人教A版高中数学必修五-第二学期期中考试

合集下载

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。

试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。

安徽大学附属中学必修5_期中考试题【人教A版】

安徽大学附属中学必修5_期中考试题【人教A版】

安徽大学附属中学2008-2009高一(下)数学期中考试试卷(必修5 模块)考试时间:100分钟 试卷满分:100分1、已知等差数列{a n }的通项公式,4,554==a a ,则a 9等于( ). A 、1 B 、 2 C 、 0 D 、 32、不等式0322≤+--x x 的解集为( )A 、}13|{-≤≥x x x 或B 、}31|{≤≤-x xC 、}13|{≤≤-x xD 、}13|{≥-≤x x x 或 3、已知1>x ,则函数11)(-+=x x x f 的最小值为( ) A 、1 B 、2 C 、3 D 、44、在ABC ∆中,已知a=1、b=2,C=120°,则c=( ) A 、 3 B 、 4 C 、7 D 、 35、已知等差数列{a n }满足56a a +=28,则其前10项之和为 ( ) (A )140 (B )280 (C )168 (D )566、若实数a 、b 满足a +b =2,则3a +3b 的最小值是A .18B .6C .23D .2437、在△ABC 中,若∠A ∶∠B ∶∠C =1∶2∶3,则a ∶b ∶c 等于(A )1∶2∶3 (B )3∶2∶1 (C )2∶3∶1 (D )1∶3∶2 8、等比数列{a n }中,a 3,a 9是方程3x 2—11x +9=0的两个根,则a 6=( )A .3B .611C .± 3D .以上皆非9、已知点(3 , 1)和点(-4 , 6)在直线 3x –2y + m = 0 的两侧,则( )A .m <-7或m >24B .-7<m <24C .m =-7或m =24D .-7≤m ≤ 2410、在三角形ABC 中,如果()()3a bc b c a bc +++-=,那么A 等于A .030 B .060 C .0120 D .0150 二、填空题(每题4分,共16分)11、若21<<-a ,12<<-b ,则a -b 的取值范围是12、已知△ABC 的三个内角A 、B 、C 成等差数列,且边a=4,c=3,则△ABC 的面积等于 。

9.1.2分层随机抽样-【新教材】人教A版(2019)高中数学必修第二册课前检测(含解析)

9.1.2分层随机抽样-【新教材】人教A版(2019)高中数学必修第二册课前检测(含解析)

人教A版9.1.2分层随机抽样课前检测一、单选题1.某学校有高中学生1000人,其中高一年级、高二年级、高三年级的人数分别为320,300,380为调查学生参加“社区志愿服务”的意向,现采用样本量比例分配的分层随机抽样的方法从中抽取一个样本量为200的样本,那么应抽取高二年级学生的人数为()A.60 B.64 C.76 D.1362.某校高一年级有180名男生,150名女生,学校想了解高一学生对文史类课程的看法,用分层抽样的方式,从高一年级学生中抽取若干人进行访谈.已知在女生中抽取了30人,则在男生中抽取了()A.18人B.36人C.45人D.60人3.某单位共有职工300名,其中高级职称90人,中级职称180人,初级职称30人.现采用分层抽样方法从中抽取一个容量为60的样本,则从高级职称中抽取的人数为()A.6 B.9 C.18 D.364.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是().A.简单随机抽样法B.抽签法C.随机数表法D.分层抽样法5.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法中所有正确的序号有()①甲应付4151109钱;②乙应付2432109钱;③丙应付5616109钱;④三者中甲付的钱最多,丙付的钱最少.A.①②③B.①②④C.②③④D.①③④6.下列抽样问题中最适合用简单随机抽样法抽样的是()A .从全班46人中抽取6人参与一项问卷调查B .某企业为了解该企业职工的身体健康情况,从职工(其中老年职工有180人,中青年职工有320人)中抽取50人进行体检C .某灯泡厂从一条生产线上生产的10000个灯泡中抽取100个测试灯泡的使用时长D .某市从参加高三第一次模拟考试的3000名考生中抽取120名考生分析试题作答情况7.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取140人,则n 为( )A .300B .250C .200D .1508.某校有高一学生n 名,其中男生数与女生数之比为6∶5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为20n 的样本,若样本中男生比女生多9人,则n ( )A .990B .1320C .1430D .1980 9.现要完成下列3项抽样调查:①从10盒饼干中抽取4盒进行食品卫生检查.②报告厅有25排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请25名听众进行座谈.③某中学共有360名教职工,其中一般教师280名,行政人员55名,后勤人员25名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为72的样本.较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样10.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有20名.现用分层抽样的方法在这50名学生中抽取一个样本,已知在高一年级的学生中抽取了6名, 则在高二年级的学生中应抽取的人数为( )A .8B .6C .4D .2二、填空题11.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?”依分层抽样的方法,则北乡共有______人.12.某学校共有学生3000人,其中高一年级800人,高二年级1200人,高三年级1000人.为了了解该校学生的健康状况,用分层抽样的方法从中抽取样本,若从高一年级抽取了160人,则应从高二年级抽取__________人.13.某鱼贩一次贩运草鱼、青鱼、鲢鱼、鲤鱼及鲫鱼分别为80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行质量检测,若采用分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有______条.14.某林场共有白猫与黑猫1000只,其中白猫比黑猫多400只,为调查猫的生长情况,采用分层抽样的方法抽取一个容量为n的样本,若样本中黑猫有6只,则n=__________.三、解答题15.在某市高三教学质量检测中,全市共有5000名学生参加了本次考试,其中示范性高中参加考试学生人数为2000人,非示范性高中参加考试学生人数为3000人.现从所有参加考试的学生中随机抽取100人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据100人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;16.2020年,新冠病毒在世界肆虐,造成很多行业前景不如从前,国家最近调查了A,B,C三类工种的复工情况,在调查的所有职工中,A工种占40%,B工种占50%,C 工种占10%.现用分层抽样的方法从调查的全体职工中抽取一个容量为n的样本.试确定:n=,则在A工种、B工种、C工种中分别应抽取多少人?(Ⅰ)若200(Ⅱ)若抽取的A工种比C工种多30人,则抽取的B工种有多少人?参考答案1.A【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出抽取高二年级学生的人数即可.【详解】解:根据题意得,用分层抽样在各层中的抽样比为2001 10005=,则高二年级抽取的人数是30015⨯=60人,故选:A.2.B【分析】先计算出抽样比,即可计算出男生中抽取了多少人. 【详解】解:女生一共有150名女生抽取了30人,故抽样比为:301= 1505,∴抽取的男生人数为:1 180365⨯=.故选:B.3.C【分析】计算出抽取高级职称人数所占的抽样比乘以样本容量可得答案.【详解】依题意得:高级职称人数、中级职称人数、初级职称人数的比为90:180:303:6:1=,高级职称人数的抽样比310,采用分层抽样方法从中抽取一个容量为60的样本,则从高级职称中抽取的人数为3601810⨯=人.故选:C. 4.D 【分析】根据总体由男生和女生组成,个体有明显差异求解.【详解】总体由男生和女生组成,比例为50040054=::,所抽取的比例也是5:4,故选:D .5.D【分析】 先求出抽样比为10109,再利用分层抽样求解. 【详解】 依题意,抽样比为10010560+350180109=+. 由分层抽样知识可知, 甲应付10109×560=5141109钱,故①正确; 乙应付10109×350=3212109钱,故②不正确; 丙应付10109×180=1656109钱,故③正确. 显然5141109>3212109>1656109,故④正确. 故选:D.6.A【分析】根据简单随机抽样、系统抽样以及分层抽样的特征逐一判断即可得出选项.【详解】对于A ,样本容量较少,适合简单随机抽样;对于B ,研究对象有明显的分层现象,适合分层抽样;对于C 、D ,研究对象中的个体容量较大,适合系统抽样;故选:A7.C【分析】 根据分层抽样的比例,由15001403500140n -=求解.由题意得:15001403500140n -=, 解得200n =,故选:C【点睛】本题主要考查分层抽样,属于基础题.8.D【分析】根据分层抽样的性质结合已知进行求解即可.【详解】 因为按分层抽样的方法抽取一个样本容量为20n 的样本,男生数与女生数之比为6∶5, 所以抽取的男生数与女生数分别为:65,20112011n n ⋅⋅, 又因为样本中男生比女生多9人, 所以有659198*********n n n ⋅-⋅=⇒=. 故选:D【点睛】本题考查了分层抽样的有关性质,属于基础题.9.A【分析】根据简单随机抽样、系统抽样、分层抽样的定义和特点,以及适用范围,即可判断.【详解】对于①总体中的个体数较少,宜用简单随机抽样;②总体中的个体数较多,而且容易分成均衡的若干部分,选25人刚好25排,每排选一人,宜用系统抽样;③总体是由差异明显的几部分组成,宜用分层抽样.故选:A .【点睛】本题主要考查简单随机抽样、系统抽样、分层抽样的定义,特点以及适用范围的理解与应用,属于容易题.【分析】根据分层抽样比即可求解.【详解】根据题意,由分层抽样知识可得:在高二年级的学生中应抽取的人数为:620430⨯=,故选:C.11.8100【分析】先设出北乡人,再根据分层抽样的方法列出式子,即可求解. 【详解】解:设北乡有x人,根据题意得:10830010874886912x-=+,解得:8100x=,故北乡共有8100人.故答案为:8100.12.240【分析】根据分层抽样的特点:高一年级人数与高二年级人数之比等于样本中高一年级人数与高二年级人数之比计算可得.【详解】分层抽样就是按比例抽样,高一年级人数与高二年级人数之比为800:1200=2:3,所以抽取的样本中,高一年级与高二年级的人数之比也为2:3,因为高一年级抽取的人数为160,所以高二年级抽取的人数为160×32=240人.故答案为:240【点睛】本题考查了分层抽样,属于基础题. 13.6【分析】先求出抽样比,再用样本容量乘以抽样比可得.【详解】总体容量为:8020404020200++++=,抽样比为:20403802040402010+=++++, 所以青鱼与鲤鱼共有:32010⨯6=, 故答案为:6.【点睛】本题考查了分层抽样,属基础题.14.20【详解】由题意,白猫、黑猫分别有700,300只, 由分层抽样的特点,得61000300n = ,解得20n =. 故答案为:20.15.(1)见解析;(2)92.4【分析】(1)根据总体的差异性选择分层抽样,再结合抽样比计算出非示范性高中和示范性高中所抽取的人数;(2)将每个矩形底边的中点值乘以相应矩形的面积所得结果,再全部相加可得出本次测验全市学生数学成绩的平均分.【详解】(1)由于总体有明显差异的两部分构成,故采用分层抽样, 由题意,从示范性高中抽取2000100405000⨯=人, 从非师范性高中抽取3000100605000⨯=人; (2)由频率分布直方图估算样本平均分为(600.005800.0181000.021200.0051400.002)2092.4⨯+⨯+⨯+⨯+⨯⨯=推测估计本次检测全市学生数学平均分为92.4【点睛】本题考查分层抽样以及计算频率分布直方图中的平均数,着重考查学生对几种抽样方法的理解,以及频率分布直方图中几个样本数字的计算方法,属于基础题.16.(Ⅰ)、、A B C 工种分别抽取80、100、20人;(Ⅱ)50人. 【分析】(Ⅰ)频数=样本容量×频率可得结果;(Ⅱ)根据40%10%30n n -=求出n ,再根据频数=样本容量×频率可得结果.【详解】(Ⅰ)A 工种应抽取的人数为20040%80⨯=,B 工种应抽取的人数为20050%100⨯=,C 工种应抽取的人数为20010%20⨯=,(Ⅱ)若抽取的A 工种比C 工种多30人,则40%10%30n n -=,解得100n =.故抽取的B 工种有50%10050%50n ⋅=⨯=人.【点睛】本题考查了由分层抽样求样本容量和各层容量,属于基础题.。

高中数学人教A版必修五优化练习:第二章 2.4 第1课时 等比数列的概念和通项公式 Word版含解析

高中数学人教A版必修五优化练习:第二章 2.4 第1课时 等比数列的概念和通项公式 Word版含解析

[课时作业][A 组 基础巩固]1.已知等比数列{a n }中,a 1=32,公比q =-12,则a 6等于( )A .1B .-1C .2 D.12解析:由题知a 6=a 1q 5=32×⎝⎛⎭⎫-125=-1,故选B.答案:B2.已知数列a ,a (1-a ),a (1-a )2,…是等比数列,则实数a 的取值范围是( )A .a ≠1B .a ≠0且a ≠1C .a ≠0D .a ≠0或a ≠1解析:由a 1≠0,q ≠0,得a ≠0,1-a ≠0,所以a ≠0且a ≠1.答案:B3.在等比数列{a n }中,a 2 016=8a 2 013,则公比q 的值为( )A .2B .3C .4D .8解析:q 3=a 2 016a 2 013=8,∴q =2.答案:A4.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .243解析:∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2. 又a 1+a 2=3,∴a 1=1.故a 7=1×26=64.答案:A5.等比数列{a n }各项均为正数,且a 1,12a 3,a 2成等差数列,则a 3+a 4a 4+a 5=( ) A .-5+12 B.1-52 C.5-12 D .-5+12或5-12解析:a 1,12a 3,a 2成等差数列,所以a 3=a 1+a 2,从而q 2=1+q ,∵q >0,∴q =5+12,∴a 3+a 4a 4+a 5=1q =5-12. 答案:C6.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 解析:设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5.答案:57.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.解析:由a 1·a 5=16,a 4=8,得a 21q 4=16,a 1q 3=8,所以q 2=4,又a n >0,故q =2,a 1=1,a n =2n -1.答案:2n -18.若k,2k +2,3k +3是等比数列的前3项,则第四项为________.解析:由题意,(2k +2)2=k (3k +3),解得k =-4或k =-1,又k =-1时,2k +2=3k +3=0,不符合等比数列的定义,所以k =-4,前3项为-4,-6,-9,第四项为-272. 答案:-2729.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式. 证明:∵S n =2a n +1,∴S n +1=2a n +1+1.∴S n +1-S n =a n +1=(2a n +1+1)-(2a n +1)=2a n +1-2a n .∴a n +1=2a n .①又∵S 1=a 1=2a 1+1,∴a 1=-1≠0.由①式可知,a n ≠0,∴由a n +1a n=2知{a n }是等比数列,a n =-2n -1. 10.在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827. (1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项? 解析:(1)∵2a n =3a n +1,∴a n +1a n =23,数列{a n }是公比为23的等比数列,又a 2·a 5=827,所以a 21⎝⎛⎭⎫235=⎝⎛⎭⎫233,由于各项均为负,故a 1=-32,a n =-⎝⎛⎭⎫23n -2. (2)设a n =-1681,则-1681=-⎝⎛⎭⎫23n -2, ⎝⎛⎭⎫23n -2=⎝⎛⎭⎫234,n =6,所以-1681是该数列的项,为第6项. [B 组 能力提升]1.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .215解析:由等比数列的定义,a 1·a 2·a 3=⎝⎛⎭⎫a 3q 3,故a 1·a 2·a 3·…·a 30=⎝⎛⎭⎫a 3·a 6·a 9·…·a 30q 103.又q =2,故a 3·a 6·a 9·…·a 30=220.答案:B2.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42.答案:B3.设{a n }为公比q >1的等比数列,若a 2 014和a 2 015是方程4x 2-8x +3=0的两根,则a 2 016+a 2 017=________.解析:4x 2-8x +3=0的两根分别为12和32,q >1,从而a 2 014=12,a 2 015=32,∴q =a 2 015a 2 014=3.a 2 016+a 2 017=(a 2 014+a 2 015)·q 2=2×32=18.答案:184.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12可得q 9=3,又a n -1a n a n +1=a 31q 3n -3=324,因此q 3n -6=81=34=q 36,所以n =14. 答案:145.有四个实数,前三个数依次成等比数列,它们的积为-8;后三个数依次成等差数列,它们的积为-80,求这四个数.解析:由题意,设这四个数为b q,b ,bq ,a ,则⎩⎪⎨⎪⎧ b 3=-8.2bq =a +b ,b 2aq =-80解得⎩⎪⎨⎪⎧ a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧ a =-8,b =-2,q =52.∴这四个数依次为1,-2,4,10或-45,-2,-5,-8.6.已知a 1=2,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n =1,2,3,….(1)证明数列{lg(1+a n )}是等比数列;(2)求{a n }的通项公式.解析:(1)证明:由已知得a n +1=a 2n +2a n , ∴a n +1+1=a 2n +2a n +1=(a n +1)2. ∵a 1=2,∴a n +1+1=(a n +1)2>0. ∴lg(1+a n +1)=2lg(1+a n ),即lg (1+a n +1)lg (1+a n )=2, 且lg(1+a 1)=lg 3.∴{lg(1+a n )}是首项为lg 3,公比为2的等比数列.(2)由(1)知,lg(1+a n )=2n -1·lg 3=lg 312n -, ∴1+a n =312n -,∴a n =312n --1.。

2022版人教A版高中数学必修第二册练习题--专题强化练4 空间几何体的内切球和外接球

2022版人教A版高中数学必修第二册练习题--专题强化练4  空间几何体的内切球和外接球

2022版人教A版高中数学必修第二册--专题强化练4空间几何体的内切球和外接球一、选择题1.(2020内蒙古呼和浩特第二中学高一上期末,)已知正三棱柱ABC-A1B1C1的顶点都在球O的球面上,AB=2,AA1=4,则球O的表面积为()A.32π3B.32πC.64πD.64π32.(2020陕西西安电子科技大学附属中学高一上期末,)如图,正四棱锥P-ABCD 的侧棱和底面边长都等于2√2,则它的外接球的表面积为()A.16πB.12πC.8πD.4π3.(2020安徽合肥六校联盟高二上期末,)已知圆锥的底面半径为3,母线长为5,球O与圆锥的底面和侧面均相切,设球O的体积为V1,圆锥的体积为V2,则V1V2=()A.18B.38C.14D.8274.()设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D-ABC体积的最大值为()A.12√3B.18√3C.24√3D.54√35.()在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2C.6πD.32π36.(2020江西高安中学高一上期中,)已知球O是正三棱锥A-BCD的外接球,BC=3,侧棱AB=2√3,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面圆面积的取值范围是()A.[5π4,4π] B.[2π,4π]C.[9π4,4π] D.[11π4,4π]二、填空题7.(2020湖南郴州高一上期末,)如图所示,边长为2的正方形SG1G2G3中,E、F分别是G1G2,G2G3的中点,沿SE、SF及EF把这个正方形折成一个三棱锥S-EFG,使G1、G2、G3三点重合,重合后记为点G,则三棱锥S-EFG的外接球的表面积为.8.(2020安徽合肥高三一模,)如图,已知四棱锥P-ABCD的外接球O的体积为36π,PA=3,侧棱PA与底面ABCD垂直,四边形ABCD为矩形,点M在球O的表面上运动,则四棱锥M-ABCD体积的最大值为.9.(2020广东中山第一中学高一上第二次段考,)如图,圆形纸片的圆心为O,半径为12 cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为.10.(2020广东广州白云高三下模拟,)将半径为r的5个球放入由一个半径不小于3r的球和这个球的内接正四面体A-BCD的四个面分割成的五个空间内,若此正四面体的棱长为2√6,则r的最大值为.答案全解全析一、选择题1.D过球心O作底面ABC的垂线,垂足为O',易知OO'=2,O'A=23×2×√32=2√33.易知OA2=OO'2+O'A2,所以OA=√4+43=√3,所以球O的表面积S=4π·OA2=64π3.故选D.2.A设正四棱锥外接球的球心为O,半径为R,正四棱锥底面的中心为O1,则O在正四棱锥的高PO1上.连接AC,在直角三角形ABC中,AC=√2AB=√2×2√2=4,所以AO1=2,所以正四棱锥的高PO1=√AP2-AO12=√(2√2)2-22=√8-4=2,因为PO1=AO1,所以O与O1重合,即正四棱锥外接球的球心是底面的中心O1,且球的半径R=2,故球的表面积S=4πR2=16π.故选A.3.B该几何体的轴截面如图所示,设球O的半径为r.易得圆锥的高为√52-32=4,故S△SAB=12×6×4=12×(5+5+6)r,解得r=32,故V1=43π×r3=9π2,V2=13π×32×4=12π,故V1V2=9π2×112π=38.4.B设△ABC的边长为a,则S△ABC=12a·a·sin 60°=9√3,所以a=6.设△ABC的外接圆的半径为r,则2r=6sin60°,得r=2√3,则球心到平面ABC的距离为√42-(2√3)2=2,所以点D到平面ABC的最大距离为2+4=6,所以三棱锥D-ABC体积的最大值为13×9√3×6=18√3,故选B.5.B易得AC=10.设△ABC的内切圆的半径为r,则12×6×8=12×(6+8+10)×r,所以r=2,因为2r=4>3,所以当球与三棱柱的上、下底面相切时,体积最大,此时球的直径为3,则半径R=32,所以球的体积V=43πR3=9π2.故选B.解题反思要使球的体积取最大值,则该球的半径应取到最大值,即该球与三棱柱的侧面或底面内切,因此需要讨论底面三角形内切圆直径与三棱柱高的关系,从而确定出球的半径的最大值.6.B设△BCD的中心为O1,球O的半径为R,连接AO1,则O在AO1上.连接O1D,OD,O1E,OE,如图,=√3,则O1D=3×sin 60°×23则AO1=√AD2-O1D2=√12-3=3.在Rt△OO1D中,R2=3+(3-R)2,解得R=2.∵BD=3BE,∴DE=2.在△DEO1中,O1E=√3+4-2×√3×2×cos30°=1,∴OE=√O1E2+OO12=√1+1=√2.过点E作球O的截面,当截面与OE垂直时,截面圆的面积最小,此时,截面圆的半径为√22-(√2)2=√2,面积为2π;当截面过球心时,截面圆的面积最大,最大面积为4π.故选B.二、填空题7.答案6π解析设三棱锥S-EFG外接球的半径为R.由题意可知,SG⊥EG,SG⊥GF,GE⊥GF,所以将三棱锥S-EFG补成如图所示的长方体,则长方体的外接球即为三棱锥的外接球.因为SG=2,GE=GF=1,所以外接球的直径2R=√22+12+12=√6,即R =√62.所以三棱锥S -EFG 的外接球的表面积S =4πR 2=6π.8.答案814解析 设球O 的半径为R ,则43πR 3=36π,故R =3.由题易知PA ,AB ,AD 两两垂直,所以将四棱锥P -ABCD 补成长方体,可知外接球的直径为长方体的体对角线,设长方体的长、宽、高分别为a ,b ,c ,则c =3,因为a 2+b 2+32=62,所以a 2+b 2=27,又a 2+b 2≥2ab ,所以ab ≤272,当且仅当a =b =3√62时,等号成立.要使得四棱锥M -ABCD 的体积最大,只需点M 为平面ABCD 的中心O'与球心O 连线所在的直线与球的交点(点M 、O'在球心O 两侧), 又OO'=12PA =32,所以四棱锥M -ABCD 体积的最大值为13×272×(32+3)=814.9.答案400π3cm 2解析 如图1,连接OE 交AB 于点I.图1设正方形的边长为x cm , 则OI =x2 cm ,IE =(12-x2)cm .因为该四棱锥的侧面积是底面积的2倍,所以4×x 2×(12-x2)=2x 2,所以x =8.设E ,F ,G ,H 重合于点P ,该四棱锥的外接球的球心为Q ,如图2,图2易知OC =4√2 cm ,PC =EA =√82+42=4√5 cm ,所以OP =√PC 2-OC 2=4√3 cm . 设外接球的半径为R cm , 则R 2=(4√3-R )2+(4√2)2,所以R =10√33,所以外接球的表面积S =4π×(10√33)2=400π3(cm 2).10.答案 1解析 如图1,设△BCD 的中心为O 1,则正四面体的外接球球心O 在AO 1上,连接OD ,O 1D.图1则O 1D =23×CD ×√32=2√2,AO 1=√AD 2-DO 12=4,设外接球的半径为R ,则R 2=(AO 1-R )2+DO 12,解得R =3.设正四面体A -BCD 内切球的半径为r 1,根据等体积法可得13r1×12×(2√6)2×sin 60°×4=13×12×(2√6)2×sin 60°×4,故r 1=1,根据题意得R =3≥3r ,r ≤r 1,所以r ≤1.设OO 1与球O 的球面相交于点Q ,如图所示,画出截面图,O 1Q =R -OO 1=2≥2r ,故r ≤1.综上所述,r的最大值为1.图2。

2019-2020学年高中数学人教A版必修5单元提分卷:(6)等比数列

2019-2020学年高中数学人教A版必修5单元提分卷:(6)等比数列

单元提分卷(6)等比数列1、等比数列,33,66x x x ++,…的第四项等于( ) A.-24 B.0C.12D.242、已知等比数列{}n a 中, 13a =,且1234,2,a a a 成等差数列,则345a a a ++=( ) A.33B. 72C. 84D. 1893、等比数列{}n a 的各项为正数,且564718a a a a +=,则3132310log log log a a a +++=( )A.12B.10C.8D.32log 5+4、若等比数列的首项为98,末项为13,公比为23,则这个数列的项数为( )A.3B.4C.5D.65、在等比数列{}n a 中,n T 表示前n 项的积,若51T =,则下列一定正确的是( ) A. 11a = B. 31a = C. 41a = D. 51a =6、设数列{}n a ,( ).A.若2*4,,n n a n N =∈则{}n a 为等比数列. B.若2*21,n n n a a a n N ++⋅=∈,则{}n a 为等比数列. C.若*2,,m n m n a a m n N +⋅=∈,则{}n a 为等比数列. D.若*312,n n n n a a a a n N +++⋅=⋅∈,则{}n a 为等比数列.7、三个数,,a b c 既是等差数列,又是等比数列,则,,a b c 间的关系为( ). A. b a c b -=-B. 2b ac =C. a b c ==D. 0a b c ==≠8、如果1,,,,9a b c --成等比数列,那么( )A. 3,9b ac ==B. 3,9b ac =-=C. 3,9b ac ==-D. 3,9b ac =-=-9、在等比数列{}n a 满足135a a +=,且公比2q =,则35a a +等于( ). A.10 B.13 C.20 D.25 10、在等比数列{}n a 中,首项10a <,要使数列{}n a 对任意正整数n 都有1n n a a +>,则公比q 应满足( ). A. 1q > B. 01q << C.112q << D. 10q -<<11、已知等比数列{}n a 中, 12451,8a a a a +=+=-则公比q 等于( ). A.-2 B.2 C. 23- D.3212、设等比数列{}n a 满足132410,5a a a a +=+=,则12n a a a 的最大值为__________13、若三个正数,,a b c 成等比数列,其中5a =+5c =-则b =__________. 14、已知数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =__________15、三个互不相等的实数,1,a b 依次成等差数列,且22,1,a b 依次成等比数列,则11a b+=__________ 16、首项为3的等比数列的第n 项是48,第23n -项是192,则n =__________答案以及解析1答案及解析: 答案:A解析:由题意知()()23366x x x +=+,即2430x x ++=,解得3x =-或1x =- (舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2答案及解析: 答案:C解析:由题意可设公比为q ,则21344a a a =+, 又13a =,∴2q =.∴223451134124()(84)a a a a q q q ++⨯⨯++++===.3答案及解析: 答案:B解析:564756189a a a a a a +=∴=,()313231031210log log log log a a a a a a +++=()53563log 5log 910a a ===.4答案及解析: 答案:B解析:111192,(),383n n n a a q --=∴=⋅则128()327n -=,13n ∴-=,即4n =.5答案及解析: 答案:B解析:由题意,可得123451a a a a a ⋅⋅⋅⋅=, 即15243()()1a a a a a ⋅⋅⋅⋅=,又215243()()a a a a a ⋅=⋅=,所以531a =,得31a =6答案及解析: 答案:C 解析:7答案及解析: 答案:D解析:一个数列既是等差数列又是等比数列,那它一定是常熟数列,但要注意的是等比数列中不能有0.8答案及解析: 答案:B 解析:9答案及解析: 答案:C 解析:10答案及解析: 答案:B解析:()11110n n n a a a q q -+-=->对任意正整数n 都成立,而10a <只能01q <<11答案及解析: 答案:A 解析:12答案及解析:答案:64 解析:13答案及解析: 答案:1解析:∵,,a b c 成等比数列,∴((25525241b ac ==+⋅-=-=. ∵ b 为正数,∴1b =.14答案及解析: 答案:1 解析:15答案及解析: 答案:2± 解析:16答案及解析: 答案:5 解析: 设公比为q ,则1212424348163192644n n n n q q qq q ----⎧⎧==⎪⇒⇒=⎨⎨==⎪⎩⎩,得2q =±.由()1216n -±=,得5n =.。

高中数学人教A版必修5第二章2.2等差数列2课时课件

高中数学人教A版必修5第二章2.2等差数列2课时课件

a2=a1+d,
实际由等差数列定义有
a3=a2+d =a1+2d, a4=a3+d =a1+3d, 由上式猜测: an=a1+(n-1)d.
a2-a1=d, a3-a2=d,
a4-a3=d, ……
an-an-1=d,
联想:形如递推公式a n
- an-1
=
f
(n),
求通项公式可运用累加法
各式两边分别相加得
问题1. 刚才写出的 4 个数列, 它们有什么共同的 规律? 请你给有这种规律的数列设计一个名称.
(1) 5, 10, 15, 20, 25, 30, 35, … (2) 18, 15.5, 13, 10.5, 8, 5.5, 3, 0.5. (3) 10072, 10144, 10216, 10288, 10360. (4) 60, 58, 56, 54, 52, 50, 48, 46, 44, 42.
问题1. 等差数列的应用较为广泛, 如: 能被 7 整 除的三位正整数有多少个? 一部梯子有 15 级, 最下 一级宽 61cm, 最上一级宽 40cm, 从下到上的第 10 级宽是多少? 你能用等差数列知识解决这类问题吗?
同样, 梯子的各级宽依次构成等差数列. 设这个数列为{bn}, 则 b1=61, b15=40. 由通项公式 b15=b1+(15-1)d 得
(2) 是等差数列, 它的首项是原数列首项a1, 公差是原 数列公差的 2 倍, 即2d.
(3) 也是等差数列, 它的首项是原数列首项a7, 公差是 原数列公差的 7 倍, 即7d.
5. 已知{an}是等差数列. (1) 2a5=a3+a7 是否成立? 2a5=a1+a9 呢? 为什么? (2) 2an=an-1+an+1 (n>1) 是否成立? 据此你能得出 什么结论?

人教A版高中数学必修五第二学期高一年级期中考试.doc

人教A版高中数学必修五第二学期高一年级期中考试.doc

& 鑫达捷致力于精品文档 精心制作仅供参考 &肥西农兴中学2010~2011学年第二学期高一年级期中考试数学试卷注意事项:1、本试卷满分150分,考试时间120分钟。

2、试卷共8页,其中第1~4页为试卷,第5~8页为答题卷,请考生在答题卷上答题,在试卷上答题无效!3、请考生在答题卷规定的位置填写班级、姓名和考号,交卷时只交答题卷。

一、选择题:(本大题共12小题,每小题5分,共60分。

)1、数列1,-3,5,-7,9,……的一个通项公式为 ( ) A 、12-=n a nB 、 )21()1(n a nn --=C 、)12()1(--=n a nn D 、)12()1(+-=n a nn 2.已知{}n a 是等比数列,41252==a a ,,则公比q =( )A .21-B .-2C .2D .21 3.若ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =( )A. -14B. 14C. -23D. 234.设0a b <<,则下列不等式中不能成立的是( ) A .11a b> B .11a b a >- C .a b > D .22b a > 5.在各项均为正数的等比数列{}n b 中,若783bb ⋅=,则3132log log b b ++…314log b +等于( )A 、5B 、6C 、7D 、86.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数y x z 32+=的最小值为( )A 、6B 、7C 、8D 、237.不等式2320x x -+<的解集为( )()()()()()().,21,.2,1.,12,.1,2A B C D -∞--+∞---∞+∞U U8.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形9.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为( )& 鑫达捷致力于精品文档 精心制作仅供参考 &班级 姓名 考号_________________装订线内不要答题◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆A 、m 3400 B 、m 33400 C 、m 33200 D 、m 320010.等差数列{}n a 和 {}n b 的前n 项和分别为n S 和n T ,且132+=n nT S n n ,则55b a = ( )A 、32 B 、149 C 、 3120 D 、 9711.已知{}n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x -+=的两根,则20072008a a +的值是( )A 、 18B 、 19C 、 20D 、 2112.在△ABC 中,B=30°,AB=23,AC=2,那么△ABC 的面积是( )A.23B. 3C.23或43D. 3或23二、填空题:(本大题共4小题,每小题4分,共16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

唐山一中2014-2015学年第二学期期中考试
高一文科数学
命题人:周国明 鲍芳
第Ⅰ 卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.等差数列}{n a 中,7,10451==+a a a ,则数列}{n a 的公差为 ( )
A .1
B .2
C .3
D .4
2.设等比数列{a n }的前n 项和为S n ,若63S S =3,则69S S =( )
A .2
B .73
C .83
D .3 3.在△ABC 中,角A ,B ,C 所对边长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )
A .23
B . 2
2 C .21 D . -21 4.若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩
,则2x y +的最大值是 ( )
A .5-2
B .0
C .53
D .52
5.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则
a b = ( )
A .23
B .22
C .3
D . 2
6.设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( )
A .3
B .4
C .5 D.6
7.设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为 ( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定
8.已知一元二次不等式()<0f x 的解集为{}1
|<-1>2x x x 或,则(10)>0x f 的解集为
( )
A .{}|<-1>lg2
x x x 或 B .{}|-1<<lg2x x C .{}|>-lg2x x D .{}|<-lg2x x。

相关文档
最新文档