高等数学第四章不定积分课后习题详解

合集下载

高等数学第4章课后习题答案(科学出版社)

高等数学第4章课后习题答案(科学出版社)

第四章 习题解答习 题 4-11.求下列不定积分:(1);(2) 2(23)d x x x +⎰;(3)⎰+)1(d 22x x x;(4) 2cot d x x ⎛⎫+⎪⎭⎰;(6) 21(1)x x -⎰; (7)1d 1cos 2xx +⎰;(9)221d sin cos x x x ⎰;(10){}max ||,1d x x ⎰.2.设某曲线上任意点处的切线的斜率等于该点横坐标的立方,又知该曲线通过原点,求此曲线方程.3.验证函数21sin 2x ,21cos 2x -,1cos 24x -是某同一函数的原函数.解答:1.求下列不定积分: (1)解53225125212d 1()3x x x C x C --+-==+=-++-⎰. (2)解:⎰+x x xd )32(2C xx x +3ln 29+6ln 62+2ln 24=(3)=+-=+⎰⎰⎰22221d d )1(d x x x x x x x C x x+--arctan 1(4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(csc d 11d )cot 11(2222=C x xx +cot arcsin(5)1131352222222242(2)d 235x x x x x x x x x C -==-+=-++⎰⎰(6) 33571244444214(1)(1)d ()d 47x x x x x x x x x C x ----=-⋅=-=++⎰⎰⎰(7) 解2111d d tan 1cos 22cos 2x x x C x x ==++⎰⎰ (8) 解:⎰x x x x d sin cos 2cos 22⎰⎰-=-=x xx x x x x x d )cos 1sin 1(d sin cos sin cos 222222 C x x +--=tan cot(9) 解:222222221sin cos 11d d d d sin cos sin cos cos sin x x x x x x x x x x x x +==+⎰⎰⎰⎰ 22sec d csc d tan cot x x x x x x C =+=-+⎰⎰(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,1>,+211≤≤1,+1<,+21=)(32212x C x x C x x C x x F 须处处连续,有又)(x F)+21(lim =)+(lim 121→21→+C x C x x x ,,21112C C +-=+-即 )(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即 ,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d x xy=,从而 ⎰+==C x x x y 4341d .由0)0(=y ,得0=C ,因此所求曲线方程为441x y =. 3.解:x 2sin 21x x cos sin =, x x x sin cos cos 212='⎪⎭⎫ ⎝⎛- x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x 2cos 21-、 x 2cos 41-都是x x cos sin 的原函数.习 题 4-2 1.求下列不定积分: (1) 1d 12x x -⎰; (2) 100(23)d x x -⎰;(3) 12ed xx x ⎰; (4)211sin()d x x x ⎰;(5) ⎰-294d x x;(7) 1d ln lnln x x x x⎰;(8)x e x d 11⎰+;(9)⎰+3xx dx ; (10)x x x x x d )cos 2(sin sin 2cos 2⎰+-; (11)3cos d x x ⎰; (12)⎰+x x d 412;(14)2sin d cos 6cos 12x xx x -+⎰;(15)x ; (16) dx x ⎰5cos(17) ⎰x x x d cos sin 52(18)cos5sin 4d x x x ⎰;(19)⎰+x xx d sin 1sin ; (20)x exd 112⎰+(21) xx ⎰;(22)x x⎰. 2. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.3.已知x x f 22tan )(sin =',求函数)(x f .4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 5. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.6. 已知)(u f 有二阶连续的导数,求∫d )e (′′e2x f x x;解答:1.求下列不定积分:(1) 解: 令2u x =,有2sin 2d sin 2(2)d sin d cos x x x x x u u u C '===-+⎰⎰⎰,将2u x =回代,得2sin 2d x x ⎰cos 2x C =-+. (2) 解 10010010111(23)d (23)d(23)(23)3303x x x x x C -=---=--+⎰⎰ (3) 解:⎰x xexd 21C e x e x x +=)1-d( =11∫(4) 解:211111sin()d sin d()cos x C x x x x x=-=+⎰⎰ (5) 解:=-⎰294d x xc xx x x x +|323+2|ln 121=d 321+3+2141∫ (6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln (12(7) 解:x x x x d ln ln ln 1⎰C x x x x x x +===⎰⎰ln ln ln )ln d(ln ln ln 1)d(ln ln ln ln 1(8) 解:x ee x e e e x e xxx x x x d )11(d 11d 11⎰⎰⎰+-=+-+=+=C e x x ++-)1ln( (9) 解 令)0( 6>=t t x ,则⎰⎰+=+23536t t dtt x x dxdt tt t )111(62⎰+-+-=C t t t t ++-+-=))1ln(23(623C x x x x ++-+-=)1ln(6 6 32663(10) 解:)cos 2+(sin d )cos 2+(sin 1 =d )cos 2+(sin sin 2cos∫∫22x x x x x x x x x =C xx ++-cos 2sin 1(11) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sin sin 3 (12) 解:∫∫2d 2+1121=d +4122x xx x =C x +2arctan 21. (13)解:2x 231arcsin d(arcsin )(arcsin )3x x x C ==+⎰.(14)解:22sin d d(cos 3)cos 6cos 12(cos 3)3x x x C x x x -=-=-+-+⎰⎰ (15) 解:x x x xd )1(arctan ⎰+)d()(1arctan 2d 1arctan 22x x xx x x ⎰⎰+=+=C x x x +==⎰2)(arctan)d(arctan arctan2(16) x x x x x x sin d )sin -1( =sin d cos =d cos ∫∫∫2245=C x x x ++-52sin 51sin 32sin .(17) ⎰⎰⎰+-=-=x x x x x x x x x x sin d )sin sin 2(sin sin d )sin 1(sin d cos sin 64222252c x x x ++-=753sin 71sin 52sin 31 (18) 解:C x x x x x x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos (19) 解:∫∫∫d )tan +sec (tan =d sin -1)sin +1(sin =d sin +1sin 22x x x x x xx x x x x ⎰-+=x x x x d )1sec sec (tan 2=C x x x +-+tan sec .(20) 解:令)1ln(212-=t x ,则t t t x d 1d 2-=,于是C t t t t t t t t x ex ++-=-=-⋅=+⎰⎰⎰11ln 21d 11d 11d 11222 =C x e e x x +-++-)212ln(2122(21) 解:设sin (0)2x a t t π=<<,d cos d x a t t =,则22421sin cos cos d sin 2d 4x x a t a t a t t a t t =⋅⋅=⋅⎰⎰⎰ 444111(1cos 4)d sin 48832a t t a t a t C =-=-+⎰ 44211sin cos (12sin )88a t a t t t C =--+42211arcsin 2)88x a a x C a =--+. (22) 解:令sec x a t =,d sec tan d x a t t t =⋅,则22tan sec tan d tan d (sec 1)d sec a t a t t t a t t a t t a t =⋅⋅==-⎰⎰⎰ (tan )a t t C =-+arccos )a a C x=-+.2.求下列不定积分(1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222 ()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142 ⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰.(11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d3.已知x x f 22tan )(sin =',求函数)(x f .解 依题求得xx x f -='1)(,因此 C x x x x xx x x x f +---=--=-=⎰⎰⎰|1|ln d d 11d 1)(. 4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 解=+='='⎰⎰C x f x x f x xx f )(ln ln d )(ln d )(ln C x +1.5. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)6. 解⎰''x f x xd )e (e2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e习 题 4-31. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.2. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.3. 已知)(u f 有二阶连续的导数,求⎰''x f x xd )e (e2;解答1.求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x ⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰. (11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d2. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)3. 解⎰''x f x x d )e (e 2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e .习题4-4求下列不定积分:(1)23d 56x x x x +-+⎰; (2)21d (1)x x x -⎰;(3)22d (1)(1)xx x x +++⎰; (4)3224d 56x x x x x +++⎰.x x x d )+1(1 5∫28)(; (6)2d 3sin xx+⎰;(7)⎰++311d xx(8)sin d 1cos x xx x ++⎰.解答 (1) 解233(3)(2)56(2)(3)23(2)(3)x x A B A x B x x x x x x x x x ++-+-==+=-+------,即3(3)(2)x A x B x +=-+-,比较系数知1323A B A B +=⎧⎨--=⎩(或者用赋值法:分别在3(3)(2)x A x B x +=-+-中令3x =与2x =,也可解出A 与B ),解之得56A B =-⎧⎨=⎩,于是62356d ()d ln(3)5ln 25623x x x x x C x x x x +-=+=---+-+--⎰⎰65(3)ln 2x C x -=+-.(2) 解 令221(1)1(1)A B Cx x x x x =++---,用待定系数法或者用赋值法可求出1A =,1B =-,1C =,故221111d []d (1)1(1)x x x x x x x =-+---⎰⎰2111d d d 1(1)x x x x x x =-+--⎰⎰⎰1ln ln 11x x C x =---+-. (3) 解 因为222211(1)(1)11x x x x x x x x -+=+++++++,所以 2222d 1()d (1)(1)11x x x x x x x x x x -+=+++++++⎰⎰222221d(1)1d(1)1d 212121x x x x x x x x x +++=-+++++++⎰⎰⎰2221d()1112ln(1)ln(1)13222()24x x x x x +=-+++++++⎰2211ln 21x C x x +=-++++.(4) 解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498d (1)d 5632x x x x x x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. (5)解 ⎰⎰⎰+=+=+2888288728)1()1()1(1x x dx dx x x x dx x x =C xx +)1+1ln(+118188(6)解⎰+x x 2sin 3d ⎰-=x x 2cos 7d 2x u tan =⎰+243d u u ⎰+=2)32(1d 31u uC x +=3tan 2arctan 321(7)解 ⎰++311d xx31x t +=⎰+t t t 1d 32t t t d )111(3⎰++-=C t t t +++-=1ln 232 (8)解 注意到sin d d(1cos )x x x =-+及211d d d(tan )1cos 22cos2xx x x x ==+,可将原来的积分拆为两项,然后积分,即sin sin d d d 1cos 1cos 1cos x x x x x x x x x x +=++++⎰⎰⎰1d(tan )d(1cos )21cos x x x x=-++⎰⎰tantan d ln(1cos )22x xx x x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan 2ln cos ln(2cos )222x x xx C =+-+1tan (ln 2)2x x CC C =+=-.习题4-5利用积分表计算下列不定积分: (1);(2)3ln d x x ⎰; (3)221d (1)x x +⎰;(4);(5)x x ⎰; (6)(7) 6cos d x x ⎰;(8)2e sin3d x x x -⎰.解答 (1)解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x a x x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d x x xC x x x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n n d ln )(ln d ln 1 现在3=n ,重复利用此公式三次,得⎰x x d ln3C x x x x x x x +-+-=6ln 6ln 3ln 23.(3)=+⎰x x d )1(122解:在积分表中查得公式(28)⎰⎰+++=+bax xb b ax b x x ax b 2222d 21)(2d )(1 于是现在1=a ,1=b ,于是=+⎰x x d )1(122 C x x xx x x x +++=+++⎰arctan )1(21d 21)1(2222 (4)⎰-1d 2x xx解:在积分表中查得公式(51)C xaa x ax x+=-⎰arccos 1d 12 于是现在1=a ,于是⎰-1d 2x xx C x+=1arccos(5)x x x xd 222-⎰解:令1-=x t ,因为x x x xd 222-⎰x x x d 1)1(22--=⎰t t t t d 1)12(22-++=⎰由积分表中公式(56)、(55)、(54)C a x x a a x a x x x a x x+-+---=-⎰2222222222ln 8)2(8dC a x x a x x +-=-⎰32222)(31dC a x x a a x x x a x +-+--=-⎰2222222ln 22d于是x x x x d 222-⎰2222)1())1(2[81a x a x x -----= C a x a x x a +--+--+--322222])1[(31)1(1ln 85. (6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+b ax x xb a bx b ax b ax xxd 2d 2C bbax b bax xx +-+-=+⎰arctan2d 于是现在2=a ,1-=b ,于是=-⎰12d 2x x x⎰-+-12d 12x x xx x C x x x +-+-=12arctan 212 (7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=x x nn x x n x x n n n d cos 1sin cos 1d cos 21 现在6=n ,重复利用此公式三次,得⎰x x d cos 6C x x x x •x x ++++=)22sin 41(2415sin cos 245sin cos 6135. (8)x x e xd 3sin 2⎰-解:在积分表中查得公式(128)C bx b bx a e ba x bx e axax +-+=⎰)cos sin (1d sin 22 现在2-=a ,3=b ,于是C x x e x x e axx+--=⎰-)3cos 33sin 2(131d 3sin 2 C x x e ax++-=)3cos 33sin 2(131复习题A一、选择题1. 设)(x F 是)(x f 的一个原函数,则等式( )成立。

高等数学 第四章不定积分课后习题详解.doc

高等数学 第四章不定积分课后习题详解.doc

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

高等数学(同济第6版习题课4-1)

高等数学(同济第6版习题课4-1)

(3) xd x = d( x2 ) ;
(4) xd x = d(5 x2 ) ;
(5) xd x = d(1 - x2 ) ;
(6) x3 d x = d(3 x4 - 2) ;
(7) e2 x d x = d(e2 x ) ;
(8)
e-
x 2
dx

d(1

e-
x 2


(9)

x -
x都是
1的 x - x2
原函数 畅
证 [arcsin(2 x - 1)]′ =

·2=
1 - (2 x - 1)2
1, x - x2
[arccos(1 - 2 x)]′ = -

· ( - 2) =
1 - (1 - 2 x)2
1, x - x2
2arctan
x 1- x





1 1
x -
dx =3
dx 1 + x2
-2
dx 1 - x2
= 3arctan x - 2arcsin x + C .
∫ ∫ ∫ (15)
ex
1 - e- x x
dx=
exd x -
x-
1 2
d
x

ex

- 2x2

C.
∫ ∫ (16) 3x ex d x =
(3e) x d x

(3e) x ln(3e)

t= 0
(2)
求使
d d
s t

0的
t值

(3) 求使 s = 50 的 k 值 畅

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解 篇一:高等数学第四章不定积分习题 第四章不 定 积 分 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上 F?(x)?f(x),则 F(x)叫做 f(x)在该区间上的一个 f(x)的 所有原函数叫做 f(x) 在该区间上的__________。

2.F(x)是 f(x)的一个原函数,则 y=F(x)的图形为?(x)的一条_________. 3.因为 d(arcsinx)? 1?x2 dx ,所以 arcsinx 是______的一个原函数。

4.若曲线 y=?(x)上点(x,y)的切线斜率与 x 成正比例,并且通过点 A(1,6)和 B(2,-9),则该曲线 方程为__________ 。

二.是非判断题 1. 若 f?x?的某个原函数为常数,则 f?x??0.[ ] 2. 一切初等函数在其定义区间上都有原 函数.[ ] 3. 3 ??f?x?dx???f??x?dx.[ ] ? 4. 若 f?x?在某一区间内不连续,则在这个区间内 f?x?必无原函数. [ ] 5.y?ln?ax?与 y?lnx 是同一函数的原函数.[ ] 三.单项选择题 1.c 为任意常数,且 F'(x)=f(x),下式成立的有 。

(A)?F'(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c; (C)?F(x)dx?F'(x)+c;(D) ?f'(x)dx=F(x)+c. 2. F(x)和 G(x)是函数 f(x)的任意两个原函数,f(x)?0,则下式成立的有 。

(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c.3.下列各式中是 f(x)?sin|x|的原函数。

(A) y??cos|x| ;(B) y=-|cosx|;(c)y=? ?cosx,x?0,cosx?2,x?0; (D) y=? ?cosx?c1,x?0,cosx?c2,x?0. c1、c2 任意常数。

高等数学课后习题答案--第四章不定积分

高等数学课后习题答案--第四章不定积分

第四章不定积分典型例题解析例1 求下列不定积分.(1)2dxx x ⎰. (2)3(1)(1)x x dx +-⎰.分析利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式.解(1)5322512252121()3dx x dx x C x C x x--+-==+=-++-⎰⎰. (2)35312222323122(1)(1)(1)353x x dx x x x dx x x x x C +-=+--=+--+⎰⎰.例2求21()x dx x+⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解 122211()(2)x dx x x dx x x+=++⎰⎰12212x dx x dx dx x =++⎰⎰⎰ 32314ln 33x x x C =+++. 例3求下列不定积分.(1)2523x xxe dx ⋅-⋅⎰.(2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解(1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x x e e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰. 例4求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x+⎰. (3)221(1)dx x x +⎰. 分析根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x ++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰1arctan x x C x=--+. (2)4422(1)111x x dx dx x x-+=++⎰⎰ 222(1)(1)11x x dx x -++=+⎰221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰22111dx dx x x =-+⎰⎰1arctan x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰. (4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰ 2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4)(1)x x +.(5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdx x x -+⎰. (8).(9). (10)2. (11)322(arctan )1x x dx x ++⎰.分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n nx ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -==+-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(arctan )(arctan )21d x x d x x +=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x xf a a dx f a daa =⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数).(4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数).(5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰; 适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数).(6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)21(arcsin )(arcsin )(arcsin )1f x dx f x d x x =-⎰⎰;(9)21(arccos )(arccos )(arccos )1f x dx f x d x x =--⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰; (12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分: (1)3cos xdx ⎰.(2)4sin xdx ⎰. (3)sin7cos(3)4x x dx π-⎰.(4)6csc xdx ⎰. (5)34sin cos x xdx ⎰.(6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解(1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322coscos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc (csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++. (6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8求下列不定积分:(1)x xdx e e -+⎰.(2)x x dx e e --⎰.(3)11x dx e +⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解(1)x x dx e e-+⎰221arctan ()1()1x x x x x e dx de e C e e ===+++⎰⎰. (2)解法1 x x dx e e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则x x dx e e --⎰11ln 21x x e C e -=++.解法2x x dx e e --⎰21111()()1211x xx x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e+⎰1(1)11x x xx xe e e dx dx e e +-==-++⎰⎰ 1(1)1xxdx d e e =-++⎰⎰ln(1)x x e C =-++.解法211xdx e+⎰(1)ln(1)11x x x x x e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1xx xe C e C e-=+=-+++. 注在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9求下列不定积分:(1)ln tan sin cos xdx x x⎰.(2)arctan (1)x x x +.分析 在这类复杂的不定积分的求解过程中需要逐步凑微分. 解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ln tan (tan )ln tan (ln tan )tan x d x xd x x ==⎰⎰21ln (tan )2x C =+. (2)2arctan arctan 2(1)1()x x dx d x x x x =++⎰⎰22arctan (arctan )(arctan )xd x x C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctanarctan arctan11()1111()1()x x x dx dx d x x x x x=⋅=-+++⎰⎰⎰11arctan (arctan )d x x =-⎰211(arctan )2C x=-+.例11求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换.解法1sin 22sin dx x x +⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t =--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则 sin 22sin dx x x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14 求11dx x ++⎰.分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一. 解 设1x t +=,即21x t =-,2dx tdt =,则212(1)1111t dt dt t t x ==-++++⎰⎰⎰22ln 1t t C =-++212ln(11)x x C =+-+++例15 求455x x-+-⎰.分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数.解45x t -=,34dx t dt =-,则24414(1)1155dxt dt t dt t t x x-==--+++-+-⎰⎰⎰ 214(ln 1)2t t t C =--+++4414[55ln(15)]2x x x C =----++-+. 例16 243(1)(1)dxx x +-⎰解 令311x t x -=+,即3211x t =--,2326(1)t dx dt t =-,则 243(1)(1)dxx x +-⎰23322332164(1)1(1)(1)1dx t dt t t x tx t x ==⋅--⋅--+⎰⎰132313131()2221x dt C C t t x +==-⋅+=-+-⎰. 例17求224x x dx -⎰.分析被积函数中含有根式24x -,可用三角代换2sin x t =消去根式. 解 设242cos (0)2x t t π-=<<,2cos dx tdt =,则222244sin 2cos 2cos 4sin 2x x dx t t tdt t dt -=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin 42t dt t t C =-=-+⎰222sin cos (12sin )t t t t C =--+2212arcsin 4(1)222x x x x C =---+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2 在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18 求221(1)dx x +⎰. 分析虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解 设tan x t =,2sec dx tdt =,()2241sec x t +=,则222241sec cos (1)sec t dx dt tdt x t ==+⎰⎰⎰111(1cos2)sin 2224t dt t t C =+=++⎰ 21arctan 22(1)xx C x =+++. 例19求22x a dx x-⎰. 分析 被积函数中含有二次根式22x a -,但不能用凑微分法, 故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22x a dx x -⎰22tan sec tan tan (sec 1)sec a t a t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+22(arccos )x a aa C a x-=-+.例20求248x dx x x ++⎰.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,22(2tan 2)2sec 2sec tan 2sec 2sec 48xt t dx dt t tdt tdt t x x -⋅==-++⎰⎰⎰⎰12sec 2ln sec tan t t t C =-++22482ln(248)x x x x x C =+++++++.()12ln 2C C =+注 2ax bx c ++ 由 22222224()0244()024b ac b a x a a a ax bx c b b ac a x a a a ⎧-++>⎪⎪++⎨-⎪--++<⎪⎩可作适当的三角代换, 使其有理化.例21 求23(24)x x -+.解23(24)x x -+322[3(1)]dx x =+-⎰,令13x t -=,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰21324x C x x -=+-+. 故 23(24)dx x x -+⎰21324x C x x -=+-+.例22求421(1)dx x x +⎰.分析当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23 求22a x dx -. 解 设1x t=,2dtdx t =-,则2222241()dt a a xt t t -⋅--=1222(1)a t t dt =--⎰.当0x >时,1222222221(1)(1)2a x dx a t d a t a-=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故22a xdx-322223()3a x C a x -=-+.注1第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型: (1)(,),n n f x ax b dx t ax b +=+⎰令. (2)(,),nnax b ax bf x dx t cx d cx d++=++⎰令. (3)222(,)f x a b x dx -⎰,可令sin a x t b =或cos ax t b =. (4)222(,)f x a b x dx +⎰,可令tan a x t b =或ax sht b =.(5)222(,)f x b x a dx -⎰,可令sec a x t b =或ax cht b=.(6)当被积函数含有22(40)px qx r q pr ++-<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24求下列不定积分:(1)3x xe dx -⎰.(2)2sin 4x xdx ⎰.(3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰.(6)sin ax e bxdx ⎰22(0)a b +≠.分析上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解(1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰22arcsin arcsin 11x x dx x x x C x =-=+-+-⎰.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰2arcsin 1x x x C =+-+(5)解法1 arctan x xdx ⎰222211arctan arctan 2221x x xdx x dx x ==-+⎰⎰2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1sin axe bxdx ⎰11sin ()sin cos axax ax b bxd e e bx e bxdx a a a ==-⎰⎰ 21sin cos ()ax ax be bx bxd e a a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰.解法21sin cos axaxe bxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成. 注在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出. 例25求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰ sin ln(cot )ln sec tan x x x x C =+++例26求2ln(1)x x dx ++⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解 2222112ln(1)ln(1)(1)211xx x dx x x x x dx x x x++=++-⋅⋅+⋅+++⎰⎰22ln(1)1x x x x dx x=++-+⎰122221ln(1)(1)(1)2x x x x d x -=++-++⎰22ln(1)1x x x x C =++-++.例27求1x xxe dx e -⎰.分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法11x x dx e -⎰2(1)1x x x xd e e ==--⎰⎰211x x x e e dx ⎡⎤=---⎣⎦⎰, 令1x t e =-,则2ln(1)x t =+,221tdtdx t=+,则 212122(arctan )1xt dte dx t t C t -==-++⎰⎰,故1x x dx e -⎰()21212arctan 1x x x x e e e Cz =---+-+21414arctan 1x x x x e e e C =---+-+.解法21x e tz -=,则1xx xe dx e -⎰22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++21414arctan 1x x x x e e e C =---+-+.注求不定积分时,有时往往需要几种方法结合使用,才能得到结果. 例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法12arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果. 例30求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解(1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ sin(ln )cos(ln )x x x dx =-⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t te tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型. 解11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33求积分24411(21)(23)(25)x x dx x x x +--+-⎰.分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分.解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-, 用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+,两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰ 113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式 32322452()3()2(1)x x x x x x x x +++=+++++22(1)(32)(1)(2)x x x x x =+++=++设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35求22(1)(1)dxx x x +++⎰.解因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰ 2211321ln arctan 2133x x C x x ++=-++++.例36求2425454x x dx x x ++++⎰.解设24222545414x x Ax B Cx D x x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰. 例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰.解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解.解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法222100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40 求13221dx x x ++-⎰. 分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一.解132213221(3221)(3221)x x dx dx x x x x x x +--=++-++-+--⎰⎰112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41 求a xdx a x+-⎰. 解法12222221a x a x xdx dx a dx dx a x a x a x a x++==+----⎰⎰⎰⎰ 1222222211()()2a dx a x d a x a x -=----⎰⎰ 22arcsin xa a x C a=--+.解法2 令 a xt a x+=-,余下的请读者自行完成. 例42求154sin 2dx x+⎰.分析被积函数是三角有理函数,可用万能公式将它化为有理函数. 解令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰154arctan()333t C =++154arctan(tan )333x C =++. 注虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43求1sin cos dxx x++⎰.解法1令tan 2xu =,则2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++.解法21sin cos dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dx x x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类: 第一类是三角有理函数的积分,即可用万能代换tan2xu =将其化为u 的有理函数的积分. 第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法.例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩,设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩,其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰. 解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x xx x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx x edx e dx e C ---==-+⎰⎰.当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0xxxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰. 错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使x e -的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系.例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰.(2)3sin 2cos sin cos xx x xe dx x-⎰.(3)cot 1sin xdx x+⎰.(4)3sin cos dxx x⎰. 解(1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x =-++⎰⎰tan tan ln(1cos )22x xx dx x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan2ln cos ln(2cos )222x x xx C =+-+ 1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰ sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21ln csc2cot 22sin x x C x=--+.注将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰.解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰ 353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x++=-+--.例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰ln 5cos 2sin x x x C =+++.例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以 1()sin 414F x x x =-+从而()()12sin 414f x F x x x '==-+21sin 414x x =-+.。

不定积分例题及标准答案

不定积分例题及标准答案

第4章不定积分
习题4-1
1.求下列不定积分:
知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!
★(1)
思路: 被积函数5
2
x -=,由积分表中的公式(2)可解。

解:53
22
23x dx x C --==-+⎰
★(2)dx

思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1
14111
3332223()2
4dx x x dx x dx x dx x x C ---=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()
思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:22
32122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()
★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153
222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰
思路:观察到422223311311
x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x
++=+=++++⎰⎰⎰ ★★(6)2
21x dx x +⎰
思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

高等数学 不定积分例题、思路和答案(超全)

高等数学 不定积分例题、思路和答案(超全)

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C--==-+⎰★(2)思路:解:★(3)思路:解:★(4)思路:解:★★思路:解:42232233113arctan11x xdx x dx dx x x C x x++=+=++ ++⎰⎰⎰★★(6)221xdxx+⎰思路:注意到222221111111x xx x x+-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-2 思路:分项积分。

解:3411x dx --134(-+-) ★(8)思路:解:★★思路:解:★★思路:解:★(11)1x e -⎰ 解:21(1)(1)(1).11x x x x x x x e e e dx dx e dx e x C e e --+==+=++--⎰⎰⎰ ★★(12)3x x e dx ⎰思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘。

显然33x x x e e =()。

解:333.ln(3)x x x xe e dx e dx C e ==+⎰⎰()() ★★(13)2cot xdx ⎰思路:应用三角恒等式“22cotcsc 1x x =-”。

解:22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰★★(14)2352x xx dx ⋅-⋅⎰思路:解:★★思路:解:★★思路:解:★(17)思路:解:★(18)22cos 2cos sin x dx x x ⋅⎰ 思路:同上题方法,应用“22cos 2cos sin x x x =-”,分项积分。

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:高等数学第四章不定积分习题第四章不定积分4 – 1不定积分的概念与性质一.填空题1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的所有原函数叫做f(x)在该区间上的__________。

2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为d(arcsinx)?1?x2dx,所以arcsinx是______的一个原函数。

4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。

二.是非判断题1.若f?x?的某个原函数为常数,则f?x??0. [ ] 2.一切初等函数在其定义区间上都有原函数. [ ] 3.3??f?x?dx???f??x?dx. [ ]?4.若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] ?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题1.c为任意常数,且F’(x)=f(x),下式成立的有。

(A)?F’(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;(C)?F(x)dx?F’(x)+c;(D) ?f’(x)dx=F(x) +c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)?0,则下式成立的有。

(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c; (D) F(x)?G(x)=c. 3.下列各式中是f(x)?sin|x|的原函数。

(A) y??cos|x| ; (B) y=-|cosx|;(c)y=??cosx,x?0,cosx?2,x?0;(D) y=??cosx?c1,x?0,cosx?c2,x?0.c1、c2任意常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。

解:2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++⎰⎰★★(9)思路=?11172488x x++==,直接积分。

解:715888.15x dx x C ==+⎰⎰★★(10)221(1)dx x x +⎰思路:裂项分项积分。

解:222222111111()arctan .(1)11dx dx dx dx x C xx x x x x x =-=-=--++++⎰⎰⎰⎰ ★(11)211x xe dx e --⎰ 解:21(1)(1)(1).11x x x x xxx e e e dx dx e dx e x C e e --+==+=++--⎰⎰⎰ ★★(12)3x xe dx ⎰思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘。

显然33xxxe e =()。

解:333.ln(3)xxxxe e dx e dx C e ==+⎰⎰()() ★★(13)2cot xdx ⎰思路:应用三角恒等式“22cot csc 1x x =-”。

解:22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰★★(14)23523x xx dx ⋅-⋅⎰思路:被积函数235222533x x xx⋅-⋅=-(),积分没困难。

解:2()2352232525.33ln 2ln 3xxxx x dx dx x C ⋅-⋅=-=-+-⎰⎰(()) ★★(15)2cos 2x dx ⎰思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。

解:21cos 11cossin .2222x x d dx x x C +==++⎰⎰ ★★(16)11cos 2dx x +⎰思路:应用弦函数的升降幂公式,先升幂再积分。

解:221111sec tan .1cos 2222cos dx dx xdx x C x x ===++⎰⎰⎰★(17)cos 2cos sin xdx x x -⎰思路:不难,关键知道“22cos 2cos sin (cos sin )(cos sin )x x x x x x x =-=+-”。

解:cos 2(cos sin )sin cos .cos sin xdx x x dx x x C x x =+=-+-⎰⎰★(18)22cos 2cos sin xdx x x ⋅⎰思路:同上题方法,应用“22cos 2cos sin x x x =-”,分项积分。

解:22222222cos 2cos sin 11cos sin cos sin sin cos x x x dx dx dx x x x x x x x-==-⋅⋅⎰⎰⎰⎰ 22csc sec cot tan .xdx xdx x x C =-=--+⎰⎰★★(19)dx ⎰思路:注意到被积函数==,应用公式(5)即可。

解:22arcsin .dx x C ==+⎰★★(20)21cos 1cos 2xdx x ++⎰思路:注意到被积函数22221cos 1cos 11sec 1cos 2222cos x x x x x++==++,则积分易得。

解:221cos 11tan sec .1cos 2222x x x dx xdx dx C x ++=+=++⎰⎰⎰ ★2、设()arccos xf x dx x C =+⎰,求()f x 。

知识点:考查不定积分(原函数)与被积函数的关系。

思路分析:直接利用不定积分的性质1:[()]()df x dx f x dx=⎰即可。

解:等式两边对x 求导数得:()()xf x f x =∴=★3、设()f x 的导函数为sin x ,求()f x 的原函数全体。

知识点:仍为考查不定积分(原函数)与被积函数的关系。

思路分析:连续两次求不定积分即可。

解:由题意可知,1()sin cos f x xdx x C ==-+⎰所以()f x 的原函数全体为:112cos sin x C dx x C x C -+=-++⎰()。

★4、证明函数21,2x x e e shx 和xe chx 都是s x e chx hx -的原函数知识点:考查原函数(不定积分)与被积函数的关系。

思路分析:只需验证即可。

解:2x x e e chx shx =-,而22[][][]x x x x d d de e shx e chx e dx dx dx===1()2★5、一曲线通过点2(,3)e ,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。

知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。

解:设曲线方程为()y f x =,由题意可知:1[()]d f x dx x=,()ln ||f x x C ∴=+; 又点2(,3)e在曲线上,适合方程,有23ln(),1e C C =+∴=,所以曲线的方程为()ln || 1.f x x =+★★6、一物体由静止开始运动,经t 秒后的速度是23(/)t m s ,问:(1) 在3秒后物体离开出发点的距离是多少? (2) 物体走完360米需要多少时间?知识点:属于最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得物体的位移方程的一般式,然后将条件带入方程即可。

解:设物体的位移方程为:()y f t =,则由速度和位移的关系可得:23[()]3()f t t f t t C =⇒=+ddt, 又因为物体是由静止开始运动的,3(0)0,0,()f C f t t ∴=∴=∴=。

(1)3秒后物体离开出发点的距离为:3(3)327f ==米;(2)令3360t t =⇒=秒。

习题4-2★1、填空是下列等式成立。

知识点:练习简单的凑微分。

思路分析:根据微分运算凑齐系数即可。

解:234111(1)(73);(2)(1);(3)(32);7212dx d x xdx d x x dx d x =-=--=-2222111(4)();(5)(5ln ||);(6)(35ln ||);255112(tan 2);(9)(arctan 3).23cos 219x x dx dx e dx d e d x d x x x dx dx d d x d x x x ===--===+2、求下列不定积分。

知识点:(凑微分)第一换元积分法的练习。

思路分析:审题看看是否需要凑微分。

直白的讲,凑微分其实就是看看积分表达式中,有没有成块的形式作为一个整体变量,这种能够马上观察出来的功夫来自对微积分基本公式的熟练掌握。

此外第二类换元法中的倒代换法对特定的题目也非常有效,这在课外例题中专门介绍!★(1)3te dt ⎰思路:凑微分。

解:33311(3)33tt te dt e d t e C ==+⎰⎰ ★(2)3(35)x dx -⎰思路:凑微分。

解:33411(35)(35)(35)(35)520x dx x x x C -=---=--+⎰⎰d ★(3)132dx x -⎰思路:凑微分。

解:1111(32)ln |32|.322322dx d x x C x x =--=--+--⎰⎰ ★(4)思路:凑微分。

解:1233111(53)(53)(53)(53).332x x d x x C -=--=---=--+⎰⎰⎰ ★(5)(sin )xbax edx -⎰思路:凑微分。

解:11(sin )sin ()()cos xx xbb b x ax e dx axd ax b e d ax be C a b a-=-=--+⎰⎰⎰★★(6)思路:如果你能看到td =,凑出d 易解。

解:2C==+⎰★(7)102tan sec x xdx ⎰思路:凑微分。

解:10210111tansec tan (tan )tan .11x xdx xd x x C ==+⎰⎰ ★★(8)ln ln ln dxx x x ⎰思路:连续三次应用公式(3)凑微分即可。

解:(ln ||)(ln |ln |)ln |ln ln |ln ln ln ln ln ln ln ln dx d x d x x C x x x x x x ===+⎰⎰⎰★★(9)tan ⎰思路:是什么,是什么呢?就是解:tan ln |C ==-+⎰⎰★★(10)sin cos dxx x ⎰思路:凑微分。

相关文档
最新文档