高中数学选修2-1数学苏教选修2-1综合练习

合集下载

苏教版数学选修2-1:第3章章末综合检测

苏教版数学选修2-1:第3章章末综合检测

(时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.如图,已知四边形ABCD 是平行四边形,点O 为空间任意一点,设OA →=a ,OB →=b ,OC →=c ,则向量OD →用a ,b ,c 可表示为________.解析:OD →=OA →+AD →=OA →+BC →=OA →+(OC →-OB →) =a -b +c . 答案:a -b +c2.已知空间四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =3MA ,N 为BC 中点,则MN →=________.(用a ,b ,c 表示)解析:显然MN →=ON →-OM →=12(OB →+OC →)-34OA →.答案:-34a +12b +12c3.在下列条件中,使M 与A ,B ,C 一定共面的是________(填序号). ①OM →=3OA →-OB →-OC →;②OM →=15OA →+13OB →+12OC →;③MA →+MB →+MC →=0;④OM →+OA →+OB →+OC →=0.解析:①对,空间的四点M ,A ,B ,C 共面只需满足OM →=xOA →+yOB →+zOC →,且x +y +z =1即可.根据空间向量共面定理可知③也能使M 与A ,B ,C 共面.答案:①③4.已知向量a =(2,-3,0),b =(k ,0,3),若a ,b 成120°的角,则k =________.解析:cos 〈a ,b 〉=a ·b |a ||b |=2k 13×9+k 2=-12<0∴k <0,∴k =-39.答案:-395.已知平行六面体ABCD -A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′等于________.解析:只需将AC ′→=AB →+AD →+AA ′→,运用向量运算|AC ′→|=|AC ′→|2即可. 答案:856.已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA →与OB →的夹角是________.解析:利用cos 〈OA →,OB →〉=OA →·OB →|OA →||OB →|,计算结果为-1.答案:π7.设A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 是________三角形.解析:过点A 的棱两两垂直,通过设棱长应用余弦定理可得三角形为锐角三角形. 答案:锐角8.空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos 〈OA →,BC →〉=________.解析:选择一组基向量OA →,OB →,OC →,再来处理OA →·BC →的值. 答案:09.已知A (1,1,1),B (2,2,2),C (3,2,4),则△ABC 的面积为________.解析:应用向量的运算,计算出cos 〈AB →,AC →〉,再计算sin 〈AB →,AC →〉,从而得S =12|AB→||AC →|sin 〈AB →,AC →〉=62.答案:6210.下列命题:①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β⇔n 1·n 2=0; ③若n 是平面α的法向量,a 与α共面,则n ·a =0;④若两个平面的法向量不垂直,则这两个平面一定不垂直; 其中正确的个数为________.解析:①中平面α,β可能平行,也可能重合,结合平面法向量的概念,易知②③④正确答案:311.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为________.解析:设正方体棱长为2,以D 为坐标原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图,可知CM →=(2,-2,1),D 1N →=(2,2,-1),所以cos 〈CM →,D 1N →〉=-19,故 sin 〈CM →,D 1N →〉=459.答案:45912.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,则直线AE 与平面ABC 1D 1所成角的正弦值________.解析:如图所示,建立空间直角坐标系,则AB →=(0,1,0),AD 1→=(-1,0,1),AE →=(0,12,1);设平面ABC 1D 1的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ·AB →=0,n ·AD 1→=0,可解得一个n =(1,0,1);设直线AE 与平面ABC 1D 1所成角为θ,则sin θ=|AE →·n ||AE →||n |=105.答案:10513.在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1,A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G ,则A 1B 与平面ABD 所成角的余弦值为________.解析:以C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立如图所示的空间直角坐标系,设CA =CB =a ,则A (a ,0,0),B (0,a ,0),A 1(a ,0,2),D (0,0,1)∴E (a 2,a 2,1),G (a 3,a 3,13),∴GE →=(a 6,a 6,23),BD →=(0,-a ,1),∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE ⊥平面ABD , ∴GE →·BD →=0.解得a =2.∴GE →=(13,13,23),BA 1→=(2,-2,2).∵GE →⊥平面ABD ,∴GE →为平面ABD 的一个法向量,那么cos 〈GE →,BA 1→〉=GE →·BA 1→|GE →||BA 1→|=4363×23=23,∴A 1B 与平面ABD 所成角的余弦值为1-(23)2=73. 答案:7314.在空间直角坐标系中,定义:平面α的一般方程为Ax +By +Cz +D =0(A ,B ,C ,D∈R ,且A ,B ,C 不同时为零),点P (x 0,y 0,z 0)到平面α的距离为:d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C2,则在底面边长与高都为2的正四棱锥中,底面中心O 到侧面的距离等于________.解析:如图,以底面中心O 为原点建立空间直角坐标系O -xyz ,则A (1,1,0),B (-1,1,0),P (0,0,2),设平面PAB 的方程为Ax +By +Cz +D =0,将以上3个坐标代入计算得A =0,B =-D ,C =-12D ,所以-Dy -12Dz +D =0,即2y +z -2=0,则d =|2×0+0-2|22+1=255.答案:255二、解答题(本大题共6小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知:E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,求证:(1)E 、F 、G 、H 四点共面;(2)BD ∥平面EFGH .证明:(1)如图所示,连结EG ,∵E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,∴BG →=12BC →+BD →),12BD →=EH →; ∴EG →=EB →+BG →=EB →+12BC →+BD →)=EB →+BF →+EH →=EF →+EH →;∴由共面向量定理知:EG →,EF →,EH →共面; ∴E 、F 、G 、H 四点共面.(2)∵EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,∴EH ∥BD ; 又EH ⊂平面EFGH ,BD ⊄平面EFGH , ∴BD ∥平面EFGH .16.(本小题满分14分)已知空间向量AB →,AC →,AD →等满足|AC →|=5,|AB →|=8,AD →=511DB →,且CD →·AB →=0.(1)求|AB →-AC →|;(2)设∠BAC =θ,且已知cos(θ+x )=45,-π<x <-π4,求sin(θ+x ).解:(1)由已知得AB →=DB →-DA →=DB →+AD →=1611DB →,所以DB →=1116AB →,AD →=511DB →=516AB →,则|AD →|=516|AB →|=52,|DB →|=112,因为CD →·AB →=0,所以CD ⊥AB ,在Rt △BCD 中,BC 2=BD 2+CD 2,又CD 2=AC 2-AD 2,所以BC 2=BD 2+AC 2-AD 2=49,所以|AB →-AC →|=|CB →|=7.(2)在Rt △ADC 中,cos ∠BAC =12,所以θ=π3;所以cos(θ+x )=cos(π3+x )=45,故sin(π3+x )=±35.而-π<x <-π4,∴-2π3<π3+x <π12.如果0<π3+x <π12,则sin(π3+x )<sin π12<sin π6<12<35,故sin(π3+x )=35舍去,所以sin(π3+x )=-35.17.(本小题满分14分)在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,AB =3,BC =1,PA =2,E 为PD 的中点.(1)求直线AC 与PB 所成角的余弦值;(2)在侧面P AB 内找一点N ,使NE ⊥面P AC ,并求出点N 到AB 和AP 的距离.解:(1)建立如图所示的空间直角坐标系,则A ,B ,C ,D ,P ,E 的坐标为A (0,0,0)、B (3,0,0)、C (3,1,0)、D (0,1,0)、P (0,0,2)、E (0,12,1),从而AC →=(3,1,0),PB →=(3,0,-2),设AC →与PB →的夹角为θ,则cos θ=AC →·PB →|AC →||PB →|=327=3714,∴AC 与PB 所成角的余弦值为3714.(2)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,0,z ),则NE →=(-x ,12,1-z ),由NE ⊥面PAC ,可得⎩⎪⎨⎪⎧NE →·AP →=0,NE →·AC →=0,即⎩⎨⎧(-x ,12,1-z )·(0,0,2)=0,(-x ,12,1-z )·(3,1,0)=0,∴⎩⎪⎨⎪⎧z -1=0,-3x +12=0,∴⎩⎪⎨⎪⎧x =36,z =1.即N 点的坐标为(36,0,1),从而N 点到AB 和AP 的距离分别为1,36.18.(本小题满分16分)已知一个多面体是由底面为ABCD 的长方体被截面AEC 1F 所截而得到的,其中AB =4,BC =2,CC 1=3,BE =1.(1)求BF 的长;(2)求点C 到平面AEC 1F 的距离.解:(1)建立如图所示的空间直角坐标系.则D (0,0,0),B (2,4,0),C (0,4,0),E (2,4,1),A (2,0,0),C 1(0,4,3); 设F (0,0,z ),∵四边形AEC 1F 为平行四边形, ∴AF →=EC 1→,得(-2,0,z )=(-2,0,2),∴z =2,∴F (0,0,2),∴BF →=(-2,-4,2).于是|BF →|=26,即BF 的长为2 6.(2)设n 1为平面AEC 1F 的法向量,显然n 1不垂直于平面ADF ,故可设n 1=(x ,y ,1),由⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,得⎩⎪⎨⎪⎧0×x +4×y +1=0,-2×x +0×y +2=0,即⎩⎪⎨⎪⎧4y +1=0,-2x +2=0,∴⎩⎪⎨⎪⎧x =1,y =-14.∴n 1=(1,-14,1). 又CC 1→=(0,0,3),设CC 1→与n 1的夹角为α,则cos α=CC 1→·n 1|CC 1→||n 1|=33×1+116+1=43333.∴C 到平面AEC 1F 的距离为d =|CC 1→|cos α=3×43333=43311.19.(本小题满分16分)如图,四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且P A =AD =DC =12AB ,M 是PB 的中点.(1)证明:面P AD ⊥面PCD ;(2)求AC 与PB 所成角的余弦值;(3)求面AMC 与面BMC 所成二面角的余弦值.解:以A 为坐标原点,AD 长为单位长度,如图所示,建立空间直角坐标系,则各点坐标为A (0,0,0),B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,12).(1)证明:因AP →=(0,0,1),DC →=(0,1,0), 故AP →·DC →=0, 所以AP ⊥DC .由题设知AD ⊥DC ,且AP ∩AD =A ,由此得DC ⊥面PAD .又DC 在面PCD 上,故面P AD ⊥面PCD .(2)因为AC →=(1,1,0),PB →=(0,2,-1), 故|AC →|=2,|PB →|=5,AC →·PB →=2,所以cos 〈AC →,PB →〉=AC →·PB →|AC →||PB →|=105.故所求AC 与PB 所成角的余弦值为105.(3)在MC 上取一点N (x ,y ,z ),则存在λ∈R ,使NC →=λMC →,∵NC →=(1-x ,1-y ,-z ),MC →=(1,0,-12),∴x =1-λ,y =1,z =12λ.要使AN ⊥MC ,只需AN →·MC →=0,即x -12z =0,解得λ=45.可知当λ=45时,N 点坐标为(15,1,25),∴AN →·MC →=0,此时AN →=(15,1,25),BN →=(15,-1,25),有BN →·MC →=0.由AN →·MC →=0,BN →·MC →=0得AN ⊥MC ,BN ⊥MC ,所以∠ANB 为面AMC 与面BMC 所成二面角的平面角.∵|AN →|=305,|BN →|=305,AN →·BN →=-45,∴cos 〈AN →,BN →〉=AN →·BN →|AN →||BN →|=-23,故所求的二面角的余弦值为-23.20.(本小题满分16分)已知斜三棱柱ABC -A 1B 1C 1,∠BCA =90°,AC =BC =2,A 1在底面ABC 上的射影恰为AC 的中点D ,又知BA 1⊥AC 1.(1)求证:AC 1⊥平面A 1BC ;(2)求点C 1到平面A 1AB 的距离; (3)求二面角A -A 1B -C 的余弦值.解:如图所示,取AB 的中点E ,则DE ∥BC , 因为BC ⊥AC , 所以DE ⊥AC ,又A 1D ⊥平面ABC ,以DE ,DC ,DA 1为x ,y ,z 轴建立空间直角坐标系, 则A (0,-1,0),C (0,1,0),B (2,1,0),A 1(0,0,t ),C 1(0,2,t ).(1)证明:∵AC 1→=(0,3,t ),BA 1→=(-2,-1,t ),CB →=(2,0,0),由AC 1→·CB →=0,知AC 1⊥CB ,又BA 1⊥AC 1,CB ∩BA 1=B ,所以AC 1⊥平面A 1BC .(2)由AC 1→·BA 1→=-3+t 2=0,得t = 3. 设平面A 1AB 的法向量为n =(x ,y ,z ), 又AA 1→=(0,1,3),AB →=(2,2,0),所以⎩⎪⎨⎪⎧n ·AA 1→=y +3z =0,n ·AB →=2x +2y =0,设z =1,则n =(3,-3,1),所以点C 1到平面A 1AB 的距离d =|AC 1→·n ||n |=2217.(3)设平面A 1BC 的法向量为m =(x ,y ,z ), CA 1→=(0,-1,3),CB →=(2,0,0),所以⎩⎪⎨⎪⎧m ·CA 1→=-y +3z =0m ·CB →=2x =0,设z =1,则m =(0,3,1).cos 〈m ,n 〉=m ·n |m ||n |=-77,根据法向量的方向,可知二面角A -A 1B -C 的平面角的余弦值为77.。

高中数学选修2-1经典练习100例

高中数学选修2-1经典练习100例

第一章 常用逻辑用语1.条件:12p x +>,条件:2q x ≥,则p ⌝是q ⌝的( )A .充分非必要条件B .必要不充分条件C .充要条件D .既不充分也不必要的条件2.用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数c b a ,, 中恰有一个偶数”时正确的反设为 ( )A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,, 中至少有两个偶数D .自然数 c b a ,,中至少有两个偶数或都是奇数 3. {}{}211,,log 1,A x x x R B x x x R =-≥∈=>∈,则“x A ∈”是“x B ∈”的 () A .充分非必要条件 B .必要非充分条件C .充分必要条件D .既非充分也非必要条件4.命题“对任意的2,310x R x x ∈-+≤”的否定是( )A.不存在2000,310x R x x ∈-+≤B.存在2000,310x R x x ∈-+≤C.存在2000,310x R x x ∈-+>D.对任意的2,310x R x x ∈-+>5.已知命题p :∀x∈R,x>sinx ,则p 的否定形式为( )A.∃x∈R,x<sinxB.∀x∈R,x≤sinxC.∃x∈R,x≤sinx D.∀x∈R,x<sinx6.下列命题中的说法正确的是( )A .命题“若2x =1,则x =1”的否命题为“若2x =1,则x≠1”B.“x=-1”是“2x -5x -6=0”的必要不充分条件C .命题“x ∃∈R,使得x2+x +1<0”的否定是:“x ∀∈R,均有2x +x +1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB”的逆否命题为真命题7.下列说法中正确的是 ( )A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a b >”与“a c b c +>+”不等价C.“220a b +=,则a b ,全为0”的逆否命题是“若a b ,全不为0,则220a b ≠+”D.一个命题的否命题为真,则它的逆命题一定为真8.下列命题中的说法正确的是( )A .命题“若2x =1,则x =1”的否命题为“若2x =1,则x ≠1”B.“x =-1”是“2x -5x -6=0”的必要不充分条件C .命题“0x ∃∈R,使得x 02+x 0+1<0”的否定是:“x ∀∈R,均有2x +x +1>0” D .命题“在△ABC 中,若A >B ,则sinA >sinB”的逆否命题为真命题9.下列说法中,正确的是( )A .命题“若am 2<bm 2,则a<b”的逆命题是真命题B .已知x R ∈,则“x 2-2x-3=0”是“x=3”的必要不充分条件C .命题“p∨q”为真命题,则“命题p”和“命题q”均为真命题D .已知x∈R,则“x>1”是“x>2”的充分不必要条件10.“>x π6”是“>x sin 12”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.给出命题p :若“0>BC AB ,则△ABC 为锐角三角形”;命题q :“实数c b a ,,满足ac b =2,则c b a ,,成等比数列”.那么下列结论正确的是( )A .p 且q 与p 或q 都为真B .p 且q 为真而p 或q 为假C .p 且q 为假且p 或q 为假D .p 且q 为假且p 或q 为真12.已知命题p :∃x ∈R ,使sin x =25;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论:①命题“q p ∧”是真命题; ②命题“q p ⌝∨⌝”是假命题; ③命题“q p ∨⌝”是真命题;④命题“q p ⌝∧”是假命题;其中正确的是( )A .②③B .②④C .③④D .①②③13.给出以下四个命题:①若0ab ≤,则0a ≤或0b ≤;②若b a >则22am bm >;③在△A BC 中,若B A sin sin =,则A=B;④在一元二次方程20ax bx c ++=中,若240b ac -<,则方程有实数根.其中原命题.逆命题.否命题.逆否命题全都是真命题的是( )A.①B.②C.③D.④14.以下命题正确的个数为①命题“若21,1x x >>则”的否命题为“若21,1x x ≤≤则”;②命题“若,αβ>则tan tan αβ>”的逆命题为真命题;③命题“2,10x R x x ∃∈++<使得”的否定是“2,10x R x x ∀∈++≥都有”;④“1x >”是“220x x +->”的充分不必要条件.A .1 B. 2 C.3 D.415.已知a ,b∈R,下列四个条件中,使a <b 成立的必要而不充分的条件是( )A . |a|<|b|B . 2a <2bC . a <b ﹣1D . a <b+116.给定两个命题q p ,,若p ⌝是q 的必要不充分条件,则p 是q ⌝的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.命题p :0∀>x ,1sin -≥x ,则A .p ⌝:0∃>x ,sin 1x <-B .p ⌝:0∀>x ,1sin -<xC .p ⌝:0∃>x ,sin 1x >-D .p ⌝:0∀>x ,1sin -≥x18.设a R ∈,则1a =“”是1(1)3l ax a y +-=“直线:与直线2(1)l a x -:(23)2a y ++=互相垂直的( ).A 充分不必要条件 .B 必要不充分条件.C 充分必要条件 .D 既不充分也不必要条件19.两个事件对立是两个事件互斥的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分又不必要条件20.【湖南省衡阳市八中2014年高二上学期期末】若0a b >,,则“b a >”是“2233ab b a b a +>+”的( )A .充分非必要条件B .必要非充分条件C .充分且必要条件D .既非充分也非必要条件 21.若数列{}n a 满足212n na p a +=(p 为正常数,n N *∈),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件22.下列命题是真命题的是( )A. 若ac bc >,则b a >B. 若d c b a >>,,则bd ac >C. 若b a >,则ba 11< D. 若dbc ad c ->->,,则b a > 23.下列全称命题为真命题的是( )A .所有的质数是奇数B .x ∀∈R ,233x +≥C .x ∀∈R ,120x -=D .所有的平行向量都相等24.设α,β是两个不同的平面,m 是直线且m α⊂,“//m β”是“//αβ”的().A. 充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件25.已知命题p :x R ∀∈,sin 1x ≤,则( )A .¬p :x R ∃∈,sin 1x ≥B .¬p :x R ∀∈,sin 1x ≥C .¬p :x R ∃∈,sin 1x >D .¬p :x R ∀∈,sin 1x >26.下列四个命题中的真命题是( )A .∀x ∈R,x 2+3<0B .∀x ∈N,x 2≥1 C.∃x ∈Z ,使x 5<1 D .∃x ∈Q ,x 2=327.若命题“p q ∧”为假,且“q ⌝”为假,则( )A .“q p ∨”为假B . p 假C .p 真D .不能判断q 的真假28.已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是“2πϕ=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件29.下列四个命题:①||333x x x ≠⇒≠≠-或;②命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题是“a +b 不是偶数,则a 、b 都不是偶数”;③若有命题p :7≥7,q :l n 2>0, 则p 且q 是真命题; ④若一个命题的否命题为真,则它的逆命题一定是真. 其中真命题为( )A .①④B .②③C .②④D .③④30.已知命题:,cos 1p x x ∀∈≤R ,则( )A .:,cos 1p x x ⌝∃∈≥RB .:,cos 1p x x ⌝∀∈≥RC .:,cos 1p x x ⌝∃∈>RD .:,cos 1p x x ⌝∀∈>R31. “0>x ”是“0342>++x x ”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件32. “a≠1或b≠2”是“a+b≠3”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 33.设p 211x -≤,q:[]()(1)0x a x a --+≤,若q 是p 的必要而不充分条件, 则实数a 的取值范围是( )A.10,2⎡⎤⎢⎥⎣⎦ B .10,2⎛⎫ ⎪⎝⎭ C.()1,0,2⎡⎫-∞+∞⎪⎢⎣⎭ D .()1,0,2⎛⎫-∞+∞ ⎪⎝⎭34.如果命题p ∨q 为真命题,p ∧q 为假命题,那么( )A .命题p 、q 都是真命题B .命题p 、q 都是假命题C .命题p 、q 至少有一个是真命题D .命题p 、q 只有一个真命题35.已知命题p :x R ∀∈,||0x ≥,那么命题p ⌝为( )A .,0x R x ∃∈≤B .,0x R x ∀∈≤C. ,0x R x ∃∈< D .,0x R x ∀∈<36.设n m l ,,表示三条不同的直线,γβα,,表示三个不同的平面,给出下列四个命题: ①若βα⊥⊥⊥m l m l ,,,则βα⊥;②若β⊂m ,n 是l 在β内的射影,n m ⊥,则l m ⊥;③若m 是平面α的一条斜线,α∉A ,l 为过A 的一条动直线,则可能有α⊥⊥l m l 且; ④若γαβα⊥⊥,,则βγ//其中真命题的个数为( )个(A )1 (B )2 (C )3 (D )437. “m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 ( ) A. 充分必要条件 B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件38.下列命题中的假命题是 ( )A. 02,1>∈∀-x R xB. 2tan ,=∈∃x R xC. 1lg ,<∈∃x R xD. ()01,2>-∈∀*x Nx 39.下列说法错误的是( ). A .“21sin =θ”是“ 30=θ”的充分不必要条件 B .命题“若0=a 则0=ab ”否命题是“若0≠a 则0≠ab ” C .若命题,01,:2<+-∈∃ x x R x p 则01,:2≥+-∈∀⌝x x R x p D .如果命题p ⌝与命题q p 或都是真命题,那么命题q 一定是真命题40. 3.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件41.“sin cos αα=”是“cos20α=”的( ).A .充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要42.命题“若b a >,则),,(22R c b a bc ac ∈>”与它的逆命题、否命题、逆否命题中,真命题的个数为( ).A .0B .2C .3D .443.条件42:<<-x p ,条件:(2)()0q x x a ++<;若p 是q 的充分而不必要条件,则a 的取值范围是( )A .(4,)+∞B .(,4)-∞-C .(,4]-∞-D . [4,)-+∞44.已知命题:p ∧q 为真,则下列命题是真命题的是( )A .(p ⌝)∧(q ⌝)B .(p ⌝)∨(q ⌝)C .p ∨(q ⌝)D .(p ⌝)∧q45.下列命题中,正确命题的个数为( )①若,则或”的逆否命题为“若且,则; ②函数的零点所在区间是;③是的必要不充分条件A .0B .1C .2 D. 346."2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ). A .充分条件不必要 B .必要不充分条件C .充要条件D .既不充分也不必要条件47.下列判断错误..的是( )A .“3210x x --≤对x R ∈恒成立”的否定是“存在0x R ∈使得320010x x -->”B .“22am bm <”是“a b <”的充分不必要条件C .若n 组数据()()n n y x y x ,,11⋅⋅⋅的散点都在12+-=x y 上,则相关系数1-=rD .若“p q Λ”为假命题,则,p q 均为假命题48.设是两个单位向量,其夹角为θ,则“36πθπ<<”是“1||<-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件49.命题“若2015x >,则0x >”的否命题是( )A .若2015x >,则0x ≤B .若0x ≤,则2015x ≤C .若2015x ≤,则0x ≤D .若0x >,则2015x >50.设集合}30|{},01|{<<=<-=x x B x xx A ,那么""m A ∈是""m B ∈的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件51. “21<-x 成立”是“0)3(<-x x 成立”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 52.下列命题中错误..的是( ) A .,(3)(7)(4)(6)x R x x x x ∀∈++≤++B .,235x R x x ∃∈-++=C .,x R ∀∈若,a b ≥则22ax bx ≥D .22,22x R x ∃∈=+53.已知命题:p n ∃∈N ,104n n +<,则p ⌝为( ) A .n ∃∈N ,104n n +< B .n ∀∈N ,104n n+> C .n ∃∈N ,104n n +≤ D .n ∀∈N ,104n n+≥ 54. “||2b <是“直线3y x b =+与圆2240x y y +-=相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件55. “直线l 垂直于平面α内两直线a ,b ”是“直线l ⊥平面α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件56.已知命题:p 全等三角形面积相等;命题:q 矩形对角线互相垂直.下面四个结论中正确的是( )A .p q ∧是真命题B .p q ∨是真命题C .p ⌝是真命题D .q ⌝是假命题57. “A ,B ,C ,D 四点不在同一平面内”是“A ,B ,C ,D 四点中任意三点不在同一直线上”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件58.命题:p 20x x -<是命题:02q x <<的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件59.若,R αβ∈,则90αβ+=是sin sin 1αβ+>的( )A .充分而不必要条件B .必要而不充分条件C .充耍条件D .既不充分也不必要条件60.以下命题正确的个数是( )①命题“R x ∀∈,sin 0x >”的否定是“R x ∃∈,sin 0x ≤”.②命题“若2120x x +-=,则4x =”的逆否命题为“若4x ≠,则2120x x +-≠”. ③若p q ∧为假命题,则p 、q 均为假命题.A .0个B .1个C .2个D .3个61.已知命题p :实数m 满足m 2+12a 2<7am(a>0),命题q :实数m 满足方程21x m -+22y m -=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为________.62.对于函数1()93x x f x m +=-⋅,若存在实数0x 使得00()()f x f x -=-成立,则实数m 的取值范围是 .63.下列命题中,①命题“2(0,2),22x x x ∃∈++<0” 的否定是“2(0,2),22x x x ∀∈++>0”; ②12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件; ③一个命题的逆命题为真,它的否命题也一定为真;④“9<k <15”是“方程221159x y k k +=--表示椭圆”的充要条件. ⑤设P 是以1F 、2F 为焦点的双曲线一点,且120PF PF ⋅=,若21F PF ∆的面积为9,则双曲线的虚轴长为6;其中真命题的是 (将正确命题的序号填上)64.命题“00,20R x x ∃∈≤”的否定是 .65.已知命题p :220R x x ax a ∃∈++≤,,则命题p 的否定是_________________;若命题p 为假命题,则实数a 的取值范围是_______________.66.下列结论:①若命题00:,tan 1;p x R x ∃∈=命题,01,:2>+-∈∀x x R x q 则命题""q p ⌝且是假命题; ②已知直线,01:,013:21=++=-+by x l y ax l 则21l l ⊥的充要条件是3-=b a ; ③命题“若,0232=+-x x 则1=x ”的逆否命题为:“若1≠x 则.0232≠+-x x ”④命题“若0xy =,则0x =或0y =”的否命题为“若0xy ≠则0x ≠或0y ≠”⑤命题“R,20x x ∀∈>”的否定是“00R,20x x ∃∈≤”其中正确结论的序号是.____________(把你认为正确结论的序号都填上) 67.已知命题p :“对∀x ∈R,∃m ∈R 使4x -2x +1+m =0”,若命题非p 是假命题,则实数m 的取值范围是__________.68.已知命题:p R x ∃∈,220x x a ++≤,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)69.命题“0,x ∀>都有sin 1x ≥-”的否定: .70.已知a 、b 、c 是三个非零向量,命题“若a b =,则a c b c ⋅=⋅”的逆命题是 命题(填真或假).71.给出下列四个命题:①若a b <,则22a b <;②若1a b ≥>-,则11a b a b≥++; ③若正整数,m n 满足m n <,则2n m n m -≤(); ④若0x >,且1x ≠,则1ln +2x lnx≥. 其中真命题的序号是________.(请把真命题的序号都填上)72.命题“(,0)x ∃∈-∞,使得34x x <”的否定是 .73.命题“能被5整除的数,末位是0”的否定是________.74.写出命题“若a b >,则1a b +>”的逆否命题: .75.在下列结论中,①""q p ∧为真是""q p ∨为真的充分不必要条件②""q p ∧为假是""q p ∨为真的充分不必要条件③""q p ∨为真是""p ⌝为假的必要不充分条件④""p ⌝为真是""q p ∧为假的必要不充分条件正确的是 .76.命题P :直线2y x =与直线20x y +=垂直;命题Q :异面直线在同一个平面上的射影可能为两条平行直线,则命题P Q ∧为 命题(填真或假).77.已知x y R ∈、,那么命题“若x y 、中至少有一个不为0,则220x y +≠.”的逆否命题是 .78.已知p :112x ≤≤,q :()(1)0x a x a --->,若p 是q ⌝的充分不必要条件,则实数a 的取值范围是 .79.已知命题p :12=x ,命题q :1=x ,则p 是q 的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)80.已知}2|1||{<-=x x A ,}11|{+<<-=m x x B ,若B x ∈成立的一个充分不必要条件是A x ∈,则实数m 的取值范围 .81.“函数()sin()f x x ϕ为奇函数” 是“0ϕ”的 条件.82.命题“∃实数,x y ,使得1x y +>”的否定是 .83.命题0:p x R ∃∈,020x ≤,命题:(0,),sin q x x x ∀∈+∞>,其中真命题的是 ;命题p的否定是84.若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 . 85.已知,:64≤-x p 032≥+x x q :,若命题“ p 且q ”和“¬p ”都为假,求x 的取值范围.86.若p :q :且是的充分不必要条件,求实数的取值范围.87.已知命题p :关于x 的一元二次方程022=++m x x 没有实数根,命题q :函数)161lg()(2m x mx x f +-=的定义域为R ,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.88.已知命题1:132x p --≤;22:210,(0)q x x m m -+-≤> 若p ⌝是q ⌝的充分非必要条件,试求实数m 的取值范围.89.设p :实数x 满足x 2-4ax +3a 2<0,其中a≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.90.已知命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>,命题P 且Q 为假,P 或Q 为真,求实数a 的取值范围.91.设有两个命题::p 关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;:q 函数f (x )=-(4-2a )x在(-∞,+∞)上是减函数.若命题p q ∨为真,p q ∧为假,则实数a 的取值范围是多少?92.已知434:2≤⎪⎭⎫ ⎝⎛-x p ,)0(012:22>≤-+-m m x x q 若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围.93.已知0c >,设p :函数xy c =在R 上单调递减,q :不等式21x x c +->的解集为R ,如果p ∧q 是假命题,p ∨q 真命题,求c 的取值范围94.已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x N ∈是x M ∈的必要条件,求a 的取 值范围.95.已知p:01322≤+-x x ,q :0)1()12(2≤+++-a a x a x(1)若a=21,且q p ∧为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.96.已知命题p :方程210x mx ++=有两个不相等的实根;q :不等式244(2)10x m x +-+>的解集为R ;若p 或q 为真,p 且q 为假,求实数m 的取值范围。

高中数学选修2-1练习题

高中数学选修2-1练习题

常用逻辑用语一、选择题1.命题“如果x≥a 2+b 2,那么x≥2ab”的逆否命题是( ) A .如果x<a 2+b 2,那么x<2ab B .如果x≥2ab,那么x≥a 2+b 2 C .如果x<2ab,那么x<a 2+b 2 D .如果x≥a 2+b 2,那么x<2ab 2.三角形全等是三角形面积相等的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分又不必要条件 3.下列四个命题中,真命题是( ) A .2是偶数且是无理数 B .8≥10 C .有些梯形内接于圆 D .∀x ∈R,x 2-x+1≠0 4.命题“所有奇数的立方是奇数”的否定是( ) A .所有奇数的立方不是奇数 B .不存在一个奇数,它的立方是偶数 C .存在一个奇数,它的立方是偶数 D .不存在一个奇数,它的立方是奇数 二、填空题5.命题“若a=-1,则a 2=-1”的逆否命题是______________________. 6.b=0是函数f(x)=ax 2+bx+c 为偶函数的______________________.7.全称命题“∀a ∈Z,a 有一个正因数”的否定是________________________. 8.特称命题“有些三角形的三条中线相等”的否定是______________________. 9.设p :|5x -1|>4;2210231x x x x ++³-+,则非p 是非q 的______ ___条件.三、解答题10.求证:a+2b=0是直线ax+2y+3=0和直线x+by+2=0互相垂直的充要条件.11.已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数m 范围.12.给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4; q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4;q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).圆锥曲线练习题一.选择题1.若椭圆经过原点,且焦点分别为12(1,0),(3,0)F F ,则其离心率为( ) A.34 B.23 C.12 D.142.过抛物线y 2=4x 的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则|AB|等于( )A.10B.8C.6D.43.若双曲线x 24+y2k1的离心率(1,2)e ∈,则k 的取值范围是( )A.(),0-∞B.()3,0-C.()12,0-D.()60,12-- 4.与y 轴相切且和半圆x 2+y 2=4(0≤x ≤2)内切的动圆圆心的轨迹方程是( ) A.()()24101y x x =--<≤ B.()()24101y x x =-<≤C.()()24101y x x =+<≤ D.()()22101yx x =--<≤5.过点M(-2,0)的直线L 与椭圆2222x y +=交于12,P P 两点,设线段12P P 的中点为P ,若直线l 的斜率为11(0)k k ≠,直线OP 的斜率为2k ,则12k k 等于( )A.2-B.2C.12D.-126.如果方程x 2-p +y2q =1表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是( )A.2212xyq pq+=+ B.2212xyq pp+=-+ C.2212xyp qq+=+ D.2212xyp qp+=-+二.填空题7.椭圆x 212+y 23=1的焦点分别是12F ,F ,点P 在椭圆上,如果线段1P F 的中点在y 轴上,那么1PF 是2PF 的 倍.8.椭圆x 245+y 220=1的焦点分别是12F ,F ,过原点O 做直线与椭圆交于A ,B 两点,若∆ABF 2的面积是20,则直线AB 的方程是 .9.与双曲线2244x y -=有共同的渐近线,并且经过点(2的双曲线方程是10.已知直线y=kx+2与双曲线x 2-y 2=6的右支相交于不同的两点,则k 的取值范围是 .三.解答题11.抛物线y=-12x 2与过点M(0,-1)的直线L 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线L 的方程.12.已知中心在原点,一焦点为F(0,50)的椭圆被直线:32l y x =-截得的弦的中点横坐标为12,求此椭圆的方程.13.21,F F 是椭圆x 29+y27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45︒,求∆12AF F 的面积.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题11. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.12. 解:设所求的椭圆为x 2a 2+y2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题13. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.14. 解:设所求的椭圆为x 2a 2+y 2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.空间向量练习题一.选择题1.直棱柱ABC -A 1B 1C 1中,若CA →=a →,CB →=b →,CC 1→=c →,则A 1B →=( )A .a →+b →-c →B .a →-b →+c →C .-a →+b →+c →D .-a →+b →-c →2.已知A ,B ,C 三点不共线,对平面ABC 外的任意一点O ,下列条件中能确定点M 与A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → C .OM →=2OA →-OB →-OC →C .OM →=OA →+12OB →+13→D .OM →=13OA →+13OB →+13OC →3.若向量m →同时垂直向量a →和b →,向量n →=λa →+μb →(λ,μ∈R, λ,μ≠0),则( )A .m →∥n →B .m →⊥n → C.m →与n →不平行也不垂直 D .以上均有可能 4.以下四个命题中,正确的是( )A .若OP →=12OA →+13OB →,则P ,A ,B 三点共线B .若{a →,b →,c →}为空间一个基底,则{a →+b →,b →+c →,c →+a →}构成空间的另一个基底 C .|(a →⋅b →)c →|=|a →|⋅|b →|⋅|c →|D .∆ABC 为直角三角形的充要条件是AB →⋅AC →=05.已知a →=(λ+1,0,2λ),b →=(6,2μ-1,2),a →∥b →,则λ和μ的值分别为( ) A .15,12B .5,2C .-15,-12D .-5,-2二.填空题6.若a →=(2,-3,1),b →=(2,0,3),c →=(0,2,2),则a →⋅(b →+c →)=________.7.已知G 是∆ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值为_______. 8.已知|a →|=1,|b →|=2,<a →,b →>=60︒,则|a →-25(a →+2b →)|=________.三.解答题9.若向量(a →+3b →)⊥(7a →-5b →),(a →-4b →)⊥(7a →-2b →),求a →与b →的夹角.10.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试求实数λμν,,,使4123a a a a λμν=++成立.11.正三棱柱111-ABC A B C 的底面边长为a ,求1AC 与侧面11ABB A 所成的角. 12.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x ,1,2).依题意πcos 422=⇒=.2x =-∴2x =+.2AE =-∴空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x,1,2).依题意πcos 422=⇒=2x =-∴2x =+.2AE =-∴。

【步步高】-高中数学 第3章 习题课空间向量的应用同步训练 苏教版选修2-1

【步步高】-高中数学 第3章 习题课空间向量的应用同步训练 苏教版选修2-1

习题课 空间向量的应用一、基础过关 1.如图所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綊12AD ,BE 綊12FA ,G 、H 分别为FA 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (3)设AB =BE ,证明:平面ADE ⊥平面CDE . 2.如图所示,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的余弦值. 3.如图所示,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,OA ⊥底面ABCD ,OA =2,M为OA 的中点,N 为BC 的中点. (1)证明:直线MN ∥平面OCD ; (2)求异面直线AB 与MD 所成角的大小. 二、能力提升 4.如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,PA =AD =2,AC =1. (1)证明:PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长. 5.等边△ABC 中,D ,E 分别是AC ,AB 的中点,沿DE 将△ADE 折起,使平面ADE ⊥平面BCDE (如图所示). (1)求证:平面ABC ⊥平面ABE ;(2)求直线AC 与平面ABE 所成角的正弦值. 三、探究与拓展 6.如图,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P —AC —D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.答案1. (1)证明 由题设知,FA 、AB 、AD 两两互相垂直.以A 为坐标原点,射线AB 为x 轴正方向,以射线AD 为y 轴正方向,以射线AF 为z 轴正方向,建立如图所示的空间直角坐标系. 设AB =a ,BC =b ,BE =c ,则由题设得A (0,0,0),B (a,0,0),C (a ,b,0),D (0,2b,0),E (a,0,c ),G (0,0,c ),H (0,b ,c ).所以GH →=(0,b,0),BC →=(0,b,0),于是GH →=BC →.又点G 不在直线BC 上, 所以四边形BCHG 是平行四边形.(2)解 C 、D 、F 、E 四点共面.理由如下:由题设知,F (0,0,2c ),所以EF →=(-a,0,c ),CH →=(-a,0,c ),EF →=CH →.又C ∉EF ,H ∈FD , 故C 、D 、F 、E 四点共面.(3)证明 由AB =BE ,得c =a ,所以CH →=(-a,0,a ),AE →=(a,0,a ). 又AD →=(0,2b,0),因此CH →·AE →=0, CH →·AD →=0,即CH ⊥AE ,CH ⊥AD . 又AD ∩AE =A ,所以CH ⊥平面ADE . 由CH ⊂平面CDE , 得平面ADE ⊥平面CDE . 2. (1)证明 ∵PA ⊥底面ABCD ,∴PA ⊥AB .又∵AB ⊥AD , ∴AB ⊥平面PAD .∴AB ⊥PD . 又∵AE ⊥PD ,∴PD ⊥平面ABE . 故BE ⊥PD . (2)解 如图所示,以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a,0)、(0,2a,0).∵PA ⊥底面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°. 于是,在Rt△AED 中,由AD =2a , 得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt△AFE 中,由AE =a ,∠EAF =60°,得AF =12a ,EF =32a .∴E ⎝ ⎛⎭⎪⎫0,12a ,32a .于是AE →=⎝ ⎛⎭⎪⎫0,12a ,32a ,CD →=(-a ,a,0).设异面直线AE 与CD 所成角为θ,则cos θ=|AE →·CD →||AE →||CD →|=12a 2a ·2a =24.∴AE 与CD 所成角的余弦值为24. 3. (1)证明作AP ⊥CD 于点P ,连结OP .如图,分别以AB 、AP 、AO 所在直线为x 、y 、z 轴建立空间直角坐标系.A (0,0,0),B (1,0,0),P ⎝ ⎛⎭⎪⎫0,22,0,D ⎝⎛⎭⎪⎫-22,22,0,O (0,0,2),M (0,0,1),N ⎝ ⎛⎭⎪⎫1-24,24,0. MN →=⎝ ⎛⎭⎪⎫1-24,24,-1,OP →=⎝ ⎛⎭⎪⎫0,22,-2, OD →=⎝ ⎛⎭⎪⎫-22,22,-2.设平面OCD 的法向量为n =(x ,y ,z ),则n ·OP →=0,n ·OD →=0. 即⎩⎪⎨⎪⎧22y -2z =0,-22x +22y -2z =0.取z =2,解得n =(0,4,2).∵MN →·n =⎝ ⎛⎭⎪⎫1-24,24,-1·(0,4,2)=0,又MN ⊄平面OCD ,∴MN ∥平面OCD .(2)解 设AB 与MD 所成角为θ. ∵AB →=(1,0,0),MD →=⎝ ⎛⎭⎪⎫-22,22,-1,∴cos θ=|AB →·MD →||AB →|·|MD →|=12,∴θ=π3.∴AB 与MD 所成角的大小为π3.4. (1)证明如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝ ⎛⎭⎪⎫-12,12,0,P (0,0,2).易得PC →=(0,1,-2),AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD .(2)解 PC →=(0,1,-2), CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1). 可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m ·n |m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)解 设点E 的坐标为(0,0,h ), 其中h ∈[0,2].由此得BE →=⎝ ⎛⎭⎪⎫12,-12,h .由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →|·|CD →|=3212+h 2×5=310+20h 2, 所以310+20h2=cos 30°=32, 解得h =1010,即AE =1010. 5. (1)证明 取DE 的中点O ,取BC 的中点G ,连结AO ,OG ,则AO ⊥DE ,OG ⊥DE .∵平面ADE ⊥平面BCDE ,平面ADE ∩平面BCDE =DE , ∴AO ⊥平面BCDE ,∴AO ⊥OG . 建立如图所示的空间直角坐标系, 设BC =4,则DE =2,AO =OG = 3.所以A (0,0,3),D (1,0,0),E (-1,0,0),B (-2,3,0),C (2,3,0). 设平面ABE 的法向量为m =(x 1,y 1,z 1), ∵EA →=(1,0,3),EB →=(-1,3,0), 由⎩⎪⎨⎪⎧ m ⊥EA →,m ⊥EB→,得⎩⎨⎧x 1+3z 1=0,-x 1+3y 1=0.令y 1=1,得m =(3,1,-1), 设平面ABC 的法向量为n =(x 2,y 2,z 2), ∵BC →=(4,0,0),AC →=(2,3,-3), 由⎩⎪⎨⎪⎧n ⊥BC →,n ⊥AC→ 得⎩⎨⎧x 2=0,2x 2+3y 2-3z 2=0.令y 2=1,得n =(0,1,1),∵m·n =(3,1,-1)·(0,1,1)=0, ∴平面ABC ⊥平面ABE .(2)解 由(1)得cos 〈AC →,m 〉=AC →·m |AC →||m |=23+3+34+3+3·3+1+1=265.∴直线AC 与平面ABE 所成角的正弦值为265.6. (1)证明 连结BD ,设AC 交BD 于点O ,由题意知SO ⊥平面ABCD ,以O 点为坐标原点,OB →、OC →、OS →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O —xyz 如图所示.设底面边长为a ,则高SO =62a . 于是S (0,0,62a ),D ⎝ ⎛⎭⎪⎫-22a ,0,0, C ⎝ ⎛⎭⎪⎫0,22a ,0,B ⎝ ⎛⎭⎪⎫22a ,0,0, OC →=⎝ ⎛⎭⎪⎫0,22a ,0, SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,∴OC →·SD →=0.故OC ⊥SD , 因此AC ⊥SD .(2)解 由题意知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a ,设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,故所求二面角P —AC —D 的大小为30°. (3)解 在棱SC 上存在一点E 使BE ∥平面PAC .由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a , BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0,设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a 1-t ,62at .由BE →·DS →=0,得t =13,即当SE ∶EC =2∶1时,BE →⊥DS →. 而BE 不在平面PAC 内, 故BE ∥平面PAC .。

高中数学2-1、2-2综合测试 (31)

高中数学2-1、2-2综合测试 (31)

数学选修2-1和2-2综合测试一、选择题(本大题共10小题,每小题5分)⒈有下面四个命题:⑪方程2x-5=0在自然数集N中无解⑫方程2x²+9x-5=0在整数集Z中有一解,在有理数集Q中有两解⑬x=i是方程x²+1=0在复数集C中的一个解⑭x的四次方=1在实数R上有两解,在复数集C中也有两解其中正确命题的个数为()(复数的定义)A、1B、2C、3D、42、点P是椭圆x²/5+y²/4=1上的一点,F1和F2是焦点,且F1PF2=30°,求△F1PF2的面积()(S△F1PF2=b²tanα/2)A、4/(2+√3)B、4/(2+√2)C、2D、3/23、a,b为非零向量,“a⊥b”是“函数f(x)=(xa+b)*(xb+a)为一次函数”的()(常用逻辑用语的辨别)A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件4、已知P是椭圆x²/a²+y²/b²=1(a>b>0)上的一动点,且P椭圆长轴两顶点连线的斜率之积为-1/2,则椭圆的离心率为()(椭圆的离心率)A、√3/2B、√2/2C、1/2D、√3/35、在直三棱柱ABC-A1B1C1中,∠BAC=π/2,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的最小值( )(建立空间直角坐标系)A.√5/5 B.1 C.2√5/5 D.3√5/56、设函数f(x)在实数集R上的导函数是f'(x),且2f(x)+xf'(x)>x^2 则下面不等式恒成立的是?(导数与函数结合)A.f(x)>0B.f(x)<0C.f'(x)>xD.f'(x)<x7、已知f(x)=x^3+x(x属于R),a,b,c也属于R,且a+b大于0,b+c 大于0,c+a大于0,则f(a)+f(b)+f(c)的符号为(推理与证明)A.正B.负C.等于0 D.无法确定8、7.“因为指数函数y=ax是增函数(大前提),而y=x是指数函数(小前提),所以y=x是增函数(结论)”,上面推理的错误是( )(三段论的辨析)A.大前提错导致结论错B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提错都导致结论错9、(微积分应用)10、某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a元定期储蓄,若年利率为p且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为()(归纳推理应用)A.a(1+p)7B.a(1+p)8C.ap[(1+p)7-(1+p)]D.ap[(1+p)8-(1+p)]二、填空题(本大题共4小题,每小题5分)11、已知x是实数,y是纯虚数,且满足(2x-1)+(3-y)i=y-I,则x,y的值分别是(复数的计算)12、设A,B两点的坐标是(-a,0)(a,0),若动点M满足kMA*kMB=-1,则动点M的轨迹方程为(轨迹方程及x的取值范围)13、已知F是双曲线x²/4-y²/12=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为(双曲线的性质)14、观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,……由以上等式推测到一个一般的结论:对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1=__________________.(考查归纳推理的能力)三、解答题(共6小题,15~18题每题13分,19,20题每题14分)15、已知ab≠0求证:a+b=1的充要条件是a³-b³+ab-a²-b²=0(充要条件的证明)16、求证:ln(n+1)>1/3+1/5+1/7+...+1/(2n+1) (n∈R+)(数学归纳法和导数结合)17、(微积分与导数相结合)18、(空间直角坐标系解决几何问题).19、已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P 作直线l的垂线,垂足为Q,且向量QP*QF-FP*FQ=0(椭圆综合应用),⑪求动点P的轨迹C的方程⑫已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于AB两点,设||DA|=L1,|DB|=L2,求L1/L2+L2/L1的最大值20、设函数f(x)=(a/3)x^3+bx^2+4cx+d的图象关于原点对称.y=f(x)的图象在点P(1,m)处的切线斜率为-6.且当x=2时函数f(x)有极值.(导数综合应用)1.求a.b.c.d的值2.若x1,x2属于[-1,1].求证|f(x1)-f(x2)|<=44/3答案解析1、选C.有三解1、-1、i²2、选A.S△F1PF2=b²tanα/2=4×[1/(2+√3)]= 4/(2+√3)3、选B. 函数f(x)=(xa+b)*(xb+a)为一次函数﹤=﹥a⊥b且|a|≠|b|4、选B.设P(x0,y0),则[y0/(x0-a) ] ×[y0/(x0-a]= ﹣1/2 化简得x0²/a²+2y0²/a²=1又P在椭圆上,所以x0²/a²+y0²/b²=1 所以a²=2b²,e=√2/25、选A.以A为原点,AB,AC,AA1为x,y,z轴j建立坐标系选A.D(0,y,0) F(x,0,0) ,G(1/2,0,1),E(0,1,1/2)向量GD=(-1/2,y,-1), 向量EF=(x,-1,-1/2)∵GD⊥EF ∴-x/2-y+1/2=0∴y=1/2-x/2 (0<x<1)|DF|²=x²+y²=x²+(1/2-x/2)²=5/4*x²-1/2x+1/4=5/4(x²-2/5x)+1/4=5/4(x-1/5)²+1/5≥1/5∴|DF|min=√5/56、选A.反正法:设f(x)=<0 则0<x^2<2f(x)+xf'(x)=<xf(x) 因为R上都成立如果x<0 f'(x)<0 x<0时减函数 x>0 f'(x)>0 x>0是为增所以f(x)>f(0) 令原式中x=0则f(x)>0 即f(x)>f(x)>0 矛盾则f(x)>0恒成立 f(x)>1/2*x(x-f'(x)) 因为f(x)>0恒成立则 1/2*x(x-f'(x))=<07、选A2[f(a)+f(b)+f(c)]=(a^3+b^3+a+b)+(b^3+c^3+b+c)+(c^3+a^3+c+a )=(a+b)(a^2-ab+b^2+1)+(b+c)(b^2-bc+c^2+1)+(c+a)(c^2-ca+a^ 2+1)因为(a+b)(a^2-ab+b^2+1)=(a+b)[(a-b/2)^2+3b^2/4+1]>0同理(b+c)(b^2-bc+c^2+1)>0(c+a)(c^2-ca+a^2+1)>0所以2[f(a)+f(b)+f(c)]>08、选A 当a﹥0时y=ax为增函数,当a﹤0时y=ax为减函数9、选D.∫f(ax+b)dx=(1/a)∫f(ax+b)d(ax+b)令ax+b=t则,原式=(1/a)∫f(t)dt已知:∫f(x)dx=F(x)+C所以,原式=(1/a)F(t)+C将t=ax+b代入,就有:原式=(1/a)F(ax+b)+C10、选D.到2006年5月10日存款及利息为a(1+p).到2007年5月10日存款及利息为a(1+p)(1+p)+a(1+p)=a[(1+p)2+(1+p)]到2008年5月10日存款及利息为a[(1+p)2+(1+p)](1+p)+a(1+p)=a[(1+p)3+(1+p)2+(1+p)]……所以到2012年5月10日存款及利息为a[(1+p)7+(1+p)6+…+(1+p)]=a(1+p)[1-(1+p)7]1-(1+p)=ap[(1+p)8-(1+p)].11、-3/2和4i设y=bi(b∈R且b≠0)则(2x-1)+(3-bi)i=bi-i整理得(2x-1+b)+3i=(b-1)i∴2x-1+b=0且b-1=3解得x=-3/2 y=4i12、x²+y²=a²(x≠±a)设M为(x,y) x≠±a∵kMA*kMB=-1∴y/(x+a) ×y/(x-a)=-1∴x²+y²=a²(x≠±a)13、9已知F(-4,0)设F1为双曲线的右焦点,则F1(4,0),点A(1,4)在双曲线两支之间,由双曲线定义,|PF|-|PF1|=2a=4,而|PF|+|PA|=4+|PF1|+|PA|≥4+|AF1|=4+5=9当且仅当A,P,F1三点共线时,取等号14、24n-1+(-1)n22n-1等式右端第一项指数3,7,11,15,…构成的数列通项公式为an=4n-1,第二项指数1,3,5,7,…的通项公式bn=2n-1,两项中间等号正、负相间出现,∴右端=24n-1+(-1)n22n-1.15、必要性:∵a+b=1a+b-1=0∴(a+b)(a²-ab+b²)-(a²-ab+b²)=(a²-ab+b²)(a+b-1)=0充分性:a³+b³+ab-a²-b²=0(a²-ab+b²)(a+b-1)=0∵ab≠0∴a≠0且b≠0∴a²-ab+b²=(a-b/2) ²+(3/4)b²﹥0∴a+b-1=0即a+b=1综上所述:当ab≠0时a+b=1的充要条件是a³-b³+ab-a²-b²=0 16、17、⑪设tx^2=uφ(x)=(1/x^2)∫(0,x^2sinx)f(u)du.φ'(x)=[xf(x^2sinx)(2xsinx+x^2cosx)-2∫(0,x^2sinx)f(u)du]/x^3 (x不等于0)⑫x=0时,φ(0)=0,limφ(x)/x=lim∫(0,x^2sinx)f(u)du/x^3=limf(x^2sinx)(2xsinx+x^2cosx)/3x^2=f(0)=2 x趋于0时,limφ'(x)=lim[xf(x^2sinx)(2xsinx+x^2cosx]/x^3-2lim∫(0,x^2sinx)f(u)du]/ x^3=f(0)-2limf(x^2sinx)(2xsinx+x^2cosx)/3x^2=-2在x=0处不连续18、19、⑪设P(x,y), Q(x,-1)∵QP*FQ-FP*FQ=0∴(0,y+1)●(-x,2)-(x,y-1)●(x,-2)=0∴2(y+1)-(x²-2y+2)=0∴轨迹为C:x²=4y㈡设M(t,t²/4),|MD|²=t²+(2-t²/4)²圆M:(x-t)²+(y+t²/4)²=t²+(2-t²/4)²令y=0,得(x-t)²=4,x=t±2∴A(t-2,0),B(t+2,0)l1=√(t²-4t+8),l2=√(t²+4t+8)∴l1/l2+l2/l1=(l1²+l2²)/(l1l2)=[(t²-4t+8)+ (t²+4t+8)]/ √[(t²+4t+8)(t²-4t+8)]=(2t²+16)/√[(t²+8)²-16t²]=(2t²+16)/√(t⁴+64 )=2√[(t²+8)²/(t⁴+64)]=2√[(t⁴+64+16t²)/(t⁴+64)]=2√[1+16t²/(t⁴+64)]=2√[1+16/(t²+64/t²)]∵t²+64/t²≥2√64=16∴∴1+16/(t²+64/t²)≤220、⑪函数f(x)=(a/3)x^3+bx^2+4cx+d的图象关于原点对称,则f(0)=0,所以d=0①f(x)=x[(a/3)x²+bx+4c]②,f´(x)=ax²+2bx+4c③,当x=2时函数f(x)有极值,根据对称性,当x=-2时函数f(x)也有极值,x=±2是函数的两个极值点,也是f´(x)=ax²+2bx+4c=0的两个根,代入得:4a±4b+4c=0,解得b=0④,c=-a⑤,代入②函数f(x)化为:f(x)=(a/3)x(x²-12)⑥,同时f´(x)=a(x²-4),又y=f(x)的图象在点P(1,m)处的切线斜率为-6, 所以f´(1)=a(1²-4)=-6,所a=2⑦,由⑤,c=-2⑧,于是f(x)=(2/3)x(x²-12)⑨,f´(x)=2(x²-4)⑩,a=2 b=0 c=-2 d=0⑫.当x∈[-1,1]时,由⑩f´(x)<0,f(x)单调递减,x1,x2属于[-1,1],所以|f(x1)-f(x2)|≤f(-1)-f(1)由⑨,f(-1)=22/3,f(1)=-22/3所以|f(x1)-f(x2)|≤22/3-(-22/3)=44/3。

高中数学选修2-1各章节课时同步练习及详解

高中数学选修2-1各章节课时同步练习及详解

第1章1.1.1一、选择题(每小题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③大边所对的角大于小边所对的角;④2是无理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“最高气温30 ℃时我就开空调”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个角是直角,则这两个角相等”;B所给语句是命题;C的反例可以是“用边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正方形}是{x|x是平行四边形}的子集吗?④3小于2;⑤矩形的对角线相等;⑥9的平方根是3或-3;⑦2不是质数;⑧2既是自然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选一个来判断,即可得出结果,①③为真命题.故选B.答案: B二、填空题(每小题5分,共10分) 5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ; ②函数y =x 3在R 上既是奇函数又是增函数; ③函数y =f (x )的图象与直线x =a 至多有一个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 其中正确命题的序号是________.解析: ①∠A >∠B ⇒a >b ⇒sin A >sin B .②③易知正确. ④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π2的图象. 答案: ①②③6.命题“一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案: 一元二次方程ax 2+bx +c =0(a ≠0) 此方程有两个不相等的实数根 假 三、解答题(每小题10分,共20分) 7.指出下列命题的条件p 和结论q : (1)若x +y 是有理数,则x ,y 都是有理数;(2)如果一个函数的图象是一条直线,那么这个函数为一次函数. 解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数. (2)条件p :一个函数的图象是一条直线,结论q :这个函数为一次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.解析: 命题p 是真命题,则x 2-2x -2≥1, ∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4. ∴x ≥4或x ≤-1. 尖子生题库 ☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满足的条件. 方程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1<x 2<0,则a x 1>a x 2,求a 满足的条件. 解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时, 方程有解x =-1b.当a ≠0时,方程为一元二次方程,有解的条件为 Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,方程ax 2+bx +1=0有解. (2)∵命题当x 1<x 2<0时,a x 1>a x 2为假命题, ∴应有当x 1<x 2<0时,a x 1≤a x 2. 即a x 2-x 1x 1x 2≤0.∵x 1<x 2<0,∴x 2-x 1>0,x 1x 2>0, ∴a ≤0.第1章 1.2一、选择题(每小题5分,共20分) 1.“|x |=|y |”是“x =y ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析: |x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |. 故|x |=|y |是x =y 的必要不充分条件. 答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当x =2k π+π4时,tan x =1,而tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成立的充分不必要条件.故选A.答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析: ∵x ≥2且y ≥2, ∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;而x 2+y 2≥4不一定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成立,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 由题意得:故D 是A 的必要不充分条件 答案: B二、填空题(每小题5分,共10分)5.下列命题中是假命题的是________.(填序号) (1)x >2且y >3是x +y >5的充要条件 (2)A ∩B ≠∅是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形 解析: (1)因x >2且y >3⇒x +y >5,x +y >5⇒/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件. (2)因A ∩B ≠∅⇒/ A B, A B ⇒A ∩B ≠∅. 故A ∩B ≠∅是A B 的必要不充分条件. (3)因b 2-4ac <0⇒/ ax 2+bx +c <0的解集为R ,ax 2+bx +c <0的解集为R ⇒a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件. (4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形. 答案: (1)(2)(3) 6.设集合A =⎩⎨⎧⎭⎬⎫x |xx -1<0,B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的________条件.解析: A =⎩⎨⎧⎭⎬⎫x |xx -1<0={x |0<x <1}.m ∈A ⇒m ∈B ,m ∈B ⇒/ m ∈A .∴“m ∈A ”是“m ∈B ”的充分不必要条件. 答案: 充分不必要三、解答题(每小题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件, 则p ⇒q 但q ⇒/p .∵p :12≤x ≤1,q :a ≤x ≤a +1.∴a +1≥1且a ≤12,即0≤a ≤12.∴满足条件的a 的取值范围为⎣⎢⎡⎦⎥⎤0,12.8.求证:0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件.证明: 充分性:∵0<a <45,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0, 则ax 2-ax +1-a >0对一切实数x 都成立. 而当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对一切实数x 都成立. 必要性:∵ax 2-ax +1-a >0对一切实数x 都成立,∴a =0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a 1-a <0.解得0≤a <45.故0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件.尖子生题库 ☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析: 先化简B ,B ={x |(x -2)[x -(3a +1)]≤0}, ①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件, 所以A ⊆B ,从而有⎩⎪⎨⎪⎧a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3. 或⎩⎪⎨⎪⎧a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3一、选择题(每小题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( ) A .p 为真命题,p 且q 为假命题 B .p 为假命题,q 为假命题 C .q 为假命题,p 或q 为真命题 D .p 且q 为假命题,p 或q 为真命题解析: ∵p 为真命题,q 为假命题, ∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题; ②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题. A .①③ B .②④ C .②③D .①④解析: ∵綈p ∨綈q 是假命题 ∴綈(綈p ∨綈q )是真命题 即p ∧q 是真命题 答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析: 若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题. 若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件. 答案: A4.已知命题p 1:函数y =2x-2-x在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 4解析: ∵y =2x 在R 上为增函数,y =2-x=⎝ ⎛⎭⎪⎫12x 在R 上为减函数,∴y =-2-x=-⎝ ⎛⎭⎪⎫12x 在R 上为增函数,∴y =2x-2-x在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q 1:p 1∨p 2是真命题,因此排除B 和D ,q 2:p 1∧p 2是假命题,q 3:綈p 1是假命题,(綈p 1)∨p 2是假命题,故q 3是假命题,排除A.故选C.答案: C二、填空题(每小题5分,共10分)5.“a ≥5且b ≥3”的否定是____________; “a ≥5或b ≤3”的否定是____________. 答案: a <5或b <3 a <5且b >3 6.在下列命题中:①不等式|x +2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A A∪B.其中,真命题为________.解析:①此命题为“非p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的一个解,所以p是真命题,所以非p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q 为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“非p”的形式,其中p:A⊆A∪B.因为p为真命题,所以“非p”为假命题,故是假命题.所以填②.答案:②三、解答题(每小题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8∉{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:方程x2-x+1=0有实根;(2)p:函数y=tan x是周期函数;(3)p:∅⊆A;(4)p:不等式x2+3x+5<0的解集是∅.解析:∅ A尖子生题库 ☆☆☆9.(10分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0. 又a >0,所以a <x <3a , 当a =1时,1<x <3,即p 为真命题时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2.即2<x ≤3.所以q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ⇒綈q 且綈q ⇒/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B . 所以0<a ≤2且3a >3,即1<a ≤2. 所以实数a 的取值范围是(1,2].第1章1.4.1、2一、选择题(每小题5分,共20分) 1.下列命题中的假命题是( ) A .∃x ∈R ,lg x =0 B .∃x ∈R ,tan x =1 C .∀x ∈R ,x 2>0D .∀x ∈R,2x>0解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题.C 中当x =0时,x 2=0不大于0,是假命题. D 中∀x ∈R,2x>0是真命题. 答案: C2.下列命题中,真命题是( )A .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数 B .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数 C .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数 D .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数 解析: ∵当m =0时,f (x )=x 2(x ∈R ). ∴f (x )是偶函数又∵当m =1时,f (x )=x 2+x (x ∈R ) ∴f (x )既不是奇函数也不是偶函数. ∴A 对,B 、C 、D 错.故选A. 答案: A 3.下列4个命题:p 1:∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫13x ;p 2:∃x ∈(0,1),log 12x >log 13x ; p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >log 12x ; p 4:∀x ∈⎝⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x .其中的真命题是( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析: 对于命题p 1,当x ∈(0,+∞)时,总有⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x成立.所以p 1是假命题,排除A 、B ;对于命题p 3,在平面直角坐标系中作出函数y =⎝ ⎛⎭⎪⎫12x与函数y =log 12x 的图象,可知在(0,+∞)上,函数y =⎝ ⎛⎭⎪⎫12x 的图象并不是始终在函数y =log 12x图象的上方,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :∀x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( ) A .a ≤-3或a >2 B .a ≥2 C .a >-2D .-2<a <2解析: 依题意:ax 2+4x +a ≥-2x 2+1恒成立, 即(a +2)x 2+4x +a -1≥0恒成立,所以有:⎩⎪⎨⎪⎧a +2>0,16-4 a +2 a -1 ≤0⇔⎩⎪⎨⎪⎧a >-2,a 2+a -6≥0⇔a ≥2.答案: B二、填空题(每小题5分,共10分)5.命题“有些负数满足不等式(1+x )(1-9x )>0”用“∃”或“∀”可表述为________. 答案: ∃x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :∃x 0∈R ,tan x 0=3;命题q :∀x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析: 当x 0=π3时,tan x 0=3,∴命题p 为真命题;x 2-x +1=⎝⎛⎭⎪⎫x -122+34>0恒成立,∴命题q 为真命题, ∴“p 且q ”为真命题. 答案: 真三、解答题(每小题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假: (1)若a >0,且a ≠1,则对任意实数x ,a x>0. (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2. (3)∃T 0∈R ,使|sin(x +T 0)|=|sin x |. (4)∃x 0∈R ,使x 20+1<0.解析: (1)(2)是全称命题,(3)(4)是特称命题. (1)∵a x>0(a >0且a ≠1)恒成立,∴命题(1)是真命题. (2)存在x 1=0,x 2=π,x 1<x 2,但tan 0=tan π,∴命题(2)是假命题.(3)y =|sin x |是周期函数,π就是它的一个周期, ∴命题(3)是真命题. (4)对任意x 0∈R ,x 20+1>0.∴命题(4)是假命题.8.选择合适的量词(∀、∃),加在p(x)的前面,使其成为一个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是无理数,则x2是无理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表示)解析:(1)∃x∈R,x>2.(2)∀x∈R,x2≥0;∃x∈R,x2≥0都是真命题.(3)∃x∈Z,x是偶数.(4)存在实数x,若x是无理数,则x2是无理数.(如42)(5)∃a,b,c∈R,有a2+b2=c2.尖子生题库 ☆☆☆9.(10分)若∀x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,二次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成立,即4m2+4am+1≥0恒成立.又4m2+4am+1≥0是一个关于m的二次不等式,恒成立的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章1.4.3一、选择题(每小题5分,共20分)1.命题:对任意x∈R,x3-x2+1≤0的否定是( )A.不存在x0∈R,x30-x20+1≤0B.存在x0∈R,x30-x20+1≥0C.存在x0∈R,x30-x20+1>0 D.对任意x∈R,x3-x2+1>0解析:由全称命题的否定可知,命题的否定为“存在x0∈R,x30-x20+1>0”.故选C.答案: C2.命题p:∃m0∈R,使方程x2+m0x+1=0有实数根,则“綈p”形式的命题是( )A .∃m 0∈R ,使得方程x 2+m 0x +1=0无实根 B .对∀m ∈R ,方程x 2+mx +1=0无实根 C .对∀m ∈R ,方程x 2+mx +1=0有实根D .至多有一个实数m ,使得方程x 2+mx +1=0有实根解析: 由特称命题的否定可知,命题的否定为“对∀m ∈R ,方程x 2+mx +1=0无实根”.故选B.答案: B3.“∃x 0∉M ,p (x 0)”的否定是( ) A .∀x ∈M ,綈p (x ) B .∀x ∉M ,p (x ) C .∀x ∉M ,綈p (x ) D .∀x ∈M ,p (x )答案: C4.已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论:①命题“p ∧q ”是真命题;②命题“p ∧¬q ”是假命题;③命题“¬p ∨q ”是真命题;④命题“¬p ∨¬q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析: 当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1<x <2,∴命题q 为真命题. ∴p ∧q 为真,p ∧¬q 为假,¬p ∨q 为真,¬p ∨¬q 为假. 答案: D二、填空题(每小题5分,共10分)5.命题p :∃x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析: ∵x 2+2x +5=(x +1)2+4≥0恒成立,所以命题p 是假命题. 答案: 特称命题 假 ∀x ∈R ,x 2+2x +5≥0 真6.(1)命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是________. (2)命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________. 答案: (1)∃x 0∈R ,|x 0-2|+|x 0-4|≤3 (2)∀x ∈R ,x 2+2x +5≠0 三、解答题(每小题10分)7.写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)∀α,β∈R ,sin(α+β)≠sin α+sin β;(3)∃θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正方形不是矩形,假命题.(2)命题的否定:∃α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:∀θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在一个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,并说明理由.(2)若存在一个实数x0,使不等式m-f(x0)>0成立,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖子生题库 ☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)∀a,b∈R,若a=b,则a2=ab;(2)若a²c=b²c,则a=b;(3)若b2=ac,则a,b,c是等比数列.解析:(1)否命题:∀a,b∈R,若a≠b,则a2≠ab,假;命题的否定:∃a,b∈R,若a=b,则a2≠ab,假;(2)否命题:若a²c≠b²c,则a≠b.真;命题的否定:∃a,b,c,若a²c=b²c,则a≠b,真;(3)否命题:若b2≠ac,则a,b,c不是等比数列,真.命题的否定:∃a,b,c∈R,若b2=ac,则a,b,c不是等比数列,真.1章整合(考试时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列语句:①二次函数是偶函数吗?②2>2;③sin π2=1;④x 2-4x +4=0.其中是命题的有( )A .1个B .2个C .3个D .4个解析: 只有②和③是命题,语句①是疑问句,语句④含有变量x ,不能判断真假. 答案: B2.与命题:“若a ∈P ,则b ∉P ”等价的命题是( ) A .若a ∉P ,则b ∉P B .若b ∉P ,则a ∈P C .若a ∉P ,则b ∈P D .若b ∈P ,则a ∉P答案: D3.对命题p :1∈{1},命题q :1∉∅,下列说法正确的是( ) A .p 且q 为假命题 B .p 或q 为假命题 C .非p 为真命题D .非q 为假命题 解析: ∵p 、q 都是真命题,∴綈q 为假命题. 答案: D4.下列四个命题中真命题的个数为( )①若x =1,则x -1=0;②“若ab =0,则b =0”的逆否命题;③“等边三角形的三边相等”的逆命题;④“全等三角形的面积相等”的逆否命题.A .1B .2C .3D .4解析: ①是真命题;②逆否命题为“若b ≠0,则ab ≠0”,是假命题;③“等边三角形的三边相等”改为“若p ,则q ”的形式为“若一个三角形为等边三角形,则这个三角形的三边相等”,其逆命题为“若一个三角形的三边相等,则这个三角形为等边三角形”,是真命题;④“全等三角形的面积相等”改为“若p ,则q ”的形式为“若两个三角形为全等三角形,则这两个三角形的面积相等”,其逆否命题为“若两个三角形的面积不相等,则这两个三角形不是全等三角形”,是真命题.答案: C5.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析: 命题①是假命题,其逆命题为1a <1b,则a >b ,是假命题.故A 、C 错误.命题②是真命题,其逆命题为假命题,逆否命题为真命题.故选D.答案: D6.已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)解析: 函数f (x )=ax 2+bx +c =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a >0),∵2ax 0+b =0,∴x 0=-b2a .当x =x 0时,函数f (x )取得最小值. ∴∀x ∈R ,f (x )≥f (x 0),故选C. 答案: C7.“x <-1”是“x 2-1>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析: x 2-1>0⇒x >1或x <-1,故x <-1⇒x 2-1>0,但x 2-1>0⇒/ x <-1, ∴“x <-1”是“x 2-1>0”的充分而不必要条件. 答案: A8.已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析: 由a >0且b >0可得a +b >0,ab >0,由a +b >0有a ,b 至少一个为正,ab >0可得a 、b 同号, 两者同时成立,则必有a >0,b >0.故选C. 答案: C9.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( ) A .不存在x 0∈R ,x 30-x 20+1≤0 B .存在x 0∈R ,使x 30-x 20+1>0 C .存在x 0∈R ,使x 30-x 20+1≤0D .对任意的x ∈R ,x 3-x 2+1>0解析: 由于已知命题是全称命题,其否定应为特称命题,并且对原命题的结论进行否定,由此可知B 正确.答案: B10.对∀x ∈R ,kx 2-kx -1<0是真命题,则k 的取值范围是( ) A .-4≤k ≤0 B .-4≤k <0 C .-4<k ≤0D .-4<k <0解析: 依题意,有k =0或⎩⎪⎨⎪⎧k <0,k 2+4k <0.解得-4<k ≤0.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.“若x 2=y 2,则x =-y ”的逆命题是________命题,否命题是________命题.(填“真”或“假”)解析: 若x 2=y 2,则x =-y 的逆命题为:若x =-y ,则x 2=y 2,是真命题;否命题为:若x 2≠y 2,则x ≠-y ,是真命题.答案: 真 真12.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.解析: 由a +b =0得a =-b ,即a ∥b ,但a ∥b 不一定有a =-b ,所以“a +b =0”是“a ∥b ”的充分不必要条件.答案: 充分不必要 13.下列命题:①∀x ∈R ,不等式x 2+2x >4x -3成立; ②若log 2x +log x 2≥2,则x >1;③命题“若a >b >0且c <0,则c a >c b”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1.命题q :∃x 0∈R ,x 20-2x 0-1≤0,则命题p ∧綈q 是真命题.其中真命题有________.(填序号)解析: ①中不等式x 2+2x >4x -3⇔x 2-2x +3>0⇔x ∈R . ∴对∀x ∈R ,x 2+2x >4x -3成立.①是真命题.②中log 2x +log x 2≥2⇔ log 22x -2log 2x +1log 2x ≥0⇔log 2x >0或log 2x =1⇔x >1.∴②是真命题.③中⎭⎪⎬⎪⎫a >b >0⇒1a <1b c <0⇒c a >c b ,原命题为真命题,逆否命题为真命题,∴③是真命题. ④中p 为真命题,q 为真命题,命题p ∧綈q 是假命题.答案: ①②③14.令p (x ):ax 2+2x +1>0,若对∀x ∈R ,p (x )是真命题,则实数a 的取值范围是________. 解析: 对∀x ∈R ,p (x )是真命题,就是不等式ax 2+2x +1>0对一切x ∈R 恒成立. (1)若a =0,不等式化为2x +1>0,不能恒成立;(2)若⎩⎪⎨⎪⎧a >0,Δ=4-4a <0,解得a >1;(3)若a <0,不等式显然不能恒成立. 综上所述,实数a 的取值范围是a >1. 答案: a >1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)写出下列命题的“若p ,则q ”形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假.(1)全等三角形的对应边相等; (2)四条边相等的四边形是正方形.解析: (1)“若p ,则q ”的形式:若两个三角形全等,则这两个三角形的对应边相等;是真命题.逆命题:若两个三角形的对应边相等,则这两个三角形全等;是真命题. 否命题:若两个三角形不全等,则这两个三角形的对应边不全相等;是真命题. 逆否命题:若两个三角形的对应边不全相等,则这两个三角形不全等;是真命题. (2)“若p ,则q ”的形式:若一个四边形的四条边相等,则它是正方形;是假命题. 逆命题:若一个四边形是正方形,则它的四条边相等;是真命题. 否命题:若一个四边形的四条边不全相等,则它不是正方形;是真命题. 逆否命题:若一个四边形不是正方形,则它的四条边不全相等;是假命题.16.(本小题满分12分)写出由下列各组命题构成的“p 或q ”“p 且q ”以及“非p ”形式的命题,并判断它们的真假:(1)p :3是质数,q :3是偶数;(2)p :x =-2是方程x 2+x -2=0的解,q :x =1是方程x 2+x -2=0的解. 解析: (1)p 或q :3是质数或3是偶数;p 且q :3是质数且3是偶数;非p :3不是质数.因为p 真,q 假,所以“p 或q ”为真命题,“p 且q ”为假命题,“非p ”为假命题. (2)p 或q :x =-2是方程x 2+x -2=0的解或x =1是方程x 2+x -2=0的解;p 且q :x =-2是方程x 2+x -2=0的解且x =1是方程x 2+x -2=0的解;非p :x =-2不是方程x 2+x -2=0的解.因为p 真,q 真,所以“p 或q ”为真命题,“p 且q ”为真命题,“非p ”为假命题. 17.(本小题满分12分)是否存在实数p ,使4x +p <0是x 2-x -2>0的充分条件?如果存在,求出p 的取值范围;否则,说明理由.解析: 由x 2-x -2>0,解得x >2或x <-1, 令A ={x |x >2或x <-1},由4x +p <0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-p4, 当B ⊆A 时,即-p4≤-1,即p ≥4,此时x <-p4≤-1⇒x 2-x -2>0,∴当p ≥4时,4x +p <0是x 2-x -2>0的充分条件.18.(本小题满分14分)已知命题p :函数y =x 2+2(a 2-a )x +a 4-2a 3在[-2,+∞)上单调递增.q :关于x 的不等式ax 2-ax +1>0解集为R .若p ∧q 假,p ∨q 真,求实数a 的取值范围.解析: ∵函数y =x 2+2(a 2-a )x +a 4-2a 3=[x +(a 2-a )]2-a 2,在[-2,+∞)上单调递增, ∴-(a 2-a )≤-2,即a 2-a -2≥0,解得a ≤-1或a ≥2. 即p :a ≤-1或a ≥2由不等式ax 2-ax +1>0的解集为R 得⎩⎪⎨⎪⎧a ≥0Δ<0,即⎩⎪⎨⎪⎧a ≥0-a 2-4a <0解得0≤a <4 ∴q :0≤a <4. ∵p ∧q 假,p ∨q 真. ∴p 与q 一真一假. ∴p 真q 假或p 假q 真, 即⎩⎪⎨⎪⎧a ≤-1或a ≥2a <0或a ≥4或⎩⎪⎨⎪⎧-1≤a <2,0≤a <4.∴a ≤-1或a ≥4或0≤a <2.所以实数a 的取值范围是(-∞,-1]∪[0,2)∪[4,+∞).第2章2.1.1一、选择题(每小题5分,共20分)1.曲线C 的方程为y =x (1≤x ≤5),则下列四点中在曲线C 上的是( ) A .(0,0) B.⎝ ⎛⎭⎪⎫15,15 C .(1,5)D .(4,4)解析: 代入每个点逐一验证,D 正确. 答案: D2.已知坐标满足方程f (x ,y )=0的点都在曲线C 上,那么( ) A .曲线C 上的点的坐标都适合方程f (x ,y )=0 B .凡坐标不适合f (x ,y )=0的点都不在C 上 C .不在C 上的点的坐标必不适合f (x ,y )=0D .不在C 上的点的坐标有些适合f (x ,y )=0,有些不适合f (x ,y )=0 答案: C3.方程(3x -4y -12)[log 2(x +2y )-3]=0的图象经过点A (0,-3),B (0,4),C (4,0),D ⎝ ⎛⎭⎪⎫53,-74中的( )A .0个B .1个C .2个D .3个解析: 由方程x +2y >0,可知A ,D 两点不符合题意;对于点B (0,4),x +2y =8=23,则有log 2(x +2y )-3=0;对于点C (4,0),3x -4y -12=0.故选C.答案: C4.方程y =|x |x2表示的曲线为图中的( )解析: y =|x |x2,x ≠0,为偶函数,图象关于y 轴对称,故排除A ,B.又因为当x >0时,y =1x>0;当x <0时,y =-1x>0,所以排除D.答案: C二、填空题(每小题5分,共10分)5.已知0≤α<2π,点P (cos α,sin α)在曲线(x -2)2+y 2=3上,则α的值为________. 解析: 由(cos α-2)2+sin 2α=3,得cos α=12.又因为0≤α<2π, 所以α=π3或α=53π.答案:π3或5π36.曲线y =-1-x 2与曲线y +|ax |=0(a ∈R)的交点有______个. 解析: 利用数形结合的思想方法,如图所示:答案: 2三、解答题(每小题10分,共20分) 7.判断下列命题是否正确.(1)过点P (0,3)的直线l 与x 轴平行,则直线l 的方程为|y |=3. (2)以坐标原点为圆心,半径为r 的圆的方程是y =r 2-x 2. (3)方程(x +y -1)²x 2+y 2-4=0表示的曲线是圆或直线.(4)点A (-4,3),B (-32,-4),C (5,25)都在方程x 2+y 2=25(x ≤0)所表示的曲线上.解析: (1)不对,过点P (0,3)的直线l 与x 轴平行,则直线l 的方程为y =3,而不是|y |=3.(2)不对.设(x 0,y 0)是方程y =r 2-x 2的解, 则y 0=r 2-x 20,即x 20+y 20=r 2. 两边开平方取算术根,得x 20+y 20=r .即点(x 0,y 0)到原点的距离等于r ,点(x 0,y 0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r 的圆上的一点如点⎝ ⎛⎭⎪⎫r2,-32r 在圆上,却不是y =r 2-x 2的解,这就不满足曲线上的点的坐标都是方程的解.所以,以原点为圆心,半径为r 的圆的方程不是y =r 2-x 2,而应是y =±r 2-x 2. (3)不对.由(x +y -1)²x 2+y 2-4=0得⎩⎪⎨⎪⎧x +y -1=0或x 2+y 2-4=0x 2+y 2-4≥0所以表示的是圆和两条射线. (4)不对.把点A (-4,3)的坐标代入方程x 2+y 2=25,满足方程,且A 点的横坐标满足x ≤0, 则点A 在方程x 2+y 2=25(x ≤0)所表示的曲线上. 把点B (-32,-4)的坐标代入方程x 2+y 2=25, ∵(-32)2+(-4)2=34≠25,∴点B 不在方程所表示的曲线上.尽管C 点坐标满足方程,但 ∵横坐标5不满足小于或等于0的条件, ∴点C 不在曲线x 2+y 2=25(x ≤0)上.8.已知曲线C 的方程为x =9-y 2,说明曲线C 是什么样的曲线,并求该曲线与y 轴围成的图形的面积.解析: 由x =9-y 2,得x 2+y 2=9.又x ≥0,∴方程x =9-y 2表示的曲线是以原点为圆心,3为半径的右半圆,从而该曲线C 与y 轴围成的图形是半圆,其面积S =12π²9=92π.所以所求图形的面积为92π.尖子生题库 ☆☆☆9.(10分)已知方程(x +1)2+ny 2=1的曲线经过点A (-1,1),B (m ,-1).求m ,n 的值. 解析: ∵方程(x +1)2+ny 2=1的曲线经过点A (-1,1),B (m ,-1),∴⎩⎪⎨⎪⎧-1+1 2+n =1, m +1 2+n =1,解得⎩⎪⎨⎪⎧n =1,m =-1.∴m =-1,n =1为所求.第2章2.1.2一、选择题(每小题5分,共20分)1.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A .x 2+y 2=3 B .x 2+2xy =1(x ≠±1) C .y =1-x 2D .x 2+y 2=9(x ≠0)解析: 设P (x ,y ),∵k PA +k PB =-1, ∴y -0x - -1 +y -0x -1=-1,整理得x 2+2xy =1(x ≠±1).答案: B2.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|M N →|²|M P →|+M N →²N P →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8x B .y 2=8x C .y 2=4xD .y 2=-4x解析: 由|M N →|²|M P →|+M N →²N P →,得4³[x - -2 ]2+ y -0 2+(4,0)²(x -2,y -0)=0, ∴y 2=-8x . 答案: A3.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π解析: 设P (x ,y ),由|PA |=2|PB |得 x +2 2+y 2=2 x -1 2+y 2, 整理得x 2-4x +y 2=0 即(x -2)2+y 2=4.所以点P 的轨迹是以(2,0)为圆心,以2为半径的圆, 故S =4π. 答案: B4.已知A (-1,0),B (1,0),且MA →²M B →=0,则动点M 的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=2C .x 2+y 2=1(x ≠±1)D .x 2+y 2=2(x ≠±2)解析: 设动点M (x ,y ),则MA →=(-1-x ,-y ),M B →=(1-x ,-y ).由MA →²M B →=0,得(-1-x )(1-x )+(-y )2=0, 即x 2+y 2=1.故选A. 答案: A二、填空题(每小题5分,共10分)5.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________.解析: 设点B (x 0,y 0),则y 0=2x 20+1.①设线段AB 中点为M (x ,y ),则x =x 02,y =y 0-12,即x 0=2x ,y 0=2y +1,代入①式,得 2y +1=2²(2x )2+1.即y =4x 2为线段AB 中点的轨迹方程. 答案: y =4x 26.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.解析: 设P (x ,y ),动圆P 在直线x =1的左侧, 其半径等于1-x ,则|PC |=1-x +1, 即 x +2 2+y 2=2-x , 整理得y 2=-8x . 答案: y 2=-8x三、解答题(每小题10分,共20分)7.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若B P →=2P A →,且O Q →²A B →=1.求P 点的轨迹方程.解析: 由B P →=2P A →,P (x ,y )可得B (0,3y ),A ⎝ ⎛⎭⎪⎫32x ,0,∴A B →=⎝ ⎛⎭⎪⎫-32x ,3y .∵Q 与P 关于y 轴对称, ∴Q (-x ,y ),且OQ →=(-x ,y ).由O Q →²A B →=1得32x 2+3y 2=1(x >0,y >0).8.过点P 1(1,5)作一条直线交x 轴于点A ,过点P 2(2,7)作直线P 1A 的垂线,交y 轴于点B ,点M 在线段AB 上,且BM ∶MA =1∶2,求动点M 的轨迹方程.解析: 如图所示,设过P 2的直线方程为y -7=k (x -2)(k ≠0),则过P 1的直线方程为y -5=-1k(x -1),所以A (5k +1,0),B (0,-2k +7).① 设M (x ,y ),则由BM ∶MA =1∶2, 得⎩⎪⎨⎪⎧x =5k +13,y =-4k +143,②消去k ,整理得12x +15y -74=0. 故点M 的轨迹方程为12x +15y -74=0.③尖子生题库 ☆☆☆9.(10分)已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.(分别用直接法、定义法、代入法求解)解析: 方法一(直接法):如图,因为Q 是OP 的中点, 所以∠OQC =90°.设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2, 即x 2+y 2+[x 2+(y -3)2]=9,所以x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).方法二(定义法):如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC 为直径的圆上,故Q 点的轨迹方程为x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).方法三(代入法):设P (x 1,y 1),Q (x ,y ),由题意,得⎩⎪⎨⎪⎧x =x 12y =y12,即⎩⎪⎨⎪⎧x 1=2x y 1=2y,又因为x 21+(y 1-3)2=9,所以4x 2+4⎝ ⎛⎭⎪⎫y -322=9,即x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).第2章2.2.1一、选择题(每小题5分,共20分)1.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A .-9<m <25B .8<m <25C .16<m <25D .m >8解析: 依题意有⎩⎪⎨⎪⎧25-m >0m +9>0m +9>25-m,解得8<m <25,即实数m 的取值范围是8<m <25,故选B. 答案:B2.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( ) A.x 24+y 23=1 B.x 24+y 2=1 C.y 24+x 23=1 D.y 24+x 2=1 解析: c =1,a =2,∴b 2=a 2-c 2=3. ∴椭圆的方程为x 24+y 23=1.答案: A3.已知(0,-4)是椭圆3kx 2+ky 2=1的一个焦点,则实数k 的值是( ) A .6 B.16 C .24D.124解析: ∵3kx 2+ky 2=1, ∴x 213k +y 21k=1. 又∵(0,-4)是椭圆的一个焦点,∴a 2=1k ,b 2=13k ,c 2=a 2-b 2=1k -13k =23k =16,∴k =124.答案: D4.椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1→²PF 2→=0,则△F 1PF 2的面积为( )A .12B .10C .9D .8解析: ∵PF 1→²PF 2→=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2且|PF 1|+|PF 2|=2a . 又a =5,b =3,∴c =4,∴⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=64 ①|PF 1|+|PF 2|=10 ②②2-①,得2|PF 1|²|PF 2|=102-64, ∴|PF 1|²|PF 2|=18, ∴△F 1PF 2的面积为9. 答案: C二、填空题(每小题5分,共10分)5.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________;∠F 1PF 2的大小为________.解析: 由椭圆标准方程得a =3,b =2, 则c =a 2-b 2=7,|F 1F 2|=2c =27. 由椭圆的定义得|PF 2|=2a -|PF 1|=2. 在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|²|PF 2|=42+22- 27 22³4³2=-12,所以∠F 1PF 2=120°. 答案: 2 120°6.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →²FP→的最大值为________.解析: 椭圆的左焦点F 为(-1,0),设P (x ,y ), 则x 24+y 23=1, OP →²FP →=(x ,y )²(x +1,y )=x (x +1)+y 2 =14x 2+x +3 =14(x +2)2+2 ∵-2≤x ≤2,∴当x =2时,OP →²FP →有最大值6. 答案: 6三、解答题(每小题10分,共20分) 7.求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为x 2a +y 2b=1(a >b >0),。

高中数学选修2-1、2-2综合试题

高中数学选修2-1、2-2综合试题

④“ x > 2 ”是“ 1 4.由直线 x = 12 D . 15B . 2 ln 2高中数学选修2-1、2-2 综合试题班级-------------姓名-----------得分-----------一、 选择题(本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.复数 z 的虚部记作 Im (z ),若 z= 5 1 + 2i,则 Im ( z )=( )A .2B . 2iC .-2D .-2i2.考察以下列命题:①命题“ lg x = 0, 则x=1 ”的否命题为“若 lg x ≠ 0, 则x ≠ 1 ”②若“ p ∧ q ”为假命题,则 p 、q 均为假命题③命题 p : ∃x ∈ R ,使得 s in x > 1 ;则 ⌝p : ∀x ∈ R ,均有 sin x ≤ 11< ”的充分不必要条件x 2则真命题的个数为( ) A .1 B .2C .3D .43.在平行六面体 ABCD - A B C D 中, M 为 A C 与 B D 的交点。

1 1 111 111若 AB = a , AD = b , AA = c 则与 BM 相等的向量是()11 1 1 1A . - a + b + cB . a + b + c2 2 2 2A1DD1 C1 MB1 C1 1 1 1C . - a - b + cD . a - b + c2 2 2 2A B1 , x = 2, 曲线 y = - 及轴所围图形的面积为 ( )2 xA .- 2ln 2 C . 1 ln 2 45.已知抛物线 y 2 = 2 px( p > 0) 上有一点 M (4,y ),它到焦点 F 的距离为 5,则 ∆OFM 的面积(O 为原点)为()A .1B .2C . 2D . 2 26.用火柴棒摆“金鱼”,如图所示:…①②③7.在正三棱柱ABC-A B C中,若AB=2B B,则AB与C B所成角的大小为()②实数a,b,有(a+b)2=a2+2ab+b2;类比向量a,b,有(a+b)2=a+2a⋅b+b按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n+2B.6n-2C.8n+2D.8n-2111111A.60°B.75°C.105°D.90°8.给出下面四个类比结论()①实数a,b,若ab=0则a=0或b=0;类比向量a,b,若a⋅b=0,则a=0或b=022③向量a,有a2=a2;类比复数z,有z2=z2④实数a,b有a2+b2=0,则a=b=0;类比复数z,z有z2+z2=0,则212z=z=012其中类比结论正确的命题个数为()A.0B.1C.2D.39.已知抛物线=2px(p>1)的焦点F恰为双曲线(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为()A.2B.2C.2+1D.2+210.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径()A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C二、填空题(每小题5分,共20分。

高中数学 选修2-1双曲线导学案加课后作业及参考答案

高中数学  选修2-1双曲线导学案加课后作业及参考答案

双曲线及其标准方程导学案【学习要求】1.了解双曲线的定义,几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.【学法指导】本节课的学习要运用类比的方法,在与椭圆的联系与区别中建立双曲线的定义及标准方程.【知识要点】1.双曲线的定义把平面内与两个定点F 1,F 2的距离的 等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做 , 叫做双曲线的焦距. 2探究点一 双曲线的定义问题1 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?问题2 双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?问题3 双曲线的定义中,为什么要限制到两定点距离之差的绝对值为常数2a,2a <|F 1F 2|?问题4 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形? (1)6)5()5(2222=+--++y x y x ;(2)6)4()4(2222=+--++y x y x(3)方程x =3y 2-1所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分 探究点二 双曲线的标准方程问题1 类比椭圆的标准方程推导过程,思考怎样求双曲线的标准方程?问题2 两种形式的标准方程怎样进行区别?能否统一?问题3 如图,类比椭圆中a ,b ,c 的意义,你能在y 轴上找一点B ,使|OB |=b 吗?例1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程; (2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.跟踪训练1 (1)过点(1,1)且ba=2的双曲线的标准方程是 ( )A .12122=-y x B .y 212-x 2=1 C .x 2-y 212=1D .x 212-y 2=1或y 212-x 2=1(2)若双曲线以椭圆x 216+y 29=1的两个顶点为焦点,且经过椭圆的两个焦点,则双曲线的标准方程为_______探究点三 与双曲线定义有关的应用问题例2 已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).跟踪训练2 如图,从双曲线x 23-y 25=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P , T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )A . 3B . 5C .5- 3D .5+ 3例3 已知A ,B 两地相距800 m ,在A 地听到炮弹爆炸声比在B 地晚2 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程.跟踪训练3 2008年5月12日,四川汶川发生里氏8.0级地震,为了援救灾民,某部队在如图所示的P 处空降了一批救灾药品,今要把这批药品沿道路PA 、PB 送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线?并求出其方程.【当堂检测】1.已知A (0,-5)、B (0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ( ) A .双曲线或一条直线 B .双曲线或两条直线 C .双曲线一支或一条直线 D .双曲线一支或一条射线2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 3.双曲线x 216-y 29=1上一点P 到点(5,0)的距离为15,那么该点到(-5,0)的距离为 ( )A .7B .23C .5或25D .7或234.已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心的轨迹方程.【课堂小结】1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.【拓展提高】1.已知方程12522=---k y k x 的图形是双曲线,那么k 的取值范围是( )A .k >5B .k >5,或22<<-kC .k >2,,或2-<kD .22<<-k2.===-212221121625,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或223.已知双曲线14922=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为4.是双曲线上的一点,且,点的两个焦点分别是已知双曲线P F F y x 2122,13=-__________602121的面积等于,则PF F PF F ∆=∠5.根据下列条件,求双曲线的标准方程. (1)过点P )415,3(,Q )5,316(-且焦点在坐标轴上; (2)c =6,经过点(-5,2),焦点在x 轴上.(3))的双曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C. p 3 , q 2
D. p 3 , q 2
2. 设命题甲为: 0 x 5 , 命题乙为 x 2 3 , 则甲是乙的( )
A.充分不必要条件
B
.必要不充分条件
C.充要条件
D
.既不充分又不必要条件
3. 抛物线 y
1 x 2 的准线方程是(

8
A. x 1
B .y 2
32
C .y 1 32
D
.y 2
y2P )
1
2
1 ,考虑到
x
2 P
2
yP2 1 ,
有 2( 1)xP 2( 1)2 2 1 ,又 1,
故 xP
3 , xQ
2
xP 2(
1) 3 1 2
依题意 M ( xP , yP) 。
FM
FQ ( xP 1, yP 0)
( xQ 1, yQ 0) ,
yP
xP 显然成立,即证 xP 1
( xQ 1)
7
8
9
10
D
A
B
B
C
A
C
B
B
C
11. 54 14. 3
12. y2
x2 1
16 4
15.②③④
9
13.
2 16. 4.3m
x2
17.
y2
1
36 12
18.(Ⅰ) MN MA1 A1B1 B1N
1
1
1
(c a) a ( b a) A1 AB
3 11
b c。 33
1 B1C1
3
(Ⅱ) ( a b c)2 a 2 b2 c2 2a b 2b c 2c a
AE n (x, y, z) ( 1, ,0) 0
2
又 EB1
1 (1, ,1) ,由 | cos
EB1, n |
EB1 n
2
| EB1 ||n |
3 63
2, 3
2
从而直线 EB1 与平面 AD1E 所成的角的正弦值是
6。 3
(Ⅲ)平面 AD1E 的一个法向量是 n1 (t,1, t) ,
平面 AME 的一个法向量是 n2
y2 12
1 上的两点, F2 是其右焦点,如果
AF2
BF2
8 ,则 AB的中点到椭圆
左准线的距离为( A. 6
) B. 8
C. 10
D. 12
10. 在直三棱柱 ABC A1B1C1 中,底面是等腰直角三角形,
ACB 90 ,D,E 分别是 CC1 与 A1B 的中
点,点 E 在平面 ABD上的射影是 ABD 的重心 G.则 B1B 与平面 ABD 所成角的余弦值
三.解答题答题说明: 解答题应写出必要的文字说明,证明过程或演算步骤
17.(本题满分 12 分)
18.(本题满分 14 分)
A1 M A
B
C1
N B1
C
19.(本题满分 14 分)
20.(本题满分 15 分)
D1 A1
C1 B1
D A
E
C
B
21.(本题满分 15 分)
参考答案
1
2
3
4
5
6
3
由 xP 1 ( xQ 1) (
1)
2
31
(
1) 0
2
即有 FM
FQ 。
4. 在棱长为 1 的正方体 ABCD— A1B1C1D1 中, M和 N 分别为 A1B1 和 BB1 的中点,那么直线
余弦值是(

AM与 CN所成角的
A. 2 5
2
B.
5
C. 3 5
D. 10 10
D1
A1
M
C1 B1
N
D
C
A
B
5. 曲线 f ( x) x3 x 2 在 P0 处的切线平行于直线 y 4x 1 , 则 P0 点的坐标为( )
在竖直方向上高度之差至少为 0.25m ,靠近中轴线的车道为快车道, 两侧的车道为慢车道, 则车辆通
过隧道时,慢车道的限制高度为
.(精确到 0.1m )
8m
A
B 2m
3m 3m 3m 3m
16m
三、解答题 ( 本大题共 5 小题,合计 70 分)
17. (本题 12 分)若双曲线与 x2
y2 1 有相同的焦点,与双曲线
A1 M A
B
C1
N B1
C
19. (本小题 14 分)已知抛物线关于 x 轴对称,它的顶点是坐标原点,点
是抛物线上的三点. (Ⅰ)求该抛物线的方程; (Ⅱ)若直线 PA与 PB的倾斜角互补,求线段 AB中点的轨迹方程。 (Ⅲ)若 AB PA,求点 B 的纵坐标的取值范围.
P(2, 4) ,A(x1, y1) , B( x2 , y2 )
∵ AD1 EB1 ( 1,0,1) (1,1 t ,1) 0 ,
∴ EB1 AD1。
(Ⅱ)当 E是 CD中点时,
AD1 ( 1,0,1) , AE
( 1, 1 ,0) ,设平面 AD1E 的一个法向量是 n 2
(x, y, z) ,
AD1 n ( x, y, z) ( 1,0,1) 0
则由
1
得一组解是 n (1,2,1) ,
1
1
111 0 211
2 11
5,
2
2
| a b c | 5 , | MN | 1 |a b c|
5

3
3
19.(Ⅰ) y2 8x (Ⅱ) y 4( x 2) (Ⅲ) ,12 20,
20.解:以 D为坐标原点, DA, DC, DD1 依次为 x 轴、 y 轴, z 轴正方向建立空间直角坐标系,并高正方 体棱长为 1, 设点 E 的坐标为 E (0, t ,0) 。 (Ⅰ) AD1 ( 1,0,1) , EB1 (1,1 t,1)
()
A. 1 2
B. 3 2
C. 3 3
D. 6 3
C1
A1
D B1
EC
G
A
B
二、填空题(本大题共 6 小题,每题 5 分,合计 30 分。将答案填在答题卷的相应位置)
11. 如果质点 A 的位移 s与时间 t 满足方程 s 2t3 ,则在 t 3 时的瞬时速度为 _________.
12. 以 y2
xP xQ
8k 2 2k 2
1

xP xQ
8k 2 2k 2
2。 1
又 OP OQ 0 ,即 xP xQ yP yQ 0 , 又 yP k( xP 2) , yQ k (xQ 2) 故 (1 k 2 )xPxQ 2k 2 (xP xQ ) 4k 2 0 ,
所以 (1
k2)
8k 2 2k 2
2 1
2k 2
8k2 2k 2 1
4k2
0,
解得 k 2 1 , k 5
5
,直线方程是
y
5
5 ( x 2) 。 5
(Ⅲ)证法一: AP AQ ( xP 2, yP 0) ( xQ 2, yQ )
xP 2 ( xQ 2)
yP
yQ
xP 2 。 xQ 2
依题意 M ( xP , yP) 。
FM
FQ ( xP 1, yP)
数学苏教选修 2-1 综合练习
一、选择题 ( 本大题共 10 小题,每题 5 分,合计 50 分。将答案填在答题卷的相应位置 )
1. 已知空间三点的坐标为 A(1,5, 2) , B(2,4,1) , C ( p,3,q 2) ,若 A、B、 C三点共线,则( )
A. p 3 , q 2
B. p 3 , q 2
20. (本小题 15 分)如图,正方体 ABCD A1B1C1D1 中,点 E 在棱 CD上。
(Ⅰ)求证: EB1 AD1;
(Ⅱ)若 E是 CD中点,求 EB1与平面 AD1E 所成的角。
(Ⅲ)设 M在 BB1 上,且 BM MB1
2
,是否存在点
E,使平面 AD1E ⊥平面 AME ,若存在,指出点
A.( 1, 0) B .( 2, 8) C .( 1, 0)和( -1 , -4 ) D ( 2,8)和( -1 , -4 )
6. 已知 F1 , F2 是椭圆的两个焦点,过 F1 且与椭圆长轴垂直的直线交椭圆于
角形,则这个椭圆的离心率为(

A, B 两点,若⊿ ABF2 是正三
A. 3 3
B .2 3
① e1∥e2
b∥
e1∥n
e1∥n
③b
b∥
e1⊥ e2
中正确的命题序号是
② e1∥ n e2∥ n
a∥ b
e1∥ e2

b⊥
e1∥ n

16. 有一隧道,内设双行线公路,同方向有两个车道(共有四个车道)
,每个车道宽为 3m,此隧道的截面
由一个长方形和一抛物线构成,如图所示。为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部
E 的位
3
置,若不存在,请说明理由;
D1 A1
C1 B1
D A
E
C
B
21.(本小题 15 分)椭圆的中心是原点 O,它的短轴长为 2 ,相应于焦点 F (c,0) ( c 相交于点 A, OF FA ,过点 A 的直线与椭圆相交于 P、 Q两点.
(Ⅰ)求椭圆的方程;
0 )的准线 l 与 x 轴
(Ⅱ)若 OP OQ 0 ,求直线 PQ的方程;
64 16
y2 x2 1 有相同渐近线,求双曲
26
线方程。
18. (本小题 14 分)三棱柱 ABC A1 B1C1 中, M 、N 分别是 A1B 、 B1C1 上的点,且 BM 2 A1M ,
相关文档
最新文档