专题——函数迭代
高中数学竞赛专题讲座---函数方程与迭代

函数方程与迭代1.迭代法先看一个有趣的问题:李政道博士1979年4月到中国科技大学,给少年班的同学面试这样一道题: 五只猴子,分一堆桃子,怎么也平分不了,于是大家同意先去睡觉,明天再说.夜里一只猴子偷偷起来,把一个桃子吃掉后正好可以分成5份,收藏起自己的一份后又去睡觉了.第二只猴子起来后,像第一只猴子一样,先吃掉一个,剩下的又刚好分成5份,也把自己的一份收藏起来睡觉去了.第三、第四、第五只猴子也都是这样:先吃掉一个,剩下的刚好分成5份.问这堆桃子最少是多少个? 设桃子的总数为x 个.第i 只猴子吃掉一个并拿走一份后,剩下的桃子数目为i x 个,则14(1)5i i x x -=-, 1,2,3,4,5i =.且0x x =.设44()(1)(4)455f x x x =-=+-.于是:14()(4)45x f x x ==+-, 224(())()(4)45x f f x x ==+-,334((()))()(4)45x f f f x x ==+-, 444(((())))()(4)45x f f f f x x ==+-,554((((()))))()(4)45x f f f f f x x ==+-,由于剩下的桃子数都是整数,∴55|4x +.∴最小的x 为:5543121x =-=. 上面的解法,我们利用了一个函数自身复合多次,这就叫迭代.一般地,设:f D D →是一个函数,对x D ∀∈,记(0)()f x x =,(1)()()f x f x =,(2)()(())f x f f x =,…,(1)()()(())n n f x f f x +=,n N *∈,则称函数()()n f x 为()f x 的n 次迭代,并称n 为()()n f x 的迭代指数.反函数记为()()n f x -.一些简单函数的n 次迭代如下:(1)若()f x x c =+,则()()n f x x nc =+; (2)若()f x ax =,则()()n n f x a x =;(3)若()a f x x =,则()()n n a f x x =; (4)若()1x f x ax =+,则()()1n x f x nax =+; (5)若()f x ax b =+(1a ≠),则()1()1nn na f x a xb a -=+-; ()()n f x 的一般解法是先猜后证法:先迭代几次,观察规律并猜测表达式,证明时常用数学归纳法.1.求迭代后的函数值例1 自然数k 的各位数字和的平方记为1()f k ,且11()[()]n n f k f f k -=,求(11)n f (n N *∈)的值域. 解:由条件可知: Λ;169)652()256()11(;256)961()169()11(;169)94()49()11(;49)61()16()11(;164)4()11(;4)11()11(21621521421321221=++===++===+===+======+=f f f f f f f f f f f所以(11)n f (n N *∈)的值域为{4,16,49,169,256}。
函数迭代和函数方程(数学竞赛讲稿)

第一讲函数迭代和函数方程一、基本知识简述1.函数迭代设是DD的函数,对任意,记,定义,,则称函数为的n次迭代. 将含有未知函数的等式称为函数方程.的一般解法是先猜后证法:先迭代几次,观察有何规律,由此猜测出的表达式,然后证明,证明时,常用数学归纳法.定理若对于任意的,有(1)则.证由(1)及数学归纳法不难证明:对于任意的正整数及有理数,有(2)在(2)中令,得(3)在(2)中令,得,.,,.当时,(4)由(3),(4)知,(5)对于任意的,设,则有即.注:在定理4中,若加上为连续函数这一条件,则有.定理4的证明方法叫做柯西方法,这一方法的基本步骤是依次求出正整数的函数值、整数的函数值、有理数的函数值,在函数连续的条件下,进一步求出实数的函数值..1.方法解读例1 已知为一次函数,且,求.解设,显然.令,得,即为的不动点.由定理1知,,,解之得,所以.例2 已知,求.解,,∴,,由数学归纳法易知.注:在函数迭代中,通过观察得出的函数要用数学归纳法给予严格证明.例3设函数,满足,且,都有(1)求.解(方法1)在(1)中将互换,则有(2)由(1),(2)得(3)在(3)中令,则有,即.易证是方程(1)的解.(方法2)在(1)中令,得(4)即.为了求出,需要求,为此在(1)中令,得,从而有,代入(4)可得.例4已知函数是的映射,满足:(1)对任意非负整数,有,(2),有,求.解在(2)中令,并记,则有.由于数列是递增数列,由定理3知,.若,矛盾,所以,,从而有.又因为,容易得.所以,.例5求所有的的映射,使得,均有(1)求.解设,在(1)中令,则有由(2)知的值域为,所以的值域为R.又若,则,由(2)得,所以,这表明是的双射.因此,使得.在(1)中令,得(3)由(2),(3)知,所以,,.在(1)中令,得(4)在(4)中令,注意到由(3)可知,从而有,故,有(5)由(4),(5)可知(6)因此,,有或.假设存在非零实数,使得,而,那么在(1)中令,得,又由(6)知或,矛盾,所以方程(1)的解是或.例6 设是定义在正整数集上且取正整数值的严格递增函数,,当互素时,有(1)证明:对一切正整数,.证,.又,.若结论不成立,设使的最小正整数为,则.,又,.由于是严格递增的,故当时,有(2)当为奇数时,2与互素,故(3)由于,所以,从而由(2)得(4)(4)与(3)矛盾.当为偶数时,2与互素,从而有(5)因为,所以,由(2)得(6)(6)与(5)矛盾.综上可知,,有.例7 求所有函数,使得,有(1)解,若,则,,,,故是的单射.下证.当时,在(1)中取,得.因为上式左边3个数均为正整数,所以只能全为1,故,即时结论成立.假设时,有,那么当时,由是单射知,从而有,进而有,即(2)(3)(4)将上述3式相加,得.又,从而知不等式(2),(3),(4)全取等号,故,即对于结论成立.由归纳法原理知,.例8.设在实数上都有定义,连续且不恒为0,求方程式(7)的解?【解】:任取,对任意的,存在使得,(可取,)将此代入(7)式可得令,则(8)因为在上连续上连续。
函数迭代和函数方程课件

1 2 3
函数方程的基本概念 函数方程是指包含未知函数的方程。例如,$f(x) + f(2x) = 3x$是一个函数方程。
解函数方程的方法 解函数方程的方法包括代换法、迭代法、微分法 等。这些方法可以帮助我们找到满足给定条件的 函数。
函数方程的应用 函数方程在数学、物理、工程等领域有广泛的应 用。例如,在物理学中,牛顿第二定律就是一个 典型的函数方程。
感您的 看
THANKS
函数方程的应用场景
数学建模
在解决实际问题时,常常需要 建立数学模型,其中涉及到的 未知数或符号可以通过函数方
程求解。
物理问题
在研究物理现象或规律时,有 时需要通过建立和解决函数方 程来得出结论。
工程问题
在解决工程问题时,常常需要 建立数学模型,其中涉及到的 未知数或符号可以通过函数方 程求解。
经济问题
迭代函数的性质
迭代函数通常具有封闭性、递归性、可计算性和复杂性等性质。这些性质决定了迭代函数 的性质和行为。
迭代函数的收敛性
对于某些迭代函数,当迭代次数趋于无穷时,函数的值会趋于某个固定值,这种性质称为 收敛性。例如,$f(x) = x/2$的迭代序列${f^n(x)}$会收敛到0。
具体函数方程的解析
在数学研究中,迭代函数和函数 方程经常结合使用,以相互补充
和加强。
通过将迭代函数的动态变化过程 与函数方程的等式关系相结合, 可以更全面地研究函数的性质和
行为。
在解决一些复杂的数学问题时, 迭代函数和函数方程的结合应用 可以提供更有效的方法和思路。
04
例解析
具体迭代函数的解析
迭代函数的基本概念
迭代函数是指通过将函数作用于自身而得到的函数。例如,$f(x) = x^2$是一个迭代函数, 因为$f(f(x)) = (x^2)^2 = x^4$。
高中数学竞赛题:函数迭代含详解

高中数学竞赛专题训练:函数迭代一、单选题1.设1()f x =对任意自然数n ,定义11()(())n n f x f f x +=.则1993()f x 的解析式为()AB C D 2.函数()f x 是定义在R 上的奇函数,且()02=f ,对任意x R ∈,都有()()()42f x f x f +=+成立.则()1998=f .()A .3996B .1998C .1997D .03.已知函数()f x 在(0,)+∞上有定义且为增函数,并满足1()(())1f x f f x x⋅+=.则(1)f =()A .1B .0C .12+D .124.已知()11xf x x+-=,记()()1f x f x =,()()()()11,2,k k f x f f x k +== ,则()2007f x =()A .11x x+-B .11x x -+C .xD .1x-5.已知对每一对实数x 、y ,函数f 满足()()()1f x f y f x y xy +=+--.若()11f =,则满足()()f n n n Z =∈的个数是().A .1个B .2个C .3个D .无数多个6.函数()f x 是定义在R 上的奇函数,且对任意x R ∈都有()()()10 5 f x f x f x +=+-.若()50f =,则()2005f 的值为().A .2000B .2005C .2008D .07.设函数()f x 的定义域是(,)∞+∞对于下列四个命题:(1)若()f x 为奇函数,则()()f f x 也为奇函数;(2)若()f x 为周期函数,则()()f f x 也为周期函数;(3)若()f x 为单调递减函数,则()()f f x 为单调递增函数;(4)若方程()()f f x x =有实根,则方程()f x x =也有实根,其中,正确的命题共有个()A .1B .2C .3D .48.设()1211x f x x -=+,对2n ≥,定义()()()11n n f x f f x -=.若()2912x f x x +=-,则()2009 f x =______.9.设()()211xf x eg x ln x -=,=(+).则不等式()()()()1f g x g f x -的解集为_______.10.已知()[]12,0,1f x x x =-∈,那么方程()()()12f f f x x =的解的个数是_________.11.已知函数()f x 满足()()()3,1000;=+5,<1000.x x f x f f x x -≥⎧⎪⎨⎪⎩则()84f =________.12.设函数()f x 定义在R 上,对任意x R ∈,()110062f x +=+()310054f -=.则()2013f =___________.13.设定义在整数集上的函数f ,满足()()14,2000,n 19,2000.n n f f f n n -≥⎧⎪=⎨⎡⎤+<⎪⎣⎦⎩则()1989f =_____.14.设函数()f n 定义在正整数集上,对于任一正整数n ,有()()43f f n n =+,且对任意非负整数k ,有()1221k k f +=+.则()2303f =__________.15.设f(x)为定义在整数集上的函数,满足条件(1)()11f =,()20f =;(2)对任意的x 、y 均有()()()()()11f x y f x f y f x f y +=-+-则()2015f =______.三、解答题16.已知二次函数()()20f x ax bx c a =++≠.若方程()f x x =无实根,求证:方程()()f f x x =也无实根.17.已知()f x 是定义在实数集R 上的函数,()02f =,对任意x R ∈,有()()5254f x f x +=--,①()()3256f x f x -=-②,求()2012f 的值.18.对任意正整数m ,n ,定义函数(,)f m n 满足如下三个条件:①(1,1)1f =;②(1,)(,)2()f m n f m n m n +=++;③(,1)(,)2(1)f m n f m n m n +=++-.(1)求(3,1)f 和(1,3)f 的值;(2)求(,)f m n 的解析式.参考答案:1.C【详解】n=1时,()1f x =假设n k =时,()k f x =则1n k =+时,()1k f x +==所以()1993f x 故答案为C2.D【详解】令2x =-,则有()()()224f f f =-+,即()()()224.f f f +=()()()()42204f f f x f x ∴==⇒+=,即()f x 是以4为周期的函数.()()()199********.f f f ∴=⨯+==3.D【详解】设()1f a =,1x =.由已知函数等式得()()()1111f f f +=,()11af a +=,()11f a a+=.设1x a =+,有()()11111f a f f a a ⎛⎫+++= ⎪+⎝⎭,11111f a a a ⎛⎫+= ⎪+⎝⎭,()11 11f a f a a ⎛⎫+== ⎪+⎝⎭.由()f x 是增函数,则有1111a a+=+,解得a=当()112f =时,有()()11111a f f a a <=<+=<矛盾,所以()112f =.选D.4.B【详解】()111x f x x +=-,()()1223121111, 111f f x f x f x f x f x ++-==-==--+,()34311f f x x f +==-据此,()4111n xf x x++=-,()()424311, 1n n x f x f x x x ++-=-=+,()4n f x x=因2007为4n+3型,故选B.5.B【详解】令1y =得()()()111f x f f x x +=+--,即()()12f x f x x +=++.令0x =得()()102f f =+.由()11f =知()01f =-.当n N +∈时,()()()()()()()113101012nnk k n n f n f k f k f k f ==+⎡⎤=--+=++=-⎣⎦∑∑.同理,()()312n n f n -+-=--.所以,()()312n n f n +=-,n Z ∈.令()f n n =,解得2n =-或1n =.6.D【详解】由题意得()()()()5105fx f x f x -+=-+,所以,()()()101515f x f x f x +=-=--从而,()()()2550f x f x f x =--=-故()f x 是以50为周期的周期函数.因此,()()()20055040550f f f =⨯+==.7.C【详解】若()f x )为奇函数,则()()()()()()f f x f f x f f x -=-=-.故()()f f x 也为奇函数.因此,命题(1)正确.若()f x 为周期函数,设T 为()f x 的一个周期,则()()()()f f x T f f x +=.故()()f f x 也为周期函数,因此,命题(2)正确.若()f x 为单调递减函数,则对任何x y <,由:()()()()()()f x f y f f x f f y >=<.故()()f f x 为单调递增函数,因此,命题(3)正确.但命题(4)不正确例如,取:()2,011,0;0, 1.x x f x x x ⎧=≠⎪==⎨⎪=⎩或;则()()4,010,0;1, 1.x x f f x x x ⎧+≠⎪==⎨⎪=⎩或;.故方程()()f f x x =有01、两个实根,但0x ≠或1时,()2f x x x =+>,而()()01,10f f ==,知方程()f x x =没有实根.8.12xx+-【详解】因为()3012x x f x f x +⎛⎫== ⎪-⎝⎭,所以,()()311f x f x =.而2009306629=⨯+,于是,()()20092912xf x f x x+==-.故答案为12xx +-9.(]1,1-【详解】注意到()()()()2f g x g f x x -=.故()()()()2f g x g f x x -=.又定义域为()1,-+∞,从而,不等式的解集为(]1,1-.10.8【详解】∵()12f x x =-112,0,2121,,12x x x x ⎧⎡⎤-∈⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪-∈⎢⎥⎪⎣⎦⎩即()f x 有关于x 的两个一次表达式.同理,()()f f x 有关于()f x 的两个一次表达式,而每个()f x 有关于x 的两个表达式,以所()()f f x 有关于x 的四个一次表达式.同理,()()()f f f x 有关于x 的八个不同的一次表达式,因此,所求方程解的个数是8.11.997【详解】记()()()()()n n f x f f f x个.则()()()()()1848489999f f f f === ()()()()()()18518418310041001998f ff===()()()()()()18418318210031000997f f f===()()()()()()18318218310029991004f f f ===()()()()()()18218118210019981003f ff===()()()18110001000997f f ==== .因此,()84997f =.12.12+【详解】由题意知()112f =+12=+()13100724f ==,()()1120131007100622f f =+==.13.()19891990f =【详解】(1989)[(2008)](1994)[(2013)](1999)[(2018)](2004)1990f f f f f f f f f f =======14.4607【详解】注意到23432303343434342=+⨯+⨯+⨯+⨯.而()()()()()4343f n f f f n f n +==+,则()()2332303343434342f f =++⨯+⨯+⨯=…()()()234323444433434343423434343421230342124607f =+⨯+⨯+⨯+=+⨯+⨯+⨯++=++-=15.1±【详解】在条件(2)中令0x =,则()()()()()011f y f f y f f y =-+,由()11f =,知()()010f f y -=.在上式中令0y =,则()()()01000f f f =⇒=.在条件(2)分别令1,1,2x =-得()()()()()1110f y f f y f f y +=-+()1f y =-,()()()()()1112f y f f y f f y -=--+()()()()1111f f y f f y =--=-+,()()()()()2211f y f f y f f y +=-+-()()1f f y =-,由()()()111f y f f y -=-+()()()12f y f f y =-+()()()21f y f f y ⇒=-()11f ⇒-=±.若()11f -=,则()()2f y f y +=,由条件(1)知()1,0,x f x x ⎧=⎨⎩为奇数为偶数,经检验,f 满足条件故()20151f =.若()11f -=-,则()()2f y f y +=-()()()01x 141,14x f x mod x mod ⎧⎪=≡⎨⎪-≡-⎩,为偶数,,经检验,f 满足条件故()20151f =-.综上,()20151f =±.16.见解析【详解】将函数式()()20f x ax bx c a =++≠代入方程()f x x =,移项后,得()210ax b x c +-+=()0a ≠.已知这个方程无实根,所以它的判别式为负,即()21140b ac ∆=--<.进而,由()()()()()2f f x a f x bf x c =++,将()f x 的表达式代入方程()()f f x x =,得()()222a ax bx cb ax bxc c x++++++=()0a ≠.变形,得()()222220a ax bx c x ax b ax bx c x bx c x ⎡⎤⎡⎤++-++++-++-=⎣⎦⎣⎦,提公因式,得()()22110ax b x c a ax bx c x b ⎡⎤⎡⎤+-++++++=⎣⎦⎣⎦,即()()()22110f x x a x a b x ac b ⎡⎤⎡⎤-+++++=⎣⎦⎣⎦.由条件知方程()0f x x -=无实根,所以,上面这个四次方程()()22110a x a b x ac b +++++=与有相同的实根.所得辅助二次方程的判别式是()()()2222221411444a b a ac b a b b ac ⎡⎤∆=+-++=+---⎣⎦()()()22221144440a b ac a a ⎡⎤=---=∆-<⋅-<⎣⎦,所以,这个辅助二次方程无实根,进而推出原四次方程()()f f x x =无实根.17.2【详解】在式①中取()1322x y y R =-∈,得()()212f y f y +=-.在式②中取()1233x y y R =+∈,得()()12f y f y =-,于是,()()2f y f y +=,即()f x 是一个周期为2的函数,故()()()201221006002f f f =⨯+==.18.(1)(3,1)11f =,(1,3)7f =(2)22(,)231f m n m mn n m n =++--+【分析】(1)由已知关系式直接推得即可;(2)由(1,1),(1,2),,f f 依次推出(1,)f n ,再由(1,),(2,)f n f n ,L ,依次推出(,)f m n 即可.【详解】解:(1)因(1,)(,)2()f m n f m n m n +=++,令1m n ==代入得:(2,1)(1,1)2(11)145f f =++=+=,令2m =,1n =代入得:(3,1)(2,1)2(21)5611f f =++=+=,又(,1)(,)2(1)f m n f m n m n +=++-,令1m n ==代入得:(1,2)(1,1)2(111)123f f =++-=+=.令1m =,2n =代入得:(1,3)(1,2)2(121)347f f =++-=+=.(2)由条件②可得(2,1)(1,1)2(11)22f f -=⨯+=⨯,(3,1)(2,1)2(21)23f f -=⨯+=⨯,……(,1)(1,1)2(11)2f m f m m m --=⨯-+=⨯.将上述1m -个等式相加得:2(,1)2(23)(1,1)1f m m f m m =++⋅⋅⋅++=+-.由条件③可得:(,2)(,1)2(11)2f m f m m m -=+-=,(,3)(,2)2(21)2(1)f m f m m m -=+-=+,……(,)(,1)2(11)2(2)f m n f m n m n m n --=⨯+--=⨯+-.将上述n 1-个等式相加得:2(,)2[(1)(2)(2)]1f m n m m m m n m m =+++++⋅⋅⋅++-++-22231m m n n m n =++--+.【点睛】本题主要考查了函数的递推关系式,注意观察规律,细心完成即可.。
函数迭代与不动点迭代法

函数迭代与不动点迭代法函数迭代和不动点迭代法是数值分析中常用的数值迭代方法,用于求解方程或优化问题。
它们在不同的应用领域都有广泛的应用,并且具有简单易懂、易于实现等优点。
本文将介绍函数迭代的基本原理和步骤,并详细介绍不动点迭代法的定义、性质以及求解过程。
函数迭代函数迭代是一种基本的数值迭代方法,用于求解非线性方程或优化问题。
它的基本思想是通过多次迭代,使得每次迭代得到的结果趋近于方程的根或优化问题的极值点。
函数迭代的基本步骤如下:1.选择一个初始值x0作为迭代的起点。
2.根据迭代公式x n+1=f(x n),计算出下一个迭代点x n+1。
3.判断是否达到迭代的停止条件。
如果满足停止条件,则输出近似解x n+1;否则,返回第2步。
函数迭代的收敛性与迭代函数f(x)的选择密切相关。
如果函数迭代收敛,即x n收敛于方程的根或优化问题的极值点,那么我们可以通过多次迭代得到近似解。
反之,如果函数迭代发散或者收敛速度非常慢,那么我们需要考虑其他的数值方法。
不动点迭代法不动点迭代法是函数迭代的一种特殊形式,它通过将方程转化为f(x)=x的形式,求解方程的根或优化问题的极值点。
不动点迭代法的基本思想是选择一个适当的迭代函数g(x),通过迭代公式x n+1=g(x n),不断迭代,直到找到满足f(x)=x的不动点。
不动点迭代法的步骤如下:1.将方程f(x)=x转化为g(x)=x的形式,即f(x)=x等价于g(x)−x=0。
2.选择一个初始值x0作为迭代的起点。
3.根据迭代公式x n+1=g(x n),计算出下一个迭代点x n+1。
4.判断是否达到迭代的停止条件。
如果满足停止条件,则输出近似解x n+1;否则,返回第3步。
不动点迭代法的关键是选择合适的迭代函数g(x)。
迭代函数g(x)应该满足以下条件:1.在方程f(x)=x的根或优化问题的极值点附近,迭代函数g(x)的导数g′(x)存在且连续。
2.在方程f(x)=x的根或优化问题的极值点附近,满足|g′(x)|<1。
函数迭代和函数方程

2.5函数迭代和函数方程一、基本知识简述 1. 函数迭代设f 是D →D 的函数,对任意D x ∈,记x x f=)()0(,定义))(()()()1(x f f x f n n =+,*N n ∈,则称函数)()(x fn 为)(x f 的n 次迭代.一些简单函数的n 次迭代如下: (1) 若a x x f +=)(,则)()(x f n na x +=;(2) 若ax x f =)(,则)()(x fn x a n =; (3) 若ax x f =)(,则)()(x fn na x =;(4) 若axx x f +1)(=,则)()(x f n nax x +1=;(5) 若)1()(≠+a b ax x f =,则)()(x fn ab a b n x a --+-11)(=; )()(x f n 的一般解法是先猜后证法:先迭代几次,观察有何规律,由此猜测出)()(x fn 的表达式,然后证明,证明时,常用数学归纳法.2. 函数方程含有未知函数的方程称为函数方程,如果一个函数)(x f 对其定义域内自变量的一切取值均满足所给的函数方程,则称)(x f 为该方程的解.证明函数方程无解或寻求鞭解的过程就是解函数方程. 一般用以下方法:(1) 代换法:将方程中的自变量适当地以别的自变量代换,得到一个新的函数方程,然后设法求得未知函数.(2) 赋值法:根据所给的条件,适当地对自变量赋予某些特殊值,从而简化函数方程,逐步靠近未知结果,最终解决问题.(3) 待定系数法:当函数方程中的未知函数是多项式时,可用此法经比较系数而求解.(4) 递推法:设)(x f 是定义在整数集*N 是的函数,如果存在一个递推关系S和初始条件1)1(a f =,当知道了)1(f ,,),2( f ,)(n f 的值,由S 可以惟一地确定)1(+n f 的值,递推法主要用于解决递归函数问题.二、例题1.求函数迭代后的表达式例1设11)(+-=x x x f 记fn n x f f f x f 个)])([()(=,求)(1999x f例2已知函数3)(+=x x g ,)](5[)(1x g g x f -=.记)]([)(2x f f x f =,)]([)(23x f f x f =,)]([)(1x f f x f n n -= ,则函数)(),(2x f x f ,)(3x f 的表达式依次为___,____,___;而)(x f n 的表达式为____. 2.求迭代后的函数值例3自然数k 的各位数字和的平方记为已知函数)(1x f ,且)]([)(1k f f k f n n -=,求 )11(n f (*N n ∈)的值域.例4已知函数k n f =)(,k 是循环小数0.918273645的小数点后的第n 位数字,则))]([( x f f f 的值为____.例5设121)(+=x x f ,而))(()(11x f f x f n n =+,(*N n ∈),记2)2(1)2(+-=n n n f f a ,求99a例6.在自然数集N 上定义的函数⎩⎨⎧+-=)]7([3)(n f f n n f ),1000(),1000(<≥n n 求)90(f 的值.3.解函数方程例7.已知),0,(-∞∈x 函数)(x f 满足xx f x f 51)(3)(2=-,求)(x f 的最小值及相应的x 值.[同类变式]函数)(x f 满足xx f x f 5)(3)(2=--,求)(x f例8.已知xx xx x f f +-++=-12111)(2)(,求)(x f 的表达式.例9.实数集R 上的函数)(x f y =满足:(1)22121212sin 42cos )(2)()(x a x x f x x f x x f +=-++),,(21是常数a R x x ∈ (2)1)()0(4==πf f (3)当],0[4π∈x 时,2)(≤x f 试求:(1)函数)(x f y =的解析式 (2)常数a 取值范围.4.由函数方程函数值例10.如果)()()(y f x f y x f =+,并且2)1(=f ,求)1999()2000()5()6()3()4()1()2(f f f f f f f f ++++的值例11.定义在R 上的函数)(x f ,恒有)()()(y f x f y x f +=+,若4)16(=f ,求)2003(f . 例12.若)(x f 是定义域为R 的函数,并且)(1)](1)[2(x f x f x f +=-+,32)1(+=f ,求)1997(f 的值. 三、习题 1. 若⎩⎨⎧=为无理数为有理数,x x x f ,01)( 则)]([x f f 的值 ( )(A)等于1 (B)等于0(C)可能为1,也可能为0 (D)可能是0,1以外的数2.已知1)1(+=-x x f ,则)12(+x f = ( ) (A) x 2 (B) 12+x (C) 22+x (D) 32+x3. 已知43)(2+-=x x x f ,486950183))((234++++=x x x x x g f ,那么)(x g 的各项系数和为( )(A) 8 (B) 9 (C) 10 (D) 114. 若函数)(x f ,满足)()()(y f x f y x f +=+R y x ∈,,则下列各式中不恒成立的是( ) (A) 0)0(=f (B) )1(3)3(f f = (C) )1()(2121f f = (D) 0)()(<-x f x f5.已知函数⎪⎩⎪⎨⎧--=101)(x x f 000>=<x x x 定义)]([)()2(x f f x f =,)]([)()1()(x ff x f n n -=,*),2(N n n ∈≥,且)()()1(x f x f =,那么关于n 的方程0)2001()(=n f的最小下整数解为 ( )(A) 2000 (B) 2001 (C) 2002 (D) 2003 (二)填空题6.已知函数,)(2q px x x f ++= R x q p ∈、、,又集合{}x x f x A ==)(|,{}x x f f x B ==)]([|.{}3,1-=A ,则B =____7.已知11)(+-=x x x f ,12)(-+=bx a x x g ,且xx g f 21))((=,则a=______,b=_________.8.设函数2)1()(2+-=x x f (x ≤0),函数)(x g 适合x x g f =)]([,则)(x g _______.9. 已知函数22)(+--=+x x a x f ,且3)]([=a f f ,则a=________.10.已知)(x f 是一次函数,且10231024)()10(+=x x f,则)(x f =_____11.若函数)(x f 满足条件x f x f x=-)(4)(1,则)(x f 的最小值是____. 12.设)(x f y =是定义在R 上的函数,且对于任意实数a,b,有ab b af f =)]([,则)1999(f 13. 设121)(+=x x f ,而))(()(11x f f x f n n =+,(*N n ∈),记2)0(1)0(+-=n n n f f a ,求100a(三)解答题14. 设],0[2πα∈,函数)(x f y =的定义域为[0,1],且0)0(=f ,1)1(=f ,当y x ≥时,有)()sin 1(sin )()(2y f x f f y x αα-+=+,求 (1))(),(4121f f ; (2)α的值;(3)函数)2sin()(x x g -=α的单调递增区间.。
函数方程和函数迭代问题

函数方程和函数迭代问题第四讲函数方程和函数迭代问题在国内外数学竞赛中函数方程和函数迭代问题备受命题者的青睐形式灵活多变,结构变化无穷,大致可分为如下三类:⑴探求函数的解析式;⑵探求函数的值⑶讨论函数的性质.一. 探求函数的解析式1,换元法换元法的解题基本思想是:将函数方程中自变量适当代换成别的自变量(应注意力求不改变函数的定义域),得到一个或几个新的函数方程,然后将它们与原方程联立,通过消元求得原函数方程的解. 例1 解函数方程 f(x)+f(xx 1-)=1+x (x ≠0,x ≠1) 例2 设f(x)是定义在实数集上的实值函数,且满足af(x-1)+bf(1-x)=cx,其中a,b,c 为实常数,求f(x)2.赋值法赋值法基本思想是:对自变量多于一个的函数方程,将其中一个或几个自变量用一些特殊值赋进去代入原方程,从而简化函数方程,以达到求解的目的.例3 已知定义在R 的函数满足⑴ f(x 1+x 2)+f(x 1-x 2)=2f(x 1)cos2x 2+4asin 2x 2 (x 1,x 2∈R,a 为常数)⑵ f(0)=f(4π)=1 ⑶ 当x ∈[0, 4π]时,f(x)≤2 试求⑴函数f(x)的解析式;⑵常数a 的取值范围.例4 f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x)⑴ f[xf(y)]f(y)=f(x+y);⑵ f(2)=0⑶ 当0≤x <2 f(x)≠03递推法例5已知f(x)是定义在自然数集上的函数,满足f(1)=23,且对任意x,y ∈N,有 f(x+y)=(1+1+x y )f(x)+(1+1+y x )f(y)+x 2y+xy+xy 2,求f(x) 4. 柯西法柯西首先讨论了一个很重要的函数方程f(x+y)=f(x)+f(y)的解法,由此解决了一系列其他函数方程.他的方法是,依次求出所有自然数值,整数值,有理数值,直至所有实数值的函数方程的解例6 设f(x) 是定义在有理数集上的函数,且对任意的有理数x,y 有f(x+y)=f(x)+f(y),试求f(x)5, 待定系数法这一方法的其本思想是:当f(x)是多顸式时,可设f(x)=a 0x n +a 1x n-1+….+a n (a 0≠0),代入函数方程的两端,然后比较方程两端x 最高次幂的指数和x 同次幂的系数,便可得出关于n 及a 0 a 1…a n .的方程组,解这个方程组便可确定n 及a 0 a 1…a n 的值,从而得到函数方程的解例7确定符合下列条件的所有多项式f(x) f(x+1)=21f[f(x)]+23 6 , 利用不等式夹逼利用不等式夹逼求解函数方程,主要是利用下列几个明显的结论:⑴ 若对任意x ∈I, 有f(x)≥g(x) 及f(x)≤g(x)则对任意x ∈I,有f(x)=g(x)⑵ 若对任意x,y ∈I,有f(x)≤g(y)则交换x,y 得f(y)≤g(x)于是对任意的x,y ∈I 有f(x)=g(y)由此可得f(x)=常数(x ∈I).⑶ 若f:N →N 满足m ≤f(n)<m+1或m-1<f(n)≤m 或m-1<f(n)<m+1(m,n ∈N)则f(n)=m,例8 设f(x) 是具有下列性质的函数⑴ f(n)对每一正整数n 有定义;⑵ f(n)是正整数;⑶ f(2)=2⑷ f(mn)=f(m)f(n),对一切m,n 成立;⑸ f(m)>f(n),当m >n 时试证: f(m)=f(n)例9 设f(n )是定义在自然数集N 上的函数,它的值域也是全体自然数所成的集N,并且对任意两个自然m 与n,只要m ≥n 就有f(m) ≥n, 试证: f(m)= m 对任意的自然数m 成立.例10 设f(n )是定义在自然数集N 上的函数,满足: ⑴f(n )的值域为整数;⑵当m <n 时,f(m)<f(n);⑶当m,n 互素时,f(mn)=f(m)f(n),试求符合上述条件的一切函数f(x).二. 探求函数的值在各级各类数学竞赛中除了求函数方程的解以外,还经常遇到由函数方程给出的特殊定义的抽象函数,要求参赛者探求其函数的特殊的函数值.例11. 设N 是自然数集, f(x)是定义在N 上并在N 内取值的函数,且对x,y ∈N,有f[f(x)+y]=x+y,求f(1988)的所有可能的值例12. 设f(n )对所有正整数有定义,取非负整数值,并且对所有正整数m,n 有f(m+n)-f(m)-f(n)=0或1.又f(2)=0.f(3)>0,f(9999)=3333,求f(1982).例13. 设f(x),g(x)是定义在正整数集Z +上并取整数的严格递增函数,如果它们满足:⑴f(Z +) ∪ g ( Z +) = Z +(⑵f(Z +) ∩ g ( Z +) =⑶g(n)=f(f(n))+1试求f(240).三.讨论函数的性质探求讨论函数的有关性质,历年来都是数学竞赛的命题热点之一,例如探求函数的周期性,函数的不等式证明,以及解反函数的不等式等问题。
函数迭代和函数方程

2.函数方程
1.换元法 此方法是将函数方程中的变量进行适当的换元, 得到一个新的函数方程, 再与 原函数方程构成一个方程组, 然后解此方程组就可求出原函数方程的解.但要注意 在换元时也许使函数的定义域发生了变化,需通过验证来证实.
例3. 已知实值函数F ( x)满足F ( x) + F ( x −1 ) = 1 + x(∗)( x ∈ R, 且x ≠ 0,1), 求F ( x). x
证 : 先证明对于任意自然数k , 只要n ≥ k , 则f (n) ≥ k .我们用数学归纳法证 : 当k = 1时, 显然,1是f (n)的值域中的最小数, 所以命题成立. 假设命题对于自然数k成立, 则当n ≥ k + 1时, n − 1 ≥ k ,由假设f (n − 1) ≥ k ,当然 f ( f (n − 1)) ≥ k . 由已知f (n) > f ( f (n − 1))得f (n) > k .于是有f (n) ≥ k + 1.即当n ≥ k + 1时, 命题也成立.从 而不等式f (n) ≥ k对于任意自然数k和任何不小于k的自然数n成立.取k = n, 则f (n) ≥ n. 再令n = f (k ), 则f ( f (k )) ≥ f (k ).又f (k + 1) > f ( f (k )), 故f (k + 1) > f (k ), 即函数f (k )是 严格递增函数. 因对于任意的n, f (n + 1) > f ( f (n)), 又f (k )严格递增, 故有n + 1 > f (n), 即f (n) ≤ n, 但已 证明f (n) ≥ n, 从而只能有f (n) = n成立.
函数迭代和函数方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题-----函数迭代利用了一个函数自身复合多次,这就叫做迭代。
一般地,设f :D →D 是一个函数,对任意的x ∈D ,记f (0)(x)=x ,f (1)(x)=f(x)f (2)(x)=f(f(x)),…,f (n+1)(x)=f(f (n)(x)).则称f (n)(x)为f(x)的n 次迭代,并称n 为f (n)(x)的迭代指数。
如果f (n)(x)有反函数,则记为f (-n)(x).于是迭代指数可以取所有整数. 对于一些简单的函数,它的n 次迭代是容易得到的. 若f(x)=x+c ,则f (n)(x)=x+nc. 若f(x)=x 2,则f (n)(x)=x 2n.若f(x)=ax+b ,则f(n)(x)=a n x+aa n--11b(a ≠). 函数的迭代的理论与方法在计算数学和微分动力系统等领域中有着很重要的应用。
然而,由于它的一些方法和结果是初等的,又较有趣,因而在数学竞赛中屡有出现。
⑴观查法例1、设f(x)=3x+2,证明:存在正整数m ,使f (100)(m)能被1988整除。
证 因为f(x)=3x+2,所以 f (100)(x)=3100x+(399+398+…+3+1)·2, f (100)(m)=3100m+(399+398+…+3+1)·2.由于(3,1988)=1,因此(3100,1988)=1.根据裴蜀恒等式,存在正整数u ,v ,使得:1988u-3100v=1. 记n=2(399+398+…+3+1),那么由1988 3100v-1 ,知:1988 n(3100v+1). 因此,取m=nv ,则1988 3100m+n.从而命题得证。
注 裴蜀恒等式是:设(x ,y )=1,则存在正整数u ,v,使得 ux-vy=1.例2、 设).(.12)()(2x f x x x f n 计算-=答案: .222()(1)nnn nx f x x x =--⑵不动点求函数迭代:把f(x)写成f(x)=-21(x-3π)+3π,则 f (2)(x)=(-21)2(x-3π)+3π,f (3)(x)=(-21)3(x-3π)+3π,f (n)(x)=(-21)n (x-3π)+3π.把f(x)变形,找到了一个较易求f n (x)r 表达式。
一般地,若f (x )=ax+b ,则把它成f (x)=a(x-a b -1)+ab-1.因而 f (2)(x)=a (x-a b -1)+a b -1. f (3)(x)=a (x-a b -1)+a b-1.f (n)(x)=a a b -1)+ab-1. 这里的a b -1就是方程ax+b=x 的根。
一般地,我们称f(x)=x 的根为函数f(x)的不动点.则ab -1是f(x)=ax+b 的不动点。
如果x 0是)(x f 的不动点,则x 0也是)()(x f n 的不动点。
这一点用数学归纳法是容易证明的。
利用不动点能较快地求得)(x f 的n 次迭代式。
例3、若9319)(2+=x x f ,求)()(x f n 。
解 令.631931922-==+x x ,x 则 ,x x f ⎪⎭⎫ ⎝⎛-+=63163119)(2 ,x x f63163119)(22)2(-⎪⎭⎫ ⎝⎛+= .63163119)(2)(-⎪⎭⎫ ⎝⎛+=x x f n n③函数迭代应用:在国内外数学竞赛中,不断出现一些要用到各种技巧的函数迭代和函数方程问题。
主要有三个方面:(1)研究函数的性质;(2)求函数的值;(3)确定函数的解析表达式。
下面通过例题来介绍解决这些问题的方法和技巧。
例4、设N 是自然数集合,k ∈N 。
如果有一个函数f :N →N 是严格递增的,且对于每个n ∈N ,都有f (f (n ))=k n 。
证明:对每个n ∈N ,都有12+k k n ≤f (n )≤21+k n .证 因为f :N →N 是严格递增的,故对任意的n ∈N ,f (n +1)-f (n)≥1.于是当m >n 时。
f (m )-f (n )=∑--=1n m i [f (n+i+1)-f (n+i )]≥m-n.从而f (f (n ))-f (n )≥f (n )-n ,即kn-f (n )≥f (n )-n .所以 f (n )≤21+k n . 所以kn ≤21+k f (n ),即f (n )≥12+k kn .从而命题得证. 说明 对于本题,若去求函数f 的表达式,则此路不通.如果认为f (n )=kn ,则有两个严重错误。
一是当k 不是完全平方数时,f 不是N →N 的函数,二是即使k 是完全平方数,f (n )=k n 也不是满足条件的唯一函数。
例5、 设函数f (x )对所有x >0有意义,且满足下列条件:(1)对于x >0,有f (x )f [f (x )+x1]=1; (2)f (x )在(0,+∞)上严格递增。
求f (1)的值。
解 设f (1)=a ,则当x=1时,由条件(1)得f (a +1)=a1. 令x =a +1,由条件(1)得f (a +1)f [f (a +1)+11+a ]=1,即:f (a 1+11+a )=a =f (1). 由于f (x )在(0,+∞)上是严格递增的,所以:a 1+11+a =1.解得a =251±,则1<a =f (1)<f (a +1)=a1<1,矛盾.所以,a =251-,即f (1)=251-. 例6 、证明:不存在函数f :R +→R +,使得对任何正实数x 、y ,都有(f (x ))2≥f (x+y)(f (x )+y). ①证 用反证法.假设存在这样的函数f ,则由①式,得 (f (x ))2+f (x )y -f (x+y )f (x )-f (x +y )y =f (x )y. 所以: f (x )-f (x+y )≥yx f yx f +)()(.②由②式知,f (x )是减函数.首先,我们证明:对任意正实数x ,都有:f (x )-f (x+1)≤21. 事实上,对于x >0,存在一个正整数n ,使得:nf (x )≥1③于是当k =0,1,2,…,n-1时,利用②式和③式,得n nk x nf n n n n k x f n n k x f n k x f n k x f 21)(11)(1)?()1()(≥++=+++≥++-+. 所以∑-=1n k (f (x+n k )-f (x+n k 1-))≥n ·n 21=21,即 f (x 0)-f (x 0+m )=∑-=++-+100))1()((m i i x f i x f ≥m ·21≥f (x 0). 所以f (x 0+m )≤0,矛盾.于是命题得证.说明 在证明“否定”命题时,我们常常用反证法.例7、设Q +是全体正有理数集.试作一个函数f :Q +→Q +,使得对一切x ,y ∈Q +,都有f (xf (y ))=yx f )(. ①解 满足①式的函数f 较难看出,我们的想法是从①式导出几个容易捉摸的式子.而①式中的f (xf (y ))最麻烦,希望能避开这个麻烦.令x =1代入①式,得:f (f (y ))=yf )1(. ②而f (1)是容易求得的.令y =f (1)代入②式,得f (f (f (1)))=1.所以f (f (1))=f (1)1(f )=f (f (f (1)))=1, 考虑函数f 为单射,则f (1)=f (f (1))=1.于是②式为:f (f (y ))=y1.③ 用f (y )代换③式中的y ,得f (f (f (y )))=)(1y f ,再利用②式,使得 f (y 1)=)(1y f (利用了f (1)=1).④用y =f (z 1)代入①式,得f (xf (f (z 1)))=f (x )/f (z1),结合 ⑤这就是说,满足①式的函数f 必定满足③式和⑤式.另一方面,满足③式和⑤式的f 必定满足①式.这只需在⑤式中令x =f (y ),则:f (z )=f (f (y ))=y1(利用了③式), 即得①式,而③式和⑤式比①式简单。
现在来构造满足③,⑤式的函数f .设p i 是第i 个质数(例如p 1=2,p 2=3),令 p i +1,若i 是奇数,11-i p ,若i 是偶数。
⑥这样定义的函数f 对质数p ,显然有f (f (p ))=p1,即满足③式.对于x ∈Q +,x 可表示成 x =p 11a p 22a …p ann ,其中a 1,a 2,…an 是整数,令f (x )=f (p 1)a 1f (p 2)a 2…f (p n )an .⑦由⑥,⑦两式定义的Q +→Q +的函数f 显然满足③,⑤式,从而满足①式。
例8、 f 是定义在(1,+∞)上且在(1,+∞)中取值的函数,满足条件:对任何x ,y >1及u,v >0,都成立f (x u y v )≤f (x )vy f u 41)(41. ①试确定所有的这样的函数f .解 先将①式化为一元函数,为此令x =y ,u =v ,则得f (x 2u )≤f (x )u21.再将2u 代换知,对所有x >1,u>0,均有f (x u )≤f (x )1/u .②f (pi )=令y =x u ,v =1/u ,则x =y 1/u =y v ,u =1/v.代入②式,得f (y )≤f (y v )v . 用x 代换y ,u 代换v ,则对所有x >1,u >0,又有f (x u )≥f (x )1/u . ③ 由②,③式便知f (x u )=f (x )1/u .④取x =e ,t=e u (则u=1nt).当u 从0变到+∞时,t 从1变到+∞.于是④式为 f (t )=f (e )1/1nt .令f (e)=a >1,用x 代替t ,则:f (x )=a 1/1n x ,a >1 ⑤ 下面验证⑤式所给出的函数满足①式.利用算术-调和平均不等式,有211nyv nx u +≥2/(ny v nx u 1111+), 所以nx u 141+ny v 141≥ny v nx u 111+, f (x u y v)=a nxu nx v 141141+=f (x )()v u y f 4141. 这就证明了对所有a >1,⑤式所给出的函数f (x )即为所求.说明 当所给的函数方程(或不等式)含有较多变量,常常先将它化为一个变量的方程(或不等式).另外,利用不等式来证等式的技巧也是处理这类问题的常用方法。
例9、设R 是全体实数的集合.试求出所有的函数f :R →R ,使得对于R 中的一切x 和y ,都有f (x 2+f (y ))=y +(f (x )))2.①解 先求f (0).令x =0,t =(f (0))2,代入①式,得f (f (y ))=y +t .②由②式,可知f (f (x 2+f (f (y ))))=x 2+f (f (y ))+t.③由①式,可得 f (f (x 2+f (f (y ))))=f [ (f (x ))2+f (y )]=y+[f (f (x ))]2.④从②,③,④式便得x 2+y+2t=y+(x+t)2,即2t =t 2+2tx 对任意实数x 均成立。