2)若点 M 在曲线 C1 上运动,试求出 M 到曲线 C 的距离的取值范围.
数学 选修4-4
返回导航
第二讲 参数方程
解析:(1)由 C1 的参数方程yx==21s+in3αcos α,
得x-3 1=cos α, 2y=sin α,
平方消去 α 得曲
即 5sin 2φ-2sin φ-3=0.
数学 选修4-4
返回导航
第二讲 参数方程
解得 sin φ=1 或 sin φ=-35. sin φ=1 时,cos φ=0(舍去). sin φ=-35时,cos φ=±45. ∴P 的坐标为54,-34或-54,34.
数学 选修4-4
x=2pt (4)抛物线x2=-2py(p>0)的参数方程为____y_=__-__2_p_t2(t为参数),t∈(-∞,+∞).
数学 选修4-4
返回导航
第二讲 参数方程
课堂深度拓展
考点一 椭圆参数方程的应用
【例题 1】 已知 A,B 分别是椭圆3x62 +y92=1 右顶点和上顶点,动点 C 在该椭圆 上运动,求△ABC 的重心 G 的轨迹的普通方程.
第二讲 参数方程
【变式 2】 在双曲线 x2-y2=1 上求一点 P,使 P 到直线 y=x 的距离为 2.
解析:设
P
的坐标为co1s
φ,tan
φ,

由 P 到直线 x-y=0 的距离为
1 2得cos
φ-tan 2

φ =
2
即co1s φ-csoins φφ=2,|1-sin φ|=2|cos φ| 平方得 1-2sin φ+sin 2φ=4(1-sin 2φ),

2.1 椭圆的参数方程 课件 (北师大选修4-4)


2
2
A
B O N
M
设∠XOA=φ
x
例1、如下图,以原点为圆心,分别以a,b(a>b>0) 为半径作两个圆,点B是大圆半径OA与小圆的交点,过 点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M, 求当半径OA绕点O旋转时点M的轨迹参数方程. y 解: 设∠XOA=φ, M(x, y), 则 A A: (acosφ, a sinφ), B B: (bcosφ, bsinφ), M
O
A x
【练习1】把下列普通方程化为参数方程.
2 x y y 2 1 (2) x 1 (1) 4 9 16 x 2 cos x cos (1) (2) y 3sin y 4sin
2
2


把下列参数方程化为普通方程 x 3cos x 8cos (3) (4) y 10sin y 5sin
A1
B2
A
F1
C
O B1
B
Hale Waihona Puke F2X A2 X所以, 矩形ABCD最大面积为 160
y x 练习3:已知A,B两点是椭圆 9 4 与坐标轴正半轴的两个交点,在第一象限的椭 圆弧上求一点P,使四边形OAPB的面积最大.
解 : 椭圆参数方程 设点P(3cos ,2sin ) SABC 面积一定, 需求 SABP 最大即可 即求点P到线AB的距离最大值
y A
B O M N
φ
x
a b x a cos (为参数) 椭圆的参数方程: y b sin
椭圆的参数方程中参数φ的几何意义: 是∠AOX=φ,不是∠MOX=φ.
圆的标准方程: x2+y2=r2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 +4 5
∴直线与圆相交.
点(0,0)不在直线 3x-4y-9=0 上,故直线与圆相交但不过圆心. 答案:D
1
2
3
2.椭圆的参数方程
������2 (1)椭圆 2 ������
+
������ 2 =1(a>b>0)的参数方程是 ������ 2
������ = ������cos������, ������ = ������sin������ (φ 为参数).参数
1 1
(a 为参数),则该曲线是
探究一
探究二
探究三
探究四
探究一圆的参数方程的应用
1.圆的参数方程是三角形式,这有利于进行三角代换,运用三角知识解决解析几何 中的范围、最值问题,使复杂的计算变得十分简洁.
2.当动点的轨迹由圆上的点来决定时,可借助于圆的参数方程表示出这一点的
坐标,从而建立动点与该点的联系,求得动点的参数方程.
=sin ������ + 3 ,
π
∴0≤x<2.
2 2
3
故△ABC 的重心 G 的轨迹方程是圆(x-1) +y =1 中 0≤x<2的一段圆 弧.
3
探究一
探究二
探究三
探究四
点评
利用圆的参数方程求动点的轨迹方程是常见的题型,是圆的参数方程的主要作 用.
探究一
探究二
典型例题1
点 A(3,0) 是圆 x2+y2=9 上的一个定点 ,在圆上另取两点 B,C,使∠ π BAC= 3 ,求△ ABC 的重心的轨迹.
思路分析:利用圆的参数方程设点.
探究一
探究二
探究三
探究四
解:不妨设 B(3cos θ,3sin θ), C 3cos ������ +
2π 3
,3sin ������ +
2π 3
,0<θ< 3 .

设重心为 G(x,y), 1 2π 则 x=3 3 + 3cos������ + 3cos ������ + 3 =1+cos ������ +
1 π 3
,
2π 3y=3 0 +3sin������ + 3sin ������ +
消去 θ 得(x-1)2+y2=1. 4π π π 5π π 1 ∵0<θ< 3 , 3 <θ+3 < 3 ,-1≤cos ������ + 3 < 2 ,
������ = ������cos������, ������ = ������ + ������cos������, (θ 为参数)和方程 (θ 为参数)若要表示一个完 ������ = ������sin������ ������ = ������ + ������sin������ 整的圆,θ 至少应满足 θ∈[ α,β],β-α≥2π. (3)方程
1
2
3
做一做1
������ = 2cos������, 直线 3x-4y-9=0 与圆 (θ 为参数)的位置关系是( ) ������ = 2sin������ A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 解析 : 将圆的参数方程 化为普通方程为 x2+y2=4, 则圆心到直线 |−9| 9 3x-4y-9=0 的距离 d= 2 2 = <2,
φ 的几何意义是以原点为圆心,a 为半径所作圆上一点和椭圆中心的 连线与 x 轴正半轴的夹角. (2) 中 心 在 点 C(x0,y0), 长 轴 平 行 于 x 轴 的 椭 圆 的 参 数 方 程 是 ������ = ������0 + ������cos������, ������ = ������0 + ������sin������ (φ 为参数).参数 φ 的几何意义是以 C 为圆心,a 为半 径所作圆上一点 P 和椭圆中心 C 的连线 CP 与 x 轴正半轴的夹角.
1
2
3
做一做2
������ = 3 2cos������, 椭圆 (φ 为参数)的焦距是 ������ = 2 3sin������ 解析:根据参数方程,可知 a=3 2,b=2 3.
.
∴c= (3 2 )2 −(2 3 )2 = 18−12 = 6, ∴焦距为 2c=2 6.
答案:2 6
1
2
3
1
2
3
温馨提示
关于圆的参数方程说明以下几点:
(1)由于选取的参数不同,圆有不同的参数方程.有些参数方程不能直接看出是否 表示圆,这时可考虑通过消去参数转化为普通方程(对于其他曲线必要时也可类似 考虑). (2)一般地,同一条曲线可以选取不同的变数为参数,因此得到的参数方程也可以 有不同的形式.形式不同的参数方程,它们表示的曲线却可以是相同的.在建立曲线 的参数方程时,要注明参数及参数的取值范围.
2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程
学习目标 1.能依据圆锥曲线的几何性质,选择适当的 参数,写出它们的参数方程. 2.能利用圆锥曲线的参数方程来解决简单的实际 问题.
思维脉络
1
2
3
1.圆的参数方程 圆的普通方 圆的参数方程 参数的几何意义 程 x = r������������������ α, y = r������������������ α OP 与 x 轴正方向的夹角为 α(O 为坐标原点,P 为圆 x2+y2=r2 上任意一点) (α 为参数) x = a + r������������������ α, OP 与 x 轴正方向的夹角为 α(P 为圆上任意一点,O (x-a)2+ y = b + r ������ ������ ������ α (y-b)2=r2 为圆心) (α 为参数) (1-k2 )r x= , 1 + k2 A(-r,0),P 为圆上任意不同于 A 的一点,k 是直线 AP x2+y2=r2 2kr 的斜率 y= 2 1+ k (k 为参数)
3.双曲线的参数方程 双曲线������ 2 − ������ 2 =1(a>0,b>0)的参数方程是
������2 ������ 2
������ = cos ������ , ������ = ������tan������
1 1
������
(φ 为参数).
做一做 3
已知某条曲线的参数方程为 ( ) A.线段 B.圆 C.双曲线 D.圆的一部分 答案:C ������ = 2 ������ + ������ , ������ = 2 ������− ������
相关文档
最新文档