高等代数期末试卷

合集下载

高等代数期末考试复习题及参考答案

高等代数期末考试复习题及参考答案

高等代数 --复习资料一、单项选择题1、设为任意两个级方阵,则如下等式成立的是A.B.C.D.参考答案: C2、设向量组线性无关,则向量组线性无关的充分必要条件为A.B.C.D.参考答案: A3、若,则( ).A. 30mB. -15mC. 6mD. -6m参考答案: D4、实对称矩阵的特征值都是( )A. 非负整数B. 实数C. 正数参考答案: B5、实对称矩阵A的秩等于r,且它有m个正特征根,则它的符号差为 ( )A. rB. mC. 2m-rD. r-m参考答案: C6、设矩阵和分别是和的矩阵,秩,秩,则秩是A. 1B. 2C. 3D. 4参考答案: B7、是线性空间V上的线性变换,,那么关于V的基的矩阵是 ( )A.B.C.D.参考答案: B8、对于元方程组,下列命题正确的是( ).A. 如果只有零解,则也只有零解B. 如果有非零解,则有无穷多解C. 如果有两个不同的解,则有无穷多解D. 有唯一解的充分条件是参考答案: C9、若矩阵A的不变因子为,则A的全部初等因子为 ( )A.B.C.参考答案: A10、设为3次实系数多项式,则A. 至少有一个有理根B. 至少有一个实根C. 存在一对非实共轭复根D. 有三个实根.参考答案: B11、对于数域P上线性空间V的数乘变换来说 ( )不变子空间A. 只有一个B. 每个子空间都是C. 不存在参考答案: B12、下列运算中正确的是( )A. ;B. ;C. ;D. 。

参考答案: D13、为欧氏空间V上的对称变换,下面正确的是 ( )A.B.C.参考答案: C14、如果把代入实二次型都有,那么是 ( )A. 正定B. 负定C. 未必正定参考答案: C15、设向量组线性无关,线性相关,则( ).A. 一定能由线性表示B. 一定能由线性表示C. 一定不能由线性表示D. 一定不能由线性表示参考答案: B16、下列说法不正确的是( ).A. 任何一个多项式都是零次多项式的因式B. 如果f(x)∣g(x),g(x)∣h(x),则f(x)∣h(x)C. 如是阶矩阵,则D. 如是阶矩阵,则参考答案: A17、设是矩阵,是非齐次线性方程组所对应的齐次线性方程组,则下列结论正确的是( )A. 若仅有零解,则有唯一解;B. 若有非零解,则有无穷多个解;C. 若有无穷多个解,则仅有零解;D. 若有无穷多个解,则有非零解;参考答案: D18、是n维复空间V的两个子空间,且,则的维数为 ( )A.B.C.参考答案: C19、阶矩阵A可逆的充分必要条件是( ).A. ∣A∣=0B. r(A)<C. A是满秩矩阵D. A是退化矩阵参考答案: C20、设矩阵的秩为,为阶单位方阵,下述结论中正确的是( )A. 的任意个列向量必线性无关;B. 的任意一个阶子式不等于零;C. 若矩阵满足,则,或非齐次线性方程组,一定有无穷多组解D. 通过初等行变换,必可化为的形式。

高等代数期末卷及答案

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试《高等代数》试卷(1)1 •设 f (x) = x 4+x ? +4x - 9 ,贝H f (一3) = 69 .. 2•当 t = _2,-2 . 时,f(x)=x 3—3x+t 有重因式。

3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2=23 。

1 1 —-2 0 1x , 2x 2 2x 3 x 4 二 07. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为x( ~'X 2 _'4x 3 ~3x 4 = 0题号-一--二二-三四五六七总分得分、填空(共35分,每题5 分)得分4.行列式1 -35.■’4 10"1 0 3-1、 -1 1 3'9 -2 -1 2 1 0 2」2 0 1< 9 9 11<1 3 4 丿6.z5 0 0 1 -1<0 2 1;0-2 3矩阵的积c 亠5 刘=2x3 X44x3, x4任意取值。

X2 二-2x^ --x4、(10分)令f(x),g(x)是两个多项式。

求证 当且仅当(f(x)g(x), f(x)g(x))=1。

证:必要性.设(f(x)g(x), f (x)g(x)) =1。

(1%令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知p(x)| f (x)或 p(x) |g(x) o (1%)不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。

故 p(x) |1 矛盾。

(2%)充分性.由(f (x)g(x), f (x)g(x)^1知存在多项式u(x), v(x)使u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%)从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%)故(f (x), g(x)) =1 o (1%)ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1有唯一解、没有解、有无穷解?在有解情况下求其解。

高代期末考试试卷

高代期末考试试卷

高代期末考试试卷一、选择题(每题4分,共40分)1. 以下哪个矩阵是可逆的?A. [1 2; 3 4]B. [1 0; 0 0]C. [2 0; 0 2]D. [1 1; 1 1]2. 矩阵A的特征值是λ1和λ2,那么矩阵A^2的特征值是?A. λ1^2, λ2^2B. 2λ1, 2λ2C. λ1, λ2D. λ1+λ2, λ2+λ13. 线性方程组有非零解的条件是?A. 系数矩阵的行列式不等于0B. 系数矩阵的行列式等于0C. 增广矩阵的秩等于系数矩阵的秩D. 增广矩阵的秩不等于系数矩阵的秩4. 以下哪个向量组是线性无关的?A. [1, 0], [0, 1]B. [1, 1], [1, 2]C. [1, 2], [2, 4]D. [1, 2, 3], [4, 5, 6]5. 矩阵A的秩是3,那么矩阵A的零空间的维数是?A. 0B. 1C. 2D. 36. 以下哪个矩阵是对称矩阵?A. [1 2; 3 4]B. [1 3; 3 1]C. [2 1; 1 2]D. [1 0; 0 1]7. 以下哪个矩阵是正交矩阵?A. [1 0; 0 1]B. [1/√2 1/√2; -1/√2 1/√2]C. [1 1; 1 1]D. [1 2; 3 4]8. 以下哪个矩阵是幂等矩阵?A. [1 0; 0 1]B. [1 1; 1 1]C. [0 1; 1 0]D. [1 2; 3 4]9. 以下哪个矩阵是投影矩阵?A. [1 0; 0 0]B. [1 1; 1 1]C. [1 0; 0 1]D. [0 1; 1 0]10. 以下哪个矩阵是单位矩阵?A. [1 0; 0 1]B. [1 1; 1 1]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题(每题4分,共20分)1. 矩阵的迹是其对角线元素的______。

2. 矩阵的转置是将矩阵的行和列进行______。

3. 矩阵的行列式可以通过______展开来计算。

高等代数期末试题及答案

高等代数期末试题及答案

高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。

求解该线性方程组的解。

1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。

令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。

选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。

(完整word版)高等代数(二)期末考试样卷

(完整word版)高等代数(二)期末考试样卷

《高等代数(二)》期末考试样卷一、选择题(本大题有一项是符合题目要求的)1. 若σ是F 上向量空间V 的一个线性变换,则下列说法∙∙误错的是( )A.)()()(,,βσασβασβα+=+∈∀VB.0)0(=σC.)()(,,ασασαk k F k V =∈∈∀D.0)0(≠σ2.若},,{21s ααα 和},,{21t βββ 是两个等价的线性无关的向量组,则( ) A.t s > B. t s < C. t s = D.以上说法都不对 3.向量空间2F [x]的维数是( )A. 0B. 1C. 2D. 3 4.一个线性变换关于两个基的矩阵是( )A.正定的B.相似的C.合同的D.对称的 5.如果两个向量βα与正交,则下列说法正确的是( ) A. ><βα, > 0 B. ><βα, < 0 C. ><βα, = 0 D. ><βα, ≠ 06.设σ是欧氏空间V 的正交变换, 任意α,β∈V, 下列正确的是( ) A.<α,β > = <σ(α),β> B.<α,β> = <α,σ(β)> C.<α,β> = <σ(α), σ(β)> D. <α,β> = -<σ(α),σ(β)>7.如果n 元齐次线性方程组AX =0的系数矩阵的秩为r,那么它的解空间的 维数为( )A 、n-rB 、nC 、rD 、n+r 8.设21,W W 是向量空间V 的两个子空间,则下列说法正确的是( ) ①21W W +是向量空间V 的子空间 ②21W W +不是向量空间V 的子空间③21W W 是向量空间V 的子空间 ④21W W 不是向量空间V 的子空间 ⑤21W W 是向量空间V 的子空间 ⑥21W W 不一定是向量空间V 的子空间 A. ①③⑤ B. ②④⑥ C. ①③⑥ D. ②④⑤ 9.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,如果对于W 中的任意向量ξ,有W ∈)(ξσ,则称W 是σ的 ( )A.非平凡子空间B.核子空间C.不变子空间D.零子空间10.欧氏空间的度量矩阵一定是( )A.正交矩阵B.上三角矩阵C. 下三角矩阵D. 正定矩阵 二、填空题(共10小题,每小题3分,共30分。

高等代数期末考试试卷

高等代数期末考试试卷

一、填空题(每小题2分,共10分)1.多项式22009320101()(2)()2f x x x =+-的常数项为 。

2.设,,a b c 是方程30x px q ++=的三个根,则a bcb c a c a b = 。

3.线性方程组m n A x b ⨯=有无穷多解的充要条件是______________________。

4.设矩阵123012001A ---⎛⎫ ⎪-- ⎪ ⎪-⎝⎭=,则1A -的秩为 。

5.设实二次型123(,,)f x x x 的矩阵是111t ⎛⎫⎪⎝⎭,则123(,,)f x x x 是正定二次型的充要条件是 。

二、单选题(每小题2分,共10分)1.实数域上次数大于1的多项式()f x 有一实根是()f x 在实数域上可约的( )。

a) 必要非充分条件 b) 充分必要条件 c) 充分非必要条件 d) 既非充分又非必要条件2.行列式111213212223313233a a a a a a d a a a =,则332313322212312111a a a a a a a a a =( )。

a) d - b) d c) 0 d) 不确定3.λ=( ),非齐次线性方程组12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解。

a) 1 b) 2 c) 3 d) 4 4.若矩阵A 满足20A A E ++=,则9A =( )。

a) A b) A - c) E d) 05.矩阵( )合同与200010005-⎛⎫ ⎪⎪ ⎪⎝⎭ 。

a) 4000100010⎛⎫⎪⎪ ⎪⎝⎭b) 300020005⎛⎫⎪ ⎪ ⎪-⎝⎭c) 100010001-⎛⎫⎪- ⎪ ⎪⎝⎭d) 200020001⎛⎫⎪ ⎪ ⎪⎝⎭三、判断题(每小题2分,共10分)1.若()()()h x f x g x ,则()()h x f x 或()()h x g x 。

高等代数期末考试试卷及答案

高等代数期末考试试卷及答案

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。

2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。

3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。

4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。

高代一期末考试试题及答案

高代一期末考试试题及答案

高代一期末考试试题及答案一、选择题1. 设A和B都是n阶方阵,下列哪个条件可以推断出A与B一定可交换?A. AB = BAB. AB = 0C. det(A) = 0D. AB = I (单位矩阵)正确答案:A2. 设A是n阶方阵且可逆,则A^-1的列向量组是否一定线性无关?A. 是B. 否正确答案:A3. 设A是n阶对称矩阵,则A肯定满足的性质是:A. A的特征值为实数B. A的特征向量构成一组正交基C. A一定可以对角化D. A的秩等于n正确答案:A4. 设A是n阶可逆矩阵,下列哪个等式成立?A. (A^-1)^T = AB. (A^T)^-1 = AC. (A^-1)^T = (A^T)^-1D. (A^T)^-1 = (A^-1)^T正确答案:D5. 设A是n阶方阵,则A可能是可逆矩阵的充分必要条件是:A. 行列式det(A)不等于0B. 矩阵A的秩等于nC. 矩阵A有n个互不相同的特征值D. 矩阵A的伴随矩阵可逆正确答案:A二、计算题(请写出详细过程并附上最后计算结果)1. 计算矩阵相乘:A = [1 2 3; 4 5 6],B = [1 -1; 2 -2; 3 -3]解答:A *B = [1*1 + 2*2 + 3*3 1*(-1) + 2*(-2) + 3*(-3);4*1 + 5*2 + 6*3 4*(-1) + 5*(-2) + 6*(-3)]= [14 -14;32 -32]2. 计算矩阵的逆:设A = [1 2; 3 4]解答:计算A的行列式:det(A) = 1*4 - 2*3 = -2计算伴随矩阵:adj(A) = [4 -2;-3 1]计算A的逆:A^-1 = (1/det(A)) * adj(A) = (1/-2) * [4 -2;-3 1]= [-2 1;1.5 -0.5]三、证明题证明:若A是n阶对称矩阵,则A一定可以对角化。

解答:要证明A一定可以对角化,需要证明存在一个可逆矩阵P,使得P^(-1) * A * P = D,其中D是一个对角矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与应用数学专业本科期末考试试卷(A )
课程名称: 高等代数 任课教师: 考试时间: 120 分钟 考试性质(学生填写“√”):正常考试( )缓考补考( )重修( )提前修读( )
一、填空题(每小题2分)
1. 设n x f =∂))((, 且)()(x f x g , )()(x g x f , 则))((x g ∂=_________.
2. 在数域P 上有根, 但是在P 上不可约的多项式是__________多项式.
3. )(x f 是首项系数为1的实系数三次多项式. 若0)()3(==i f f , 则
)(x f =_________________.
4. 在行列式55
5115
11a a a a 中, 含有32a 且带有负号的项共有_________项.
5. 在行列式131402
1
b a -中, b 的代数余子式为-24, 则a =________.
6. 当矩阵A=______时, 秩A=0.
7. 已知A 为三阶矩阵, 且A =1, 则A 2-=_________.
8. 向量组{k ααα,,,21 }和{m βββ,,,21 }的秩分别是s 和t , 则{k αα,,1 ,
m ββ,,1 }的秩r 与s ,t 适合关系式____________.
9. 设A 为n 阶方阵, X 1, X 2均为方程组AX=B 的解, 且21X X ≠, 则A =____.
10. 设A, B 都是三阶方阵, 秩A=3, 秩B=2, 则秩(AB)=____________.
二、单选题(每小题2分)
).
(A) S 1={Z n m m
n ∈,2
}; (B) S 2={Z b a bi a ∈+,};
(C) S 3={Z z nz ∈}; (D) S 4={Q b a b a ∈+,2}.
2. 设0)(≠x f , 且)())(),((x d x g x f =, )()()()()(x d x v x g x u x f =+, 则错误的结....论.是( ). (A) 1))
()
(,)()((
=x d x g x d x f ; (B) )())(),((x d x v x u =; (C) )())(),()((x d x g x g x f =+; (D) )())(),((m m m x d x g x f =.
3. 设行列式D 1=3332
31232221
13
1211
a a a a a a a a a , D 2=31
32
33
21222311
1213
a a a a a a a a a ,则下面结论正确的有( ).
(A)D 2=-D 1; (B)D 2=0; (C)D 2与D 1无关; (D)D 2=D 1.
4. )(x f =
x
x x x x
1
11
1231
11212-中 4x 的系数为( )
(A) 1, (B) 2, (C) 0, (D) 3.
5. 22)13)()(1()(--+=x i x x x f 在复数域上的标准分解式是( )
(A)22)13)()(1(--+x i x x ; (B) 22)13())((--+x i x i x ;
(C)22)31())((--+x i x i x ; (D) 22)3
1
())((9--+x i x i x .
6.若r ααα,,,21 是线性无关的向量组, 则r r k k k ααα,,,2211 也线性无关的条件
是( )
(A) r k k k ,,,21 不全为零, (B) r k k k ,,,21 全为零, (C) r k k k ,,,21 全不为零, (D)以上结论都错.
7. 在一个含有n 个未知数m 个方程的线性方程组中,若方程组有解,则( ) (A) m >n ; (B) m <n ; (C) m =n ; (D)与m ,n 的大小无关. 8. 若矩阵A 的秩为r ,则( )
(A)A 有r 阶非零子式; (B)A 有r 阶非零子式且任意r +1阶子式为0; (C)A 的任意r +1阶子式为0; (D)A 的r 阶子式都不等于0. 9. 下列矩阵中( )不是初等矩阵
(A)⎪⎪⎪⎭⎫ ⎝⎛-100010001; (B)⎪⎪⎪⎭⎫ ⎝⎛101010100; (C)⎪⎪⎪⎭⎫ ⎝⎛010100001; (D)⎪⎪⎪


⎝⎛100010101.
10. 若数域P 上三元齐次线性方程组0=AX 的基础解系中仅含有一个向量,则其系数矩阵的秩是( )
(A) 0; (B) 1; (C) 2; (D) 3.
三、判断正误(每小题2分)
1. 若)()()(21x f x f x g +, 且)()()(21x f x f x g -, 则)()(1x f x g ,且)()(2x f x g .
( )
2. 若n 级行列式D ≠0, 则D 的n-1阶子式不全为零. ( )
3. 初等矩阵的逆矩阵仍为初等矩阵. ( )
4. 若A,B 均为n 阶可逆矩阵, 则A+B 也是n 阶可逆矩阵. ( )
5. 等价的向量组含有相同个数的向量. ( ) 四、计算题(第1、2小题每题10分,第3小题15分)
1. 计算n 阶行列式
n
n
n
a a a a a a a a a a a a +++11132
1
32
1321

2. 设111111022110110211X --⎛⎫⎛⎫ ⎪ ⎪
= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭
,求矩阵X .
3. 用导出组的基础解系表出线性方程组⎪⎪⎩⎪⎪⎨⎧=+-++-=---+=-++=+-++5
54931232362323354321543214
32154321x x x x x x x x x x x x x x x x x x x 的全部
解.
五、证明题(第1小题7分,第2小题8分)
1. 设P[x]的多项式)(x f 与不可约多项式)(x p 有一个公共根, 则)()(x f x p .
2. 若方程组⎪⎪⎩⎪
⎪⎨⎧=+++=+++=+++++++1
1212111221111212111n n n n n n n n nn n n n n b x a x a x a b x a x a x a b x a x a x a 有解, 则行列式
1
11111
111+++n n
n n n nn
n n b a a b a a b a a
=0.。

相关文档
最新文档