第二宇宙速度计算公式

合集下载

地月转移轨道的速度和第二宇宙速度

地月转移轨道的速度和第二宇宙速度

地月转移轨道的速度和第二宇宙速度在宇宙学中,地月转移轨道的速度和第二宇宙速度是两个非常重要的概念。

地月转移轨道是指地球绕月球公转的轨道,而第二宇宙速度则是指一个物体需要达到的速度才能克服引力束缚,进入无限远空间。

本文将详细探讨这两个概念的内涵和意义。

我们来了解一下地月转移轨道的速度。

地月转移轨道是一个椭圆形的轨道,其长轴和短轴分别为357.91万公里和347.56万公里。

在这个轨道上,地球绕月球公转一周所需的时间约为27.3天。

这个速度对于我们来说可能很难想象,但对于宇宙中的其他天体来说,这是一个非常合适的速度。

因为这个速度可以让地球与月球保持稳定的距离,避免了两者之间的相互碰撞。

这个速度也使得地球能够在适当的距离上受到太阳的光照,从而维持适宜的温度。

接下来,我们来探讨一下第二宇宙速度。

第二宇宙速度是指一个物体需要达到的速度才能克服引力束缚,进入无限远空间。

这个速度是一个理论值,通常用公式v=√(2GM/R)来计算,其中G是引力常数,M是地球的质量,R是地球的半径。

根据这个公式,我们可以得到第二宇宙速度大约为11.2公里/秒。

这个速度虽然看起来不高,但对于一个物体来说,要达到这个速度并不容易。

因为在地球附近的引力作用下,物体需要克服很大的阻力才能达到这个速度。

而且,即使物体达到了第二宇宙速度,它仍然会受到太阳和其他恒星的引力影响,因此要想真正进入无限远空间,还需要克服这些引力的影响。

地月转移轨道的速度和第二宇宙速度是宇宙学中非常重要的概念。

地月转移轨道保证了地球与月球之间的稳定关系,而第二宇宙速度则揭示了物体在宇宙中的运动规律。

虽然这两个概念看似简单,但它们背后的物理学原理却非常复杂。

通过对这些概念的研究,我们可以更好地了解宇宙的本质和演化过程。

三种宇宙速度

三种宇宙速度
供其做圆周运动所需的向心力。 v=7.9km/s这就是人造卫星在地面附近绕地球做匀速圆 周运动所必须具有的速度,叫做第一宇宙速度。
三种宇宙速度
第二宇宙速度: 当抛出物体的速度继续增大,地球引力将不足以为其做圆 周运动提供向心力,物体将会脱离地球引力,离开地球。 这个速度为v=11.2km/s。我们把v=11.2km/s叫做第二 宇宙速度。如果发射速度大于第一宇宙速度,而小于第二 宇宙速度,它绕地球运行的轨迹就不是圆,而是椭圆。
知识点——三种宇宙速度
三种宇宙速度
【定义】
第一宇宙速度: 从地球上最高的山峰上将物体水平抛出,速度越大,落地 点就越远。如果抛出的速度足够大,物体就不在落回地面 ,它将绕地球运动,成为一颗人造地球卫星。物体最终绕 地球表面做匀速圆周运动,地球质量为5.89×1024Kg,半
径为R=6.37×106m,G=6.67×10-11N·m2/Kg2 。引力提
三种宇宙速度
【解ห้องสมุดไป่ตู้】
由题中已知条件:5.76×104 km/h=16 km/s以及第一 宇宙速度是7.9 km/s,第二宇宙速度是11.2 km/s,第 三宇宙速度是16.7 km/s,可以判断A、B、D正确。
【答案】ABD
三种宇宙速度
第三宇宙速度: 物体脱离地球引力的束缚后,还会受到太阳引力的束缚。若 抛出的速度足够大,物体还将脱离太阳引力的束缚,飞向太 阳系之外的宇宙空间。这个速度v=16.7vkm/s。这个速度 叫做第三宇宙速度。
三种宇宙速度
【经典例题】
美国“新地平线”号探测器,已于美国东部时间2006年1 月17日13时(北京时间18日1时)借助“宇宙神—5”火 箭,从佛罗里达州卡纳维拉尔角肯尼迪航天中心发射升空 ,开始长达九年的飞向冥王星的太空之旅.拥有3级发动机 的“宇宙神—5”重型火箭将以每小时5.76万千米的惊人 速度把“新地平线”号送离地球,这个冥王星探测器因此 将成为人类有史以来发射的速度最高的飞行器,这一速度 …( ) A、大于第一宇宙速度 B、大于第二宇宙速度 C、大于第三宇宙速度 D、小于并接近第三宇宙速度

2021学年高考物理一轮复习核心考点专题15人造卫星宇宙速度含解析

2021学年高考物理一轮复习核心考点专题15人造卫星宇宙速度含解析

核心考点专题15 人造卫星 宇宙速度知识一 近地卫星和同步卫星1.卫星运动的轨道平面一定通过地球的球心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.卫星轨道平面必须过地心卫星做圆周运动的向心力由万有引力提供,而万有引力指向地心,所以卫星的轨道平面必须经过地心.2.近地卫星:轨道在地球表面附近的卫星,其轨道半径r =R (地球半径),运行速度等于第一宇宙速度v =7.9_km/s.3.同步卫星(1)轨道平面与赤道平面共面.(2)周期与地球自转周期相等,T =24 h.(3)高度固定不变,h =3.6×107m.(4)运行速率均为v =3.1×103 m/s.知识二 宇宙速度1.第一宇宙速度(1)第一宇宙速度是人造地球卫星在地面附近绕地球做匀速圆周运动时的速度.(2)第一宇宙速度是人造地球卫星稳定运行的最大环绕速度,也是人造地球卫星的最小发射速度.(3)第一宇宙速度的计算 ①由G Mm R 2=m v 2R 得v = GM R=7.9 km/s. ②由mg =m v 2R得v =gR =7.9 km/s. 2.第二宇宙速度:v 2=11.2_km/s ,使物体挣脱地球引力束缚永远离开地球的最小发射速度.3.第三宇宙速度:v 3=16.7_km/s ,使物体挣脱太阳引力束缚飞到太阳系外的最小发射速度.对点练习1. 关于人造地球卫星,下列说法正确的是(已知地球半径为6 400 km)( )A .运行的轨道半径越大,线速度也越大B .运行的速率可能等于8.3 km/sC .运行的轨道半径越大,周期也越大D .运行的周期可能等于80 min【答案】C【解析】由GMm r 2=mv 2r得v = GM r ,当r =R 地时v 有最大值,约为7.9 km/s ,A 、B 选项错误;由GMm r 2=m ⎝ ⎛⎭⎪⎫2πT 2r 得T =2π r 3GM ,C 选项正确;卫星运行的最小周期T min =2πR 地v max =2×3.14×6 4007.9s≈85 min,D 选项错误.2. 由于通信和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的( )A .质量可以不同B .轨道半径可以不同C .轨道平面可以不同D .速率可以不同 【答案】A【解析】同步卫星轨道只能在赤道平面内,高度一定,轨道半径一定,速率一定,但质量可以不同,故只有A 项正确.3. 星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16.不计其他星球的影响.则该星球的第二宇宙速度为( ) A.gr3 B.gr 6 C.gr 3 D.gr 【答案】A【解析】该星球的第一宇宙速度满足:G Mm r 2=m v 21r ,在该星球表面处万有引力等于重力:G Mm r 2=m g 6,由以上两式得v 1=gr6,则第二宇宙速度v 2=2×gr6=gr3,故A 正确.4. (多选)假如做圆周运动的人造地球卫星的轨道半径增加到原来的2倍,仍做圆周运动,则( )A .根据公式v =ωr 可知卫星运动的线速度将增大到原来的2倍B .根据公式F =mv 2r 可知卫星所需的向心力将减小到原来的12C .根据公式F =G Mm r 2可知地球提供的向心力将减小到原来的14D .根据上述B 和C 中给出的公式可知,卫星运行的线速度将减小到原来的22【答案】CD【解析】由于ω= GM r 3,故当r 增加到原来的2倍时,ω将改变,所以不能用公式v =ωr 来判断卫星线速度的变化,选项A 错误;人造地球卫星绕地球做匀速圆周运动的向心力由地球对卫星的万有引力提供,有F =G Mm r 2=mv 2r ,得v = GM r,则离地球越远的卫星运行速度越小,当半径增加到原来的2倍时,引力变为原来的14,线速度变为原来的22,选项B 错误,C 、D 正确. 5. 宇宙飞船和空间站在同一轨道上运动,若飞船想与前方的空间站对接,飞船为了追上空间站,可采取的方法是( )A .飞船加速直到追上空间站,完成对接B .飞船从原轨道减速至一个较低轨道,再加速追上空间站完成对接C .飞船加速至一个较高轨道,再减速追上空间站,完成对接D .无论飞船采取何种措施,均不能与空间站对接【答案】B【解析】飞船在轨道上正常运行时,有G Mm r 2=m v 2r .当飞船直接加速时,所需向心力m v 2r 增大,则G Mm r 2<m v 2r,故飞船做离心运动,轨道半径增大,将导致不在同一轨道上,A 错误;飞船若先减速,它的轨道半径将减小,但运行速度增大,故在低轨道上飞船可接近空间站,当飞船运动到合适的位置再加速,回到原轨道,即可追上空间站,B 正确;若飞船先加速,它的轨道半径将增大,但运行速度减小,故而追不上空间站,C 错误.6. 万有引力的发现实现了物理学史上第一次大统一:“地上物理学”和“天上物理学”的统一,它表明天体运动和地面上物体的运动遵从相同的规律。

第二宇宙速度的计算

第二宇宙速度的计算

关于第二宇宙速度的计算一、第二宇宙速度定义第二宇宙速度(也称为逃逸速度)是一个航天器或卫星需要达到的最小速度,以便完全逃离地球引力的束缚,进入宇宙空间。

这个速度使得物体能够摆脱地球的引力,进入太阳系的其他部分或更远的宇宙。

二、第二宇宙速度的计算公式第二宇宙速度(V₂)的计算公式为:V₂ = √(2gR)其中:•V₂是第二宇宙速度•g 是地球表面的重力加速度,约为 9.81 m/s²•R 是地球的半径,约为 6371 km将上述数值代入公式,我们可以得到:V₂≈√(2 × 9.81 × 6371000) ≈ 11.2 km/s这意味着,为了逃离地球,一个物体需要以大约11.2公里每秒的速度飞行。

三、第二宇宙速度的意义第二宇宙速度在航天学中具有重要意义。

它决定了发射卫星或进行深空探测所需的最小能量。

如果一个航天器的速度低于第二宇宙速度,它将无法逃离地球引力并最终返回地球。

四、影响第二宇宙速度的因素1.地球质量:地球的质量越大,其引力越强,因此需要的逃逸速度也越大。

2.地球半径:地球的半径越大,物体需要克服的引力距离越长,因此逃逸速度也越大。

3.重力加速度:重力加速度越大,地球对物体的引力作用越强,因此逃逸速度也越大。

五、实际应用在实际应用中,火箭和航天器必须以足够的速度才能逃离地球。

例如,阿波罗任务中的土星五号火箭就需要达到第二宇宙速度,以便将宇航员送到月球。

六、研究展望随着航天技术的不断发展,对第二宇宙速度的研究也在不断深入。

未来的研究可能包括如何更有效地达到或超过第二宇宙速度,以及如何利用这一速度进行更远的太空探索。

物理-人造卫星宇宙速度

物理-人造卫星宇宙速度

人造卫星 宇宙速度物理考点 1.会比较卫星运动的各物理量之间的关系.2.理解三种宇宙速度,并会求解第一宇宙速度的大小.3.会分析天体的“追及”问题.考点一 卫星运行参量的分析基础回扣1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.2.基本公式:(1)线速度:G =m ⇒v =Mmr 2v 2r GM r (2)角速度:G =mω2r ⇒ω=Mmr 2GMr 3(3)周期:G =m 2r ⇒T =2πMmr 2(2πT )r 3GM(4)向心加速度:G =ma ⇒a =Mmr 2GMr 2结论:r 越大,v 、ω、a 越小,T 越大.技巧点拨1.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .2.近地卫星和同步卫星卫星运动的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.(1)近地卫星:轨道在地球表面附近的卫星,其轨道半径r =R (地球半径),运行速度等于第一宇宙速度v =7.9 km/s(人造地球卫星的最大运行速度),T =85 min(人造地球卫星的最小周期).(2)同步卫星①轨道平面与赤道平面共面.②周期与地球自转周期相等,T =24 h.③高度固定不变,h =3.6×107 m.④运行速率均为v =3.1×103 m/s. 卫星运行参量与轨道半径的关系例1 (2020·浙江7月选考·7)火星探测任务“天问一号”的标识如图1所示.若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )图1A .轨道周长之比为2∶3B .线速度大小之比为∶32C .角速度大小之比为2∶323D .向心加速度大小之比为9∶4答案 C解析 轨道周长C =2πr ,与半径成正比,故轨道周长之比为3∶2,故A 错误;根据万有引力提供向心力有=m ,得v =,得==,故B 错误;由万有引力提供GMmr 2v 2r GMr v 火v 地r 地r 火23向心力有=mω2r ,得ω=,得==,故C 正确;由=ma ,得GMm r 2GMr 3ω火ω地r 地3r 火32233GMmr 2a =,得==,故D 错误.GMr 2a 火a 地r 地2r 火249 同步卫星、近地卫星及赤道上物体的比较例2 (2019·青海西宁市三校联考)如图2所示,a 为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b 为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c 为地球的同步卫星.下列关于a 、b 、c 的说法中正确的是( )图2A .b 卫星转动线速度大于7.9 km/sB .a 、b 、c 做匀速圆周运动的向心加速度大小关系为a a >a b >a cC .a 、b 、c 做匀速圆周运动的周期关系为T a =T c <T bD .在b 、c 中,b 的线速度大答案 D解析 b 为沿地球表面附近做匀速圆周运动的人造卫星,根据万有引力定律有G =m ,MmR 2v 2R 解得v =,又=mg ,可得v =,与第一宇宙速度大小相同,即v =7.9 km/s ,故GMR GMmR 2gR A 错误;地球赤道上的物体与同步卫星具有相同的角速度,所以ωa =ωc ,根据a =rω2知,c 的向心加速度大于a 的向心加速度,根据a =得b 的向心加速度大于c 的向心加速度,GMr 2即a b >a c >a a ,故B 错误;卫星c 为地球同步卫星,所以T a =T c ,根据T =2π得c 的周r 3GM 期大于b 的周期,即T a =T c >T b ,故C 错误;在b 、c中,根据v =,可知b 的线速度GMr 比c 的线速度大,故D 正确.1.(卫星运行参量的比较)(2020·浙江1月选考·9)如图3所示,卫星a 、b 、c 沿圆形轨道绕地球运行.a 是极地轨道卫星,在地球两极上空约1 000 km 处运行;b 是低轨道卫星,距地球表面高度与a 相等;c 是地球同步卫星,则( )图3A .a 、b 的周期比c 大B .a 、b 的向心力一定相等C .a 、b 的速度大小相等D .a 、b 的向心加速度比c 小答案 C解析 根据万有引力提供向心力有=m =mω2r =m r =ma ,可知v =,ω=GMmr 2v 2r 4π2T 2GM r,T =,a =,由此可知,半径越大,线速度、角速度、向心加速度越小,周GM r 32πr 3GM GMr 2期越长,因为a 、b 卫星的半径相等,且比c 小,因此a 、b 卫星的线速度大小相等,向心加速度比c 大,周期小于卫星c 的周期,选项C 正确,A 、D 错误;由于不知道三颗卫星的质量关系,因此不清楚向心力的关系,选项B 错误.2.(同步卫星)关于我国发射的“亚洲一号”地球同步通信卫星的说法,正确的是( )A .若其质量加倍,则轨道半径也要加倍B .它在北京上空运行,故可用于我国的电视广播C .它以第一宇宙速度运行D .它运行的角速度与地球自转角速度相同答案 D解析 由G =m 得r =,可知轨道半径与卫星质量无关,A 错误;同步卫星的轨道Mmr 2v 2r GMv 2平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B 错误;第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C 错误;所谓“同步”就是卫星保持与赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D 正确.3.(卫星运动分析)(2016·全国卷Ⅰ·17)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 h C .8 h D .16 h 答案 B解析 地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由开普勒第三定律=k 可知卫星离地球的高度应变小,要实现三颗卫星覆盖全球的目的,则卫r 3T 2星周期最小时,由数学几何关系可作出卫星间的位置关系如图所示.卫星的轨道半径为r ==2R Rsin 30°由=得r 13T 12r 23T 22=(6.6R )3242(2R )3T 22解得T 2≈4 h .考点二 宇宙速度的理解和计算基础回扣第一宇宙速度(环绕速度)v 1=7.9 km/s ,是物体在地面附近绕地球做匀速圆周运动的最大环绕速度,也是人造地球卫星的最小发射速度第二宇宙速度(脱离速度)v 2=11.2 km/s ,是物体挣脱地球引力束缚的最小发射速度第三宇宙速度(逃逸速度)v 3=16.7 km/s ,是物体挣脱太阳引力束缚的最小发射速度技巧点拨1.第一宇宙速度的推导方法一:由G =m ,得v 1== m/s ≈7.9×103MmR 2v 12R GMR 6.67×10-11×5.98×10246.4×106m/s.方法二:由mg =m 得v 1== m/s ≈7.9×103 m/s.v 12R gR 9.8×6.4×106第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2π=5 078 s ≈85 min.Rg 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动.(2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例3 (2020·北京卷·5)我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度答案 A解析 火星探测器需要脱离地球的束缚,故其发射速度应大于地球的第二宇宙速度,故A正确,B 错误;由G =m 得,v 火===v 地,故火星的第一宇宙速MmR 2v 2R GM 火R 火0.1M 地G0.5R 地55度小于地球的第一宇宙速度,故C 错误;由=mg 得,g 火=G =G =0.4gGMmR 2M 火R 火20.1M 地(0.5R 地)2地,故火星表面的重力加速度小于地球表面的重力加速度,故D 错误.4.(第一宇宙速度的计算)地球的近地卫星线速度大小约为8 km/s ,已知月球质量约为地球质量的,地球半径约为月球半径的4倍,下列说法正确的是( )181A .在月球上发射卫星的最小速度约为8 km/s B .月球卫星的环绕速度可能达到4 km/s C .月球的第一宇宙速度约为1.8 km/sD .“近月卫星”的速度比“近地卫星”的速度大答案 C解析 根据第一宇宙速度v =,月球与地球的第一宇宙速度之比为GMR ===,月球的第一宇宙速度约为v 2=v 1=×8 km/s ≈1.8 km/s ,在月球上v 2v 1M 2R 1M 1R 2481292929发射卫星的最小速度约为1.8 km/s ,月球卫星的环绕速度小于或等于1.8 km/s ,“近月卫星”的速度为1.8 km/s ,小于“近地卫星”的速度,故C 正确.5.(宇宙速度的理解和计算)宇航员在一行星上以速度v 0竖直上抛一质量为m 的物体,不计空气阻力,经2t 后落回手中,已知该星球半径为R .求:(1)该星球的第一宇宙速度的大小;(2)该星球的第二宇宙速度的大小.已知取无穷远处引力势能为零,物体距星球球心距离为r 时的引力势能E p =-G .(G 为万有引力常量)mMr 答案 (1) (2)v 0Rt 2v 0R t解析 (1)由题意可知星球表面重力加速度为g =v 0t由万有引力定律知mg =m v 12R解得v 1==.gR v 0Rt (2)由星球表面万有引力等于物体重力知=mgGMmR 2又E p =-G mMR解得E p =-m v 0Rt 由机械能守恒有m v 22-=012m v 0R t 解得v 2=.2v 0Rt 考点三 天体的“追及”问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA -ωB )t =2n π(n =1,2,3…).2.相距最远当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,两卫星运动关系应满足(ωA -ωB )t ′=(2n -1)π(n =1,2,3…).例4 当地球位于太阳和木星之间且三者几乎排成一条直线时,称之为“木星冲日”,2016年3月8日出现了一次“木星冲日”.已知木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍.则下列说法正确的是( )A .下一次的“木星冲日”时间肯定在2018年B .下一次的“木星冲日”时间肯定在2017年C .木星运行的加速度比地球的大D .木星运行的周期比地球的小答案 B解析 地球公转周期T 1=1年,由T =2π可知,土星公转周期T 2=T 1≈11.18r 3GM 125年.设经时间t ,再次出现“木星冲日”,则有ω1t -ω2t =2π,其中ω1=,ω2=,解得2πT 12πT 2t ≈1.1年,因此下一次“木星冲日”发生在2017年,故A 错误,B 正确;设太阳质量为M ,行星质量为m ,轨道半径为r ,周期为T ,加速度为a .对行星由牛顿第二定律可得G =ma =m r ,解得a =,T =2π,由于木星到太阳的距离大约是地球到太阳Mmr 24π2T 2GMr 2r 3GM 距离的5倍,因此,木星运行的加速度比地球的小,木星运行的周期比地球的大,故C 、D 错误.6.(天体的“追及”问题)(多选)(2020·山西太原市质检)如图4,在万有引力作用下,a 、b 两卫星在同一平面内绕某一行星c 沿逆时针方向做匀速圆周运动,已知轨道半径之比为r a ∶r b =1∶4,则下列说法中正确的有( )图4A .a 、b 运动的周期之比为T a ∶T b =1∶8B .a 、b 运动的周期之比为T a ∶T b =1∶4C .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线12次D .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线14次答案 AD解析 根据开普勒第三定律:半径的三次方与周期的二次方成正比,则a 、b 运动的周期之比为1∶8,A 对,B 错;设图示位置ac 连线与bc 连线的夹角为θ<,b 转动一周(圆心角为π22π)的时间为T b ,则a 、b 相距最远时:T b -T b =(π-θ)+n ·2π(n =0,1,2,3…),可知2πTa 2πTb n <6.75,n 可取7个值;a 、b 相距最近时:T b -T b =(2π-θ)+m ·2π(m =0,1,2,3…),可2πTa 2πTb 知m <6.25,m 可取7个值,故在b 转动一周的过程中,a 、b 、c 共线14次,C 错,D 对.课时精练1.(2020·天津卷·2)北斗问天,国之夙愿.如图1所示,我国北斗三号系统的收官之星是地球静止轨道卫星,其轨道半径约为地球半径的7倍.与近地轨道卫星相比,地球静止轨道卫星( )图1A.周期大B.线速度大C.角速度大D.加速度大答案 A解析 根据万有引力提供向心力有G=m()2r、G=m、G=mω2r、G=maMmr22πTMmr2v2rMmr2Mmr2可知T=2π、v=、ω=、a=,因为地球静止轨道卫星的轨道半径大于近r3GMGMrGMr3GMr2地轨道卫星的轨道半径,所以地球静止轨道卫星的周期大、线速度小、角速度小、向心加速度小,故选项A正确.2.(2020·四川泸州市质量检测)我国实施空间科学战略性先导科技专项计划,已经发射了“悟空”“墨子”“慧眼”等系列的科技研究卫星,2019年8月31日又成功发射一颗微重力技术实验卫星.若微重力技术实验卫星和地球同步卫星均绕地球做匀速圆周运动时,微重力技术实验卫星的轨道高度比地球同步卫星低,下列说法中正确的是( )A.该实验卫星的周期大于地球同步卫星的周期B.该实验卫星的向心加速度大于地球同步卫星的向心加速度C.该实验卫星的线速度小于地球同步卫星的线速度D.该实验卫星的角速度小于地球同步卫星的角速度答案 B解析 万有引力提供向心力,由G=m2r=m=mω2r=ma,解得:v=,T=2πMmr2(2πT)v2rGMr ,ω=,a=.实验卫星的轨道半径小于地球同步卫星的轨道半径,可知该实验r3GMGMr3GMr2卫星周期比地球同步卫星的小,向心加速度、线速度、角速度均比地球同步卫星的大,故选项B 正确,A 、C 、D 错误.3.(2019·天津卷·1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图2.已知月球的质量为M 、半径为R .探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )图2A .周期为B .动能为4π2r 3GM GMm2RC .角速度为D .向心加速度为Gmr 3GMR 2答案 A解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,由=mω2r =m =m r =ma ,解得ω=、v =、T =、a =,GMmr 2v 2r 4π2T 2GMr 3GMr 4π2r 3GM GMr 2则嫦娥四号探测器的动能为E k =m v 2=,由以上可知A 正确,B 、C 、D 错误.12GMm2r 4.(2019·北京卷·18)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星( )A .入轨后可以位于北京正上方B .入轨后的速度大于第一宇宙速度C .发射速度大于第二宇宙速度D .若发射到近地圆轨道所需能量较少答案 D解析 同步卫星只能位于赤道正上方,A 项错误;由=知,卫星的轨道半径越大,GMmr 2m v 2r 卫星做匀速圆周运动的线速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 项错误;同步卫星的发射速度大于第一宇宙速度,小于第二宇宙速度,C 项错误;若发射到近地圆轨道,所需发射速度较小,所需能量较少,D 正确.5.(多选)(2020·江苏卷·7改编)甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍.下列应用公式进行的推论正确的有( )A .由v =可知,甲的速度是乙的倍gr 2B .由a =ω2r 可知,甲的向心加速度是乙的2倍C .由F =G 可知,甲的向心力是乙的Mm r 214D .由=k 可知,甲的周期是乙的2倍r 3T 22答案 CD解析 人造卫星绕地球做圆周运动时有G =m ,即v =,因此甲的速度是乙的Mmr 2v 2r GMr 倍,故A 错误;由G =ma 得a =,故甲的向心加速度是乙的,故B 错误;由22Mmr 2GMr 214F =G 知甲的向心力是乙的,故C 正确;由开普勒第三定律=k ,绕同一天体运动,k Mmr 214r 3T 2值不变,可知甲的周期是乙的2倍,故D 正确.26.(2020·全国卷Ⅲ·16)“嫦娥四号”探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍.已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g .则“嫦娥四号”绕月球做圆周运动的速率为( )A. B. C. D.RKg QP RPKgQ RQgKP RPgQK答案 D解析 在地球表面有G =mg ,“嫦娥四号”绕月球做匀速圆周运动时有M 地mR 2G =m ′,根据已知条件有R =PR 月,M 地=QM 月,联立以上各式解得v =M 月m ′(KR 月)2v 2KR 月,故选D.RPgQK 7.如图3,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动.下列说法正确的是( )图3A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大答案 A8.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=v 1.已知某星球的半径为r ,它表面的重力加速度为地2球表面重力加速度g 的.不计其他星球的影响.则该星球的第二宇宙速度为( )16A. B.gr 3gr 6C. D.gr 3gr 答案 A解析 该星球的第一宇宙速度满足:G =m ,在该星球表面处万有引力等于重力:G Mmr 2v 12r =m ,由以上两式得v 1=,则第二宇宙速度v 2=×=,故A 正确.Mmr 2g6gr62gr6gr39.(2019·安徽宣城市第二次模拟)有a 、b 、c 、d 四颗地球卫星,卫星a 还未发射,在地球赤道上随地球表面一起转动,卫星b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图4,则有( )图4A .a 的向心加速度等于重力加速度gB .b 在相同时间内转过的弧长最长C .c 在4 h 内转过的圆心角是π6D .d 的运动周期有可能是20 h 答案 B解析 同步卫星的周期、角速度与地球自转周期、角速度相同,则知a 与c 的角速度相同,根据a =ω2r 知,c 的向心加速度大于a 的向心加速度.由G =mg ,解得:g =,卫星Mmr 2GMr 2的轨道半径越大,向心加速度越小,则c 的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,则a 的向心加速度小于重力加速度g ,故A 错误;由G =m ,解得:v =Mmr 2v 2r ,卫星的半径r 越大,速度v 越小,所以b 的速度最大,在相同时间内转过的弧长最长,GMr故B 正确;c 是地球同步卫星,周期是24 h ,则c 在4 h 内转过的圆心角是×4=,故C 2π24π3错误;由开普勒第三定律=k 可知:卫星的半径r 越大,周期T 越大,所以d 的运动周期r 3T 2大于c 的周期24 h ,即不可能是20 h ,故D 错误.10.(多选)(2019·贵州毕节市适应性监测(三))其实地月系统是双星模型,为了寻找航天器相对地球和月球不动的位置,科学家们作出了不懈努力.如图5所示,1767年欧拉推导出L 1、L 2、L 3三个位置,1772年拉格朗日又推导出L 4、L 5两个位置.现在科学家把L 1、L 2、L 3、L 4、L 5统称地月系中的拉格朗日点.中国“嫦娥四号”探测器成功登陆月球背面,并通过处于拉格朗日区的“嫦娥四号”中继卫星“鹊桥”把信息返回地球,引起众多师生对拉格朗日点的热议.下列说法正确的是( )图5A .在拉格朗日点航天器的受力不再遵循万有引力定律B .在不同的拉格朗日点航天器随地月系统运动的周期均相同C .“嫦娥四号”中继卫星“鹊桥”应选择L 1点开展工程任务实验D .“嫦娥四号”中继卫星“鹊桥”应选择L 2点开展工程任务实验答案 BD解析 在拉格朗日点的航天器仍然受万有引力,在地球和月球的万有引力作用下绕地月双星系统的中心做匀速圆周运动,A 错误;因在拉格朗日点的航天器相对地球和月球的位置不变,说明它们的角速度一样,因此周期也一样,B 正确;“嫦娥四号”探测器登陆的是月球的背面,“鹊桥”要把探测器在月球背面采集的信息传回地球,L 2在月球的背面,因此应选在L 2点开展工程任务实验,所以C 错误,D 正确.11.经长期观测发现,A 行星运行轨道的半径近似为R 0,周期为T 0,其实际运行的轨道与圆轨道存在一些偏离,且周期性地每隔t 0(t 0>T 0)发生一次最大的偏离,如图6所示,天文学家认为形成这种现象的原因可能是A 行星外侧还存在着一颗未知行星B ,已知行星B 与行星A 同向转动,则行星B 的运行轨道(可认为是圆轨道)半径近似为( )图6A .R =R 0B .R =R 03t 02(t 0-T 0)2t 0t 0-T 0C .R =R 0D .R =R 0t 03(t 0-T 0)3t 0t 0-T 0答案 A解析 A 行星运行的轨道发生最大偏离,一定是B 对A 的引力引起的,且B 行星在此时刻对A 有最大的引力,故此时A 、B 行星与恒星在同一直线上且位于恒星的同一侧,设B 行星的运行周期为T ,运行的轨道半径为R ,根据题意有t 0-t 0=2π,所以T =,由开2πT 02πT t 0T 0t 0-T 0普勒第三定律可得=,联立解得R =R 0,故A 正确,B 、C 、D 错误.R 03T 02R 3T 23t 02(t 0-T 0)212.(2019·河南郑州市第一次模拟)“玉兔号”月球车与月球表面的第一次接触实现了中国人“奔月”的伟大梦想.“玉兔号”月球车在月球表面做了一个自由下落实验,测得物体从静止自由下落h 高度的时间为t ,已知月球半径为R ,自转周期为T ,引力常量为G .求:(1)月球表面重力加速度的大小;(2)月球的质量和月球的第一宇宙速度的大小;(3)月球同步卫星离月球表面高度.答案 (1) (2) (3)-R2ht 22R 2hGt 22hRt 23T 2R 2h2π2t 2解析 (1)由自由落体运动规律有:h =gt 2,所以有:g =.122ht 2(2)月球的第一宇宙速度为近月卫星的运行速度,根据重力提供向心力mg =m ,v 12R 所以:v 1==gR 2hRt 2在月球表面的物体受到的重力等于万有引力,则有:mg =GMm R 2所以M =.2R 2hGt 2(3)月球同步卫星绕月球做匀速圆周运动,根据万有引力提供向心力有:=m (R +h ′)GMm(R +h ′)24π2T 2解得h ′=-R .3T 2R 2h2π2t 213.(多选)(2019·全国卷Ⅰ·21)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图7中实线所示.在另一星球N上用完全相同的弹簧,改用物体Q 完成同样的过程,其a -x 关系如图中虚线所示.假设两星球均为质量均匀分布的球体.已知星球M 的半径是星球N 的3倍,则( )图7A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍答案 AC解析 设物体P 、Q 的质量分别为m P 、m Q ;星球M 、N 的质量分别为M 1、M 2,半径分别为R 1、R 2,密度分别为ρ1、ρ2;M 、N 表面的重力加速度分别为g 1、g 2.在星球M 上,弹簧压缩量为0时有m P g 1=3m P a 0,所以g 1=3a 0=G ,密度ρ1==;在星球N 上,M 1R 12M 143πR 139a 04πGR 1弹簧压缩量为0时有m Q g 2=m Q a 0,所以g 2=a 0=G ,密度ρ2==;因为M 2R 22M 243πR 233a 04πGR 2R 1=3R 2,所以ρ1=ρ2,选项A 正确;当物体的加速度为0时有m P g 1=3m P a 0=kx 0,m Q g 2=m Q a 0=2kx 0,解得m Q =6m P ,选项B 错误;根据a -x 图线与x轴围成图形的面积和质量的乘积表示合外力做的功可知,E km P =m P a 0x 0,E km Q =m Q a 0x 0,所32以E km Q =4E km P ,选项C 正确;根据运动的对称性可知,Q 下落时弹簧的最大压缩量为4x 0,P 下落时弹簧的最大压缩量为2x 0,选项D 错误.。

一二三宇宙速度计算过程

一二三宇宙速度计算过程

一二三宇宙速度计算过程一二三宇宙速度计算过程宇宙速度是指物质从地球上跑出去的速度,由于宇宙速度非常大,在日常生活中很难感性理解,因此我们需要运用一定的数学知识来进行计算。

一、计算器材计算宇宙速度需要使用以下材料和数据:1. 望远镜:可以观察天体的电子设备2. 天文学表格或者软件:列出星球之间的距离和质量数据3. 速度计算器或在线计算器二、寻找起点和终点在计算宇宙速度之前,需要先寻找起点和终点。

这通常需要使用望远镜来观察天体,然后使用天文学表格或者软件来确定起点和终点之间的距离。

三、计算两点之间的距离确定了起点和终点的位置之后,需要计算它们之间的距离。

这一步需要使用天文学表格或者软件,输入两个星球之间的距离和质量。

四、计算总能量总能量是指物体在运动的过程中具有的能量,也称作动能。

计算总能量的公式为:总能量 = 1/2 x 质量 x 速度²。

五、计算一宇宙速度一宇宙速度是指物质从地球上跑出去的速度,通常被定义为299792.458 km每秒。

计算一宇宙速度的公式为:速度 = 1宇宙速度x n。

其中,n为数字,代表其它速度与一宇宙速度的比值。

六、计算宇宙速度计算宇宙速度的公式为:宇宙速度 = 总能量 / 质量。

将计算结果除以一宇宙速度,就可以得出宇宙速度。

七、总结通过以上步骤,我们就可以得出宇宙速度的计算结果。

宇宙速度是人类研究宇宙、探索宇宙的基础,对于了解宇宙的运行规律、宇宙中物质的分布等方面都具有重要的意义。

因此,我们需要通过学习数学知识来掌握计算宇宙速度的方法,为宇宙探索事业做出贡献。

高中物理:三大宇宙速度含义解释

高中物理:三大宇宙速度含义解释

高中物理:三大宇宙速度含义解释宇宙速度及其意义(1)三个宇宙速度的值分别为第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度):物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值为:第一宇宙速度的计算:方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力.G=m,v=。

当h↑,v↓,所以在地球表面附近卫星的速度是它运行的最大速度。

其大小为r>>h(地面附近)时,=7.9×103m/s方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力..当r>>h时.gh≈g所以v1==7.9×103m/s第二宇宙速度(脱离速度):如果卫生的速大于而小于,卫星将做椭圆运动。

当卫星的速度等于或大于的时候,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造行星,或飞到其它行星上去,把叫做第二宇宙速度,第二宇宙速度是挣脱地球引力束缚的最小发射速度。

第三宇宙速度:物体挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小发射速度,又称逃逸速度,其值为:(2)当发射速度v与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同①当v<v1时,被发射物体最终仍将落回地面;②当v1≤v<v2时,被发射物体将环绕地球运动,成为地球卫星;③当v2≤v<v3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;④当v≥v3时,被发射物体将从太阳系中逃逸。

5.同步卫星(所有的通迅卫星都为同步卫星)⑴同步卫星。

“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,既T=24h,⑵特点(1)地球同步卫星的轨道平面,非同步人造地球卫星其轨道平面可与地轴有任意夹角,而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上。

这是因为:不是赤道上方的某一轨道上跟着地球的自转同步地作匀速圆运动,卫星的向心力为地球对它引力的一个分力F1,而另一个分力F2的作用将使其运行轨道靠赤道,故此,只有在赤道上空,同步卫星才可能在稳定的轨道上运行。

第二宇宙速度公式

第二宇宙速度公式

第二宇宙速度公式
第二宇宙速度即挣脱地球引力的最小速度,也就是逃逸速率,由公式F=GM1M2/R^2和F=MV^2/R及太阳质量地球环绕半径可求得G*M*m/r^2=m*(v^2)/rG引力常数,M被环绕天体质量,m环绕物体质量,r环绕半径,v速度。

得出v^2=G*M/r,月球半径约1738公里,是地球的3/11.质量约7350亿亿吨,相当于地球质量的1/81.
月球的第一宇宙速度约是1.68km/s。

在根据:V^2=GM(2/r-1/a)a是人造天体运动轨道的半长径。

a →∞,得第二宇宙速度V2=2.38km/s。

一般:第二宇宙速度V2等于第一宇宙速度V1乘以√2.
第三宇宙速度V3较难:
我以地球打比方吧,绕太阳运动的平均线速度为29.8km/s。

在地球轨道上,要使人造天体脱离太阳引力场的逃逸速度为42.1km/s。

当它与地球的运动方向一致的时候,能够充分利用地球的运动速度,在这种情况下,人造天体在脱离地球引力场后本身所需要的速度仅为两者之差V0=12.3km/s。

设在地球表面发射速度为V3,分别列出两个活力公式并且联立:
V3^2-V0^2=GM(2/r-2/d)其中d是地球引力的作用范围半径,由于d远大于r,因此和2/r这一项比起来的话可以忽略2/d这一项,由此就可以计算出:
V3=16.7km/s,也就是第三宇宙速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第二宇宙速度计算公式》是由美国物理学家威廉·梅登提出的一种用于计算物体运动的速度的重要公式。

它是探索宇宙中物体运动轨迹的科学研究基础,也是宇宙航行技术的基础。

第一段:《第二宇宙速度计算公式》是美国物理学家威廉·梅登提出的一种用于计算物体运动的速度的重要公式,它是探索宇宙中物体运动轨迹的科学研究基础,也是宇宙航行技术的基础。

第二段:第二宇宙速度计算公式由以下公式构成:V = √2GM/r,其中G为万有引力常数,M为物体的质量,r为物体到宇宙中心的距离。

第三段:根据这个公式,物体的速度与它到宇宙中心的距离成反比,而它的质量对速度的影响则是直接比例的。

因此,通过改变物体的质量和位置,可以计算出物体的速度和轨迹。

第四段:第二宇宙速度计算公式可以用于多种情况,如地心引力和太阳系内双星运动。

它也可以用于计算太阳系外行星的轨道,以及探索太阳系外宇宙尘埃等宇宙物质运动轨迹的研究。

第五段:由于第二宇宙速度计算公式的重要性,它在宇宙航行技术的发展中发挥了重要作用。

它是研究宇宙物理现象的重要基础,也是宇宙航行技术的基础。

相关文档
最新文档