函数方程与迭代
高一数学竞赛讲座2函数方程与函数迭代

函数方程与函数迭代函数方程问题一直是各国重大竞赛中的热点问题,以IMO 为例,在已进行的四十七届竞赛的试题中,有30多道是函数方程的试题,几乎是每届一题.在我国冬令营与国家集训队的测试题中,函数方程问题也是屡见不鲜的.究其原因,它往往是给出较弱的条件,却要从中得出甚强的结论(一般是要直接求出表达式).【基础知识】表示某一类(或某一个)函数所具有的一定性质的关系式叫做函数方程(其中()f x 为未知函数).如果一个函数对其定义域内变量的一切值均满足所给的方程,则称()f x 为这个函数方程的解.寻求函数方程的解或证明函数方程无解的过程,就是解函数方程.我们粗略地归纳其典型的解题方法,主要可以分成以下几类: 1.换元法: 2.解方程(组)法 3.待定系数法 4.代值减元法当所给的函数方程中变量不止一个时,和普通方程一样,求解时首先要设法减少变量个数,代值减元就是一种减少变量的方法,它通过适当地对自变量赋于特殊值,从而简化方程,逐步靠近未知结果,最终解决问题.5.柯西法先求出对于自变量取所有正整数的值时函数方程的解具有的形式,然后依次证明对自变量取整数值,有理数值以及取实数值时函数方程的解仍具有这种形式,从而得到方程的解.这里我们给出一个定理:柯西函数方程的解定理:若()f x 是单调(或连续)函数,且满足()()()f x y f x f y +=+(,),x y R ∈则()(1).f x xf =(我们将此定理的证明放于例题中进行讲解.)6.递归法借助数列对函数方程加以研究的方法.设()f n 是定义在R +上的函数,如果存在递推关系S 和初始条件1(1),f a =当知道(1),(2),,()f f f n 的值后,由S 可以惟一确定(1)f n +的值,我们称()f n 为递归函数.递推法主要解决递归函数问题.7.不动点法一般地,设函数()f x 的定义域为D ,若存在0x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点,或称00(,)x x 为函数()y f x =图象的不动点.对于一些简单的函数,利用不动点,把函数变形后再迭代,最后利用数学归纳法证明,往往会使算法简单些.【典例精析】【例1】已知11()(),x xf x f x x--+=求().f x 〖分析〗令1,x t x -=则1,1x t =-再令1,1y t=-则1,y t y -=因此可以将所得三个等式看成是关于11(),(),()1x f x f f x x --的三个方程,便可解得().f x解:设1,x t x -=则1,1x t =-代入原式,得11()(),11f f t t t +=--即11()()1,11f f x x x+=+-- ○1 设1,1t x =-则代入原式,得111()()1.1t t f f t t t --+=+-即1121()(),1x x f f x x x--+=- ○2 将○1○2与原方程联立,解得321().2(1)x x f x x x --+=- 〖说明〗如何换元才能将已知的函数方程转化为可以求解的方程组,是一个具有技巧性的问题,它需要分析所给的函数方程的特点才能达到目的.本例通过再次换元得到关于11(),(),()1x f x f f x x--的方程组,消去11(),(),1x f f x x--从而求得().f x 【例2】证明:恰有一个定义在所有非零实数上的函数f ,满足条件: (1) 对所有非零实数x ,f (x )=xf (1x);(2)对所有的x ≠-y 的非零实数对(x ,y ),有f (x )+f (y )=1+f (x +y ) 2.证明:f (x )=x +1显然适合(1)、(2)。
函数迭代和函数方程

2.5函数迭代和函数方程一、基本知识简述 1. 函数迭代设f 是D →D 的函数,对任意D x ∈,记x x f=)()0(,定义))(()()()1(x f f x f n n =+,*N n ∈,则称函数)()(x fn 为)(x f 的n 次迭代.一些简单函数的n 次迭代如下: (1) 若a x x f +=)(,则)()(x f n na x +=;(2) 若ax x f =)(,则)()(x fn x a n =; (3) 若ax x f =)(,则)()(x fn na x =;(4) 若axx x f +1)(=,则)()(x f n nax x +1=;(5) 若)1()(≠+a b ax x f =,则)()(x fn ab a b n x a --+-11)(=; )()(x f n 的一般解法是先猜后证法:先迭代几次,观察有何规律,由此猜测出)()(x fn 的表达式,然后证明,证明时,常用数学归纳法.2. 函数方程含有未知函数的方程称为函数方程,如果一个函数)(x f 对其定义域内自变量的一切取值均满足所给的函数方程,则称)(x f 为该方程的解.证明函数方程无解或寻求鞭解的过程就是解函数方程. 一般用以下方法:(1) 代换法:将方程中的自变量适当地以别的自变量代换,得到一个新的函数方程,然后设法求得未知函数.(2) 赋值法:根据所给的条件,适当地对自变量赋予某些特殊值,从而简化函数方程,逐步靠近未知结果,最终解决问题.(3) 待定系数法:当函数方程中的未知函数是多项式时,可用此法经比较系数而求解.(4) 递推法:设)(x f 是定义在整数集*N 是的函数,如果存在一个递推关系S和初始条件1)1(a f =,当知道了)1(f ,,),2( f ,)(n f 的值,由S 可以惟一地确定)1(+n f 的值,递推法主要用于解决递归函数问题.二、例题1.求函数迭代后的表达式例1设11)(+-=x x x f 记fn n x f f f x f 个)])([()(=,求)(1999x f例2已知函数3)(+=x x g ,)](5[)(1x g g x f -=.记)]([)(2x f f x f =,)]([)(23x f f x f =,)]([)(1x f f x f n n -= ,则函数)(),(2x f x f ,)(3x f 的表达式依次为___,____,___;而)(x f n 的表达式为____. 2.求迭代后的函数值例3自然数k 的各位数字和的平方记为已知函数)(1x f ,且)]([)(1k f f k f n n -=,求 )11(n f (*N n ∈)的值域.例4已知函数k n f =)(,k 是循环小数0.918273645的小数点后的第n 位数字,则))]([( x f f f 的值为____.例5设121)(+=x x f ,而))(()(11x f f x f n n =+,(*N n ∈),记2)2(1)2(+-=n n n f f a ,求99a例6.在自然数集N 上定义的函数⎩⎨⎧+-=)]7([3)(n f f n n f ),1000(),1000(<≥n n 求)90(f 的值.3.解函数方程例7.已知),0,(-∞∈x 函数)(x f 满足xx f x f 51)(3)(2=-,求)(x f 的最小值及相应的x 值.[同类变式]函数)(x f 满足xx f x f 5)(3)(2=--,求)(x f例8.已知xx xx x f f +-++=-12111)(2)(,求)(x f 的表达式.例9.实数集R 上的函数)(x f y =满足:(1)22121212sin 42cos )(2)()(x a x x f x x f x x f +=-++),,(21是常数a R x x ∈ (2)1)()0(4==πf f (3)当],0[4π∈x 时,2)(≤x f 试求:(1)函数)(x f y =的解析式 (2)常数a 取值范围.4.由函数方程函数值例10.如果)()()(y f x f y x f =+,并且2)1(=f ,求)1999()2000()5()6()3()4()1()2(f f f f f f f f ++++的值例11.定义在R 上的函数)(x f ,恒有)()()(y f x f y x f +=+,若4)16(=f ,求)2003(f . 例12.若)(x f 是定义域为R 的函数,并且)(1)](1)[2(x f x f x f +=-+,32)1(+=f ,求)1997(f 的值. 三、习题 1. 若⎩⎨⎧=为无理数为有理数,x x x f ,01)( 则)]([x f f 的值 ( )(A)等于1 (B)等于0(C)可能为1,也可能为0 (D)可能是0,1以外的数2.已知1)1(+=-x x f ,则)12(+x f = ( ) (A) x 2 (B) 12+x (C) 22+x (D) 32+x3. 已知43)(2+-=x x x f ,486950183))((234++++=x x x x x g f ,那么)(x g 的各项系数和为( )(A) 8 (B) 9 (C) 10 (D) 114. 若函数)(x f ,满足)()()(y f x f y x f +=+R y x ∈,,则下列各式中不恒成立的是( ) (A) 0)0(=f (B) )1(3)3(f f = (C) )1()(2121f f = (D) 0)()(<-x f x f5.已知函数⎪⎩⎪⎨⎧--=101)(x x f 000>=<x x x 定义)]([)()2(x f f x f =,)]([)()1()(x ff x f n n -=,*),2(N n n ∈≥,且)()()1(x f x f =,那么关于n 的方程0)2001()(=n f的最小下整数解为 ( )(A) 2000 (B) 2001 (C) 2002 (D) 2003 (二)填空题6.已知函数,)(2q px x x f ++= R x q p ∈、、,又集合{}x x f x A ==)(|,{}x x f f x B ==)]([|.{}3,1-=A ,则B =____7.已知11)(+-=x x x f ,12)(-+=bx a x x g ,且xx g f 21))((=,则a=______,b=_________.8.设函数2)1()(2+-=x x f (x ≤0),函数)(x g 适合x x g f =)]([,则)(x g _______.9. 已知函数22)(+--=+x x a x f ,且3)]([=a f f ,则a=________.10.已知)(x f 是一次函数,且10231024)()10(+=x x f,则)(x f =_____11.若函数)(x f 满足条件x f x f x=-)(4)(1,则)(x f 的最小值是____. 12.设)(x f y =是定义在R 上的函数,且对于任意实数a,b,有ab b af f =)]([,则)1999(f 13. 设121)(+=x x f ,而))(()(11x f f x f n n =+,(*N n ∈),记2)0(1)0(+-=n n n f f a ,求100a(三)解答题14. 设],0[2πα∈,函数)(x f y =的定义域为[0,1],且0)0(=f ,1)1(=f ,当y x ≥时,有)()sin 1(sin )()(2y f x f f y x αα-+=+,求 (1))(),(4121f f ; (2)α的值;(3)函数)2sin()(x x g -=α的单调递增区间.。
函数方程和函数迭代问题(奥数)

函数方程和函数迭代问题(奥数)第四讲函在国内外数学竞赛中函数方程和函数迭代问题备受命题者的青睐形式灵活多变,结构变化无穷,大致可分为如下三类:⑴探求函数的解析式;⑵探求函数的值⑶讨论函数的性质.一. 探求函数的解析式函数方程的求解事实上也是一个探求函数解析式的过程,而函数方程常见的初等解法有许多,下面对其作进一步详尽的介绍.1,换元法换元法的解题基本思想是:将函数方程中自变量适当代换成别的自变量(应注意力求不改变函数的定义域),得到一个或几个新的函数方程,然后将它们与原方程联立,通过消元求得原函数方程的解.例1 解函数方程 f(x)+f(xx 1-)=1+x (x ≠0,x ≠1) f(x)=x+1/x+1/(1-x) 例2 设f(x)是定义在实数集上的实值函数,且满足af(x-1)+bf(1-x)=cx,其中a,b,c 为实常数,求f(x) f(x)=c/(a-b)x+c/(a+b)2.赋值法赋值法基本思想是:对自变量多于一个的函数方程,将其中一个或几个自变量用一些特殊值赋进去代入原方程,从而简化函数方程,以达到求解的目的.例3 已知定义在R 的函数满足⑴ f(x 1+x 2)+f(x 1-x 2)=2f(x 1)cos2x 2+4asin 2x 2 (x 1,x 2∈R,a 为常数) f(x)=(a-1)(sin2x-cos2x)+a⑵ f(0)=f(4π)=1 ⑶ 当x ∈[0, 4π]时,f(x)≤2 试求⑴函数f(x)的解析式;⑵常数a 的取值范围.例4 f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x)⑴ f[xf(y)]f(y)=f(x+y);⑵ f(2)=0⑶ 当0≤x <2 f(x)≠0 f(x)= 0,x>=22/(2-x),x<23递推法这一方法的其本思想是:当f(x)是定义在自然数集上的函数(实际上就是通项为a n =f(n)的数列)时,可根据题中所给函数方程,通过持殊值得到关于f(n)的递推关系,然后根据递推关系求出(即数列{a n}的通项表达式)例5已知f(x)是定义在自然数集上的函数,满足f(1)=23,且对任意x,y ∈N,有 f(x+y)=(1+1+x y )f(x)+(1+1+y x )f(y)+x 2y+xy+xy 2,求f(x) 4. 柯西法柯西首先讨论了一个很重要的函数方程f(x+y)=f(x)+f(y)的解法,由此解决了一系列其他函数方程.他的方法是,依次求出所有自然数值,整数值,有理数值,直至所有实数值的函数方程的解例6 设f(x) 是定义在有理数集上的函数,且对任意的有理数x,y 有f(x+y)=f(x)+f(y),试求f(x)5, 待定系数法这一方法的其本思想是:当f(x)是多顸式时,可设f(x)=a 0x n +a 1x n-1+….+a n (a 0≠0),代入函数方程的两端,然后比较方程两端x 最高次幂的指数和x 同次幂的系数,便可得出关于n 及a 0 a 1…a n .的方程组,解这个方程组便可确定n 及a 0 a 1…a n 的值,从而得到函数方程的解例7确定符合下列条件的所有多项式f(x) f(x+1)=21f[f(x)]+23 6 , 利用不等式夹逼利用不等式夹逼求解函数方程,主要是利用下列几个明显的结论:⑴ 若对任意x ∈I, 有f(x)≥g(x) 及f(x)≤g(x)则对任意x ∈I,有f(x)=g(x)⑵ 若对任意x,y ∈I,有f(x)≤g(y)则交换x,y 得f(y)≤g(x)于是对任意的x,y ∈I 有f(x)=g(y)由此可得f(x)=常数(x ∈I).⑶ 若f:N →N 满足m ≤f(n)<m+1或m-1<f(n)≤m 或m-1<f(n)<m+1(m,n ∈N)则f(n)=m,例8 设f(x) 是具有下列性质的函数⑴ f(n)对每一正整数n 有定义;⑵ f(n)是正整数;⑶ f(2)=2⑷ f(mn)=f(m)f(n),对一切m,n 成立;⑸ f(m)>f(n),当m >n 时试证: f(m)=f(n)例9 设f(n )是定义在自然数集N 上的函数,它的值域也是全体自然数所成的集N,并且对任意两个自然m 与n,只要m ≥n 就有f(m) ≥n, 试证: f(m)= m 对任意的自然数m 成立.例10 设f(n )是定义在自然数集N 上的函数,满足: ⑴f(n )的值域为整数;⑵当m <n 时,f(m)<f(n);⑶当m,n 互素时,f(mn)=f(m)f(n),试求符合上述条件的一切函数f(x).二. 探求函数的值在各级各类数学竞赛中除了求函数方程的解以外,还经常遇到由函数方程给出的特殊定义的抽象函数,要求参赛者探求其函数的特殊的函数值.例11. 设N 是自然数集, f(x)是定义在N 上并在N 内取值的函数,且对x,y ∈N,有f[f(x)+y]=x+y,求f(1988)的所有可能的值例12. 设f(n )对所有正整数有定义,取非负整数值,并且对所有正整数m,n 有f(m+n)-f(m)-f(n)=0或1.又f(2)=0.f(3)>0,f(9999)=3333,求f(1982).例13. 设f(x),g(x)是定义在正整数集Z +上并取整数的严格递增函数,如果它们满足:⑴f(Z +) ∪ g ( Z +) = Z +(⑵f(Z +) ∩ g ( Z +) =⑶g(n)=f(f(n))+1试求f(240).三.讨论函数的性质探求讨论函数的有关性质,历年来都是数学竞赛的命题热点之一,例如探求函数的周期性,函数的不等式证明,以及解反函数的不等式等问题。
高二数学函数方程与迭代(共10张PPT)

只是在壹旁看着而已,咱要走了,有缘咱们会再见の 说完她人影 已经闪到了几十里开外,虚空中出现了壹个黑色口子,她向根汉摇了摇手 便沉进了这个无垠の虚空中
看到这壹幕,根汉心中不由得壹惊
但是转眼就这样子离开,
.
也就是说这个女子最 , ,至少也需要绝强者之境才能够做到
但似乎并没有这女子使用の这么飘逸 难道又是准至尊 , , , 有仙韵 就在这时, ,也和根汉说闻到了仙韵." ?" , 差也是壹位绝强者. , 当年九天寒龟也曾经向根汉展示过这壹招
,自己の几件至宝都会壹起出来.女人则 " 笑道" 又有魔韵,还有人韵,可以说是万 , 古奇遇
你是什么来历..."女人并没有恶意 面目慈善 根汉皱眉道:
?那是什么东西
那又叫做三界气韵,
,
, ,魔有魔韵 每壹个生灵出生之时
..." " 女人倒也不瞒,解释道: 壹般来说,
而你 の身上 有三种 气韵, 三界 气 韵 都有 了...""
?"
"咱当然不是仙
如果真有の话 你不需要知道咱是谁 你要是不告诉咱の话 ..." , ..." , 想不到姐姐也知道咱 根汉有些意外, 怪不得你身上能身具三界气韵了 原来如 , 人了,这世上の仙人早就消失了
,现在人间界也不会是这副模样...""那姐姐你是?"根汉好奇の问,女人摇头道:"
思考1答案
思考3答案
3答案
4答案
根汉皱眉道:"仙韵?魔韵?那是什么东西?""呵呵,那又叫做三界气韵,人有人韵,仙有仙韵,魔有魔韵,每壹个生灵出生之时,便会带有壹种韵. ""呼呼,那你叫什么名字?"根汉又问,"咱总得知道你の名字吧?你和咱师尊认识吗?""老疯子吗?"女子楞了楞后说:"算是认识吧,有些渊源. 不时の就会有壹两个神秘の强者,出现在自己の眼前,令自己感觉压力山大. 几分钟后,两人来到了壹条小巷中,根汉站在巷口,看着壹个白衣女子飘向了自己,真有仙风鹤骨,这个女子不仅面目慈善,而且也很漂亮,不食 人间仙火の那种气质. ""至尊有没有进入仙界,你哪知道,或许人家都上了仙界呢. 第二十人登台,宗王五重,同样还是壹招败给了根汉. 不过她这么快就苏醒,还是头壹回. "这回来の是壹个大叔,修为大概在元古境,可以说是很低の修为,手持壹把两头斧,长有四五米,壹身横肉确实是有些吓人. 第三十人登台,宗王七重の强者,竟然还是壹招败给了根汉. 中年妇人手中多出了两把黑色の大剑,壹左壹右带着这妇人冲向了根汉,直取根汉の左右两路. "说完根汉身形闪转腾挪,直接从酒楼の窗户闪了出去,女道士也有些无奈,虽然不想跟去,但还是飘了过去. ""重活の仙人?"根汉有些惊厄. "见这中年妇人驾驭壹对飞剑,还有些不平稳の样子,根汉实在是有些无语,右手直接往虚空中壹摆,壹道劲风刮向了这中年妇人. "仅仅十个人上台,就已经令全场上万人震动了,演武场内吵闹声,嬉笑声都几乎没有了,大家都在心里猜测,这个小娃娃有什么来头. 不过她这么快就苏醒,还是头壹回.
imo中的函数迭代与函数方程

imo中的函数迭代与函数方程
IMO(International Mathematical Olympiad)是全球最高水平的数学竞赛之一,在其中会使用到各种数学方法和技巧,包括函数迭代和函数方程。
函数迭代是指对一个函数进行多次运算的过程,常见的迭代函数有阶乘函数和斐波那契数列。
函数方程是指表示函数关系的方程式,在IMO中可能会使用到各种函数方程,包括二次函数方程、三次函数方程等。
当然,函数迭代是一种重要的数学工具,在很多领域都有着广泛的应用。
例如,在概率论和统计学中,随机过程可以用迭代函数来描述。
在计算机科学和工程学中,迭代函数可以用来求解各种数值问题。
函数方程是一种基本的数学概念,是描述函数关系的方程式。
在IMO中,函数方程主要包括二次函数方程、三次函数方程、及更高次函数方程,还有各种复杂的极值问题等。
在IMO中,函数方程和函数迭代的题目可能会涉及到各种数学方法和技巧,包括代数方法、几何方法、微积分方法、复杂数学理论等。
参赛选手需要综合运用这些方法来解决问题。
函数迭代和函数方程

2.函数方程
1.换元法 此方法是将函数方程中的变量进行适当的换元, 得到一个新的函数方程, 再与 原函数方程构成一个方程组, 然后解此方程组就可求出原函数方程的解.但要注意 在换元时也许使函数的定义域发生了变化,需通过验证来证实.
例3. 已知实值函数F ( x)满足F ( x) + F ( x −1 ) = 1 + x(∗)( x ∈ R, 且x ≠ 0,1), 求F ( x). x
证 : 先证明对于任意自然数k , 只要n ≥ k , 则f (n) ≥ k .我们用数学归纳法证 : 当k = 1时, 显然,1是f (n)的值域中的最小数, 所以命题成立. 假设命题对于自然数k成立, 则当n ≥ k + 1时, n − 1 ≥ k ,由假设f (n − 1) ≥ k ,当然 f ( f (n − 1)) ≥ k . 由已知f (n) > f ( f (n − 1))得f (n) > k .于是有f (n) ≥ k + 1.即当n ≥ k + 1时, 命题也成立.从 而不等式f (n) ≥ k对于任意自然数k和任何不小于k的自然数n成立.取k = n, 则f (n) ≥ n. 再令n = f (k ), 则f ( f (k )) ≥ f (k ).又f (k + 1) > f ( f (k )), 故f (k + 1) > f (k ), 即函数f (k )是 严格递增函数. 因对于任意的n, f (n + 1) > f ( f (n)), 又f (k )严格递增, 故有n + 1 > f (n), 即f (n) ≤ n, 但已 证明f (n) ≥ n, 从而只能有f (n) = n成立.
函数迭代和函数方程
函数的变换与迭代

函数的变换与迭代一、函数变换1.函数平移:–水平平移:f(x + a)–垂直平移:f(x) + b2.函数缩放:–水平缩放:f(ax + b)–垂直缩放:f(x) * c3.函数反射:–y = f(-x) 为关于y轴的对称–y = -f(x) 为关于x轴的对称–y = f(x) 为关于原点的对称二、函数迭代1.迭代概念:–函数迭代:将函数的结果作为输入再次输入函数中,得到新的输出。
–迭代序列:a_n = f(a_(n-1)),其中a_0为初始值。
2.迭代规律:–收敛迭代:lim(n→∞) a_n 存在,称为收敛。
–发散迭代:lim(n→∞) a_n 不存在,称为发散。
3.迭代举例:–平方迭代:a_n = a_(n-1)^2–立方迭代:a_n = a_(n-1)^3三、函数变换与迭代的应用1.几何变换:–缩放和平移在几何图形中的应用,如图形放大、缩小、平移等。
2.物理应用:–振动方程的迭代求解,如简谐振动、非线性振动等。
–电磁场的迭代计算,如麦克斯韦方程组的求解。
3.计算机科学:–迭代算法:如斐波那契数列、矩阵幂的计算等。
–分形生成:如分形树、雪花曲线等的生成。
四、中小学生的学习内容和身心发展1.学习内容:–函数的基本概念和性质。
–函数的图像和几何变换。
–函数的迭代规律和应用。
2.身心发展:–培养学生的逻辑思维能力。
–提高学生的创新意识和实践能力。
–增强学生的数学美感和审美能力。
五、教学策略和方法1.教学策略:–结合实例讲解函数变换和迭代。
–通过问题驱动,引导学生探索函数变换和迭代规律。
–注重培养学生的数学思维和解决问题的能力。
2.教学方法:–讲授法:讲解函数变换和迭代的基本概念和性质。
–实践法:让学生动手实践,绘制函数图像,观察迭代规律。
–讨论法:分组讨论,分享学习心得和解决问题的方法。
习题及方法:1.习题一:已知函数f(x) = 2x + 3,求f(x)向左平移2个单位后的函数表达式。
答案:f(x + 2) = 2(x + 2) + 3 = 2x + 7解题思路:根据函数平移的规则,将函数f(x)中的x替换为x + 2,得到新的函数表达式。
牛顿迭代法

第三步
当 |xn+1-xn|< ε 时,迭代结束。xn+1即为方程的近似解。
例4:用牛顿迭代法求方程 x3+9.2x2+16.7x+4=0 在 x=0 附近的根,迭代精度为10-6。
#include "stdio.h" f(x ) #include "math.h" 牛顿迭代公式: xn 1 xn f ( xn ) n #define M 30 main( ) { float x1,x0,eps; float f(float x) float f(float x); { return x*x*x+9.2*x*x+16.7*x+4; } float f1(float x); int k=0; scanf("%f",&x1); float f1(float x) scanf("%f",&eps); do { return 3*x*x+18.4*x+16.7; } { x0=x1; x1=x0-f(x0)/f1(x0); k++; 运行结果: } while(fabs(x0-x1)>=eps&&k<M); if (k<M) printf ("%f\n",x1); 0 0.000001↙ else printf(" iteration divergence\n "); -0.281983 }
编 程 思 路
首先找出递归的两个关键点,即: (1)递归表达式 将64个盘子问题简化成 63个盘子的问题,分三步完成移动操作; ① 将63个盘子看成一个整体,从A座移到B座; ② 在将剩下的一个盘子从A座移到C座; ③ 最后将63个盘子从B座移动到C座; (2)递归终止的条件: 只有一个盘子时,可以移动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3答案
4答案
百臻叔干活是把好手,饭量也大。
他吃白面馒头或者窝窝头,总比一般人吃得多,还吃得快,别人一个还没进肚,他呢,三四个早就狼吞虎咽了。等到再去馍筐或者簸箩里拿的时候,他又觉得不好意思,嘿嘿笑着,说一声,“再弄 俩!”张开两手,抓住几个馍,躲到一边,大口大口吃起来。再拿,就不好意思了。如果到最后,馍筐里还剩下几个馍,主人总会跟百臻叔打招呼,“百臻,剩这俩仨馍,你吃了吧!”
函数方程 与迭代案
百臻叔弟兄俩,更是如此。
那时候,农民要吃饱肚子,有两个极好的机会。188金宝搏 一是谁家盖房子,能混个肚儿圆。
老百姓盖房子,请不起施工队,就请一个懂盖房技术的“掌尺”大师傅带工,再找三五个泥瓦匠,其它打地基、和泥、掂泥、搬砖等力气活儿,就找邻居街坊里有力气的人帮忙打下手。