函数迭代与函数方程初步
使用“牛顿迭代法”求解方程

使⽤“⽜顿迭代法”求解⽅程使⽤⽜顿迭代法求解⽅程尽管通过因式分解和利⽤求根公式可以很⽅便的得出多项式⽅程的根,但⼤多数时候这个多项式的次数都很⾼,计算将变得⾮常复杂,因此,我们必须转向⼀些近似解法。
⽜顿迭代法是其中最好的⽅法之⼀。
从根本上说,⽜顿迭代法通过⼀系列的迭代操作使得到的结果不断逼近⽅程的实根。
⾸先,要选择⼀个初始值x=x0,使得该初始值接近实根的值。
然后,迭代计算如下的公式:x i+1 = x i - f(x i) / f '(x i)直到x i+1达到⼀个满意的近似结果为⽌。
在这个公式中,f(x)是要求解的多项式⽅程,⽽f '(x)是f(x)的导数。
多项式求导多项式求导是微积分的基础,现在让我们来看看针对多项式求导的公式化描述。
要计算出多项式的求导结果,只需要对多项式的每⼀项套⽤如下两个公式:d/dx * k = 0, d/dx *kx r = krx r-1这⾥的k是为常数,r是有理数,x是未知数。
符号d/dx表⽰求导,其中x是多项式中的变量。
对于多项式中的每⼀常数项,套⽤第⼀个公式;否则,就⽤第⼆个公式。
假设有如下函数:f(x) = x3 + 5x2 +3x +4要得到求导后的结果f '(x),对该多项式的前三项套⽤第⼆个公式,最后⼀项套⽤第1个公式,得到结果如下:f '(x) = 1 * 3x(3-1) + 5 * 2x(2-1) + 3 * 1x(1-1) + 0 = 3x2 + 10x +3有时候也有必要进⾏⾼阶求导,即导数的导数。
⽐如,f(x)的2阶求导可记为f ''(x),它是对f '(x)的求导结果。
同理,f(x)的3阶求导可记为f'''(x),这是对f ''(x)的求导结果,以此类推。
因此,在前⾯的例⼦中,如果要计算f(x)的2阶导数的话,我们按照如下的⽅式对f '(x)求导即可:f ''(x) = 3 * 2x(2-1) + 10 * 1x(1-1) + 0 =6x +10理解1阶和2阶导数理解1阶和2阶导数的意义,是正确使⽤⽜顿迭代法⾮常重要的⼀点。
2.2 迭代法

= ϕ ' (ξ )( x * − x * *) ≤ L x * − x * *
又, L < 1
⇒ x* = x * *
计算方法
② ∀x0 ∈ [a, b] 则 xk +1 − x *= ϕ ( xk ) − ϕ ( x*) = ϕ ' (ξ )( xk − x*)
≤ L xk − x * ≤ L2 xk −1 − x * x k +1 − x *
计算方法
二、收敛性分析
定理2.1 (全局收敛定理) 全局收敛定理) 定理
在区间[a,b]上可导 上可导 设ϕ ( x )在[a, b] 在区间
a (1)当a ≤ x ≤ b时, ≤ ϕ ( x ) ≤ b;
( 2) ∀x ∈ [a, b], | ϕ ' ( x ) |≤ L < 1 ( L为常数) 为常数)
ϕ ′( x ) ≤ L < 1
计算方法
则对于任意的初始值 x0 ∈ S ,由迭代公式 收敛于方程的根。 产生的数列 { xn } 收敛于方程的根。 (这时称迭代法在 α 的S邻域具有局部收敛性。) 邻域具有局部收敛性。)
x n +1 = ϕ ( x n )
Remark1:全局与局部收敛定理中的条件都是充分 Remark1: 条件,条件满足则迭代法收敛,不满足则不能判定, 条件,条件满足则迭代法收敛,不满足则不能判定, 此时可以用试算来判定迭代法的是收敛性。 此时可以用试算来判定迭代法的是收敛性。
p! p!
由迭代公式 xk +1 = ϕ ( xk ) 及 x * = ϕ ( x * ) 有 ϕ ( p ) (ξ ) * * p
′( x* ) = ϕ ′′( x* ) = L = ϕ ( p−1) ( x* ) = 0, ϕ ( p ) ( x* ) ≠ 0 ϕ 邻域是p阶收敛的。 则迭代过程在 x * 邻域是p阶收敛的。
专题——函数迭代

专题-----函数迭代利用了一个函数自身复合多次,这就叫做迭代。
一般地,设f :D →D 是一个函数,对任意的x ∈D ,记f (0)(x)=x ,f (1)(x)=f(x)f (2)(x)=f(f(x)),…,f (n+1)(x)=f(f (n)(x)).则称f (n)(x)为f(x)的n 次迭代,并称n 为f (n)(x)的迭代指数。
如果f (n)(x)有反函数,则记为f (-n)(x).于是迭代指数可以取所有整数. 对于一些简单的函数,它的n 次迭代是容易得到的. 若f(x)=x+c ,则f (n)(x)=x+nc. 若f(x)=x 2,则f (n)(x)=x 2n.若f(x)=ax+b ,则f(n)(x)=a n x+aa n--11b(a ≠). 函数的迭代的理论与方法在计算数学和微分动力系统等领域中有着很重要的应用。
然而,由于它的一些方法和结果是初等的,又较有趣,因而在数学竞赛中屡有出现。
⑴观查法例1、设f(x)=3x+2,证明:存在正整数m ,使f (100)(m)能被1988整除。
证 因为f(x)=3x+2,所以 f (100)(x)=3100x+(399+398+…+3+1)·2, f (100)(m)=3100m+(399+398+…+3+1)·2.由于(3,1988)=1,因此(3100,1988)=1.根据裴蜀恒等式,存在正整数u ,v ,使得:1988u-3100v=1. 记n=2(399+398+…+3+1),那么由1988 3100v-1 ,知:1988 n(3100v+1). 因此,取m=nv ,则1988 3100m+n.从而命题得证。
注 裴蜀恒等式是:设(x ,y )=1,则存在正整数u ,v,使得 ux-vy=1.例2、 设).(.12)()(2x f x x x f n 计算-=答案: .222()(1)nnn nx f x x x =--⑵不动点求函数迭代:把f(x)写成f(x)=-21(x-3π)+3π,则 f (2)(x)=(-21)2(x-3π)+3π,f (3)(x)=(-21)3(x-3π)+3π,f (n)(x)=(-21)n (x-3π)+3π.把f(x)变形,找到了一个较易求f n (x)r 表达式。
高一数学竞赛讲座2函数方程与函数迭代

函数方程与函数迭代函数方程问题一直是各国重大竞赛中的热点问题,以IMO 为例,在已进行的四十七届竞赛的试题中,有30多道是函数方程的试题,几乎是每届一题.在我国冬令营与国家集训队的测试题中,函数方程问题也是屡见不鲜的.究其原因,它往往是给出较弱的条件,却要从中得出甚强的结论(一般是要直接求出表达式).【基础知识】表示某一类(或某一个)函数所具有的一定性质的关系式叫做函数方程(其中()f x 为未知函数).如果一个函数对其定义域内变量的一切值均满足所给的方程,则称()f x 为这个函数方程的解.寻求函数方程的解或证明函数方程无解的过程,就是解函数方程.我们粗略地归纳其典型的解题方法,主要可以分成以下几类: 1.换元法: 2.解方程(组)法 3.待定系数法 4.代值减元法当所给的函数方程中变量不止一个时,和普通方程一样,求解时首先要设法减少变量个数,代值减元就是一种减少变量的方法,它通过适当地对自变量赋于特殊值,从而简化方程,逐步靠近未知结果,最终解决问题.5.柯西法先求出对于自变量取所有正整数的值时函数方程的解具有的形式,然后依次证明对自变量取整数值,有理数值以及取实数值时函数方程的解仍具有这种形式,从而得到方程的解.这里我们给出一个定理:柯西函数方程的解定理:若()f x 是单调(或连续)函数,且满足()()()f x y f x f y +=+(,),x y R ∈则()(1).f x xf =(我们将此定理的证明放于例题中进行讲解.)6.递归法借助数列对函数方程加以研究的方法.设()f n 是定义在R +上的函数,如果存在递推关系S 和初始条件1(1),f a =当知道(1),(2),,()f f f n 的值后,由S 可以惟一确定(1)f n +的值,我们称()f n 为递归函数.递推法主要解决递归函数问题.7.不动点法一般地,设函数()f x 的定义域为D ,若存在0x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点,或称00(,)x x 为函数()y f x =图象的不动点.对于一些简单的函数,利用不动点,把函数变形后再迭代,最后利用数学归纳法证明,往往会使算法简单些.【典例精析】【例1】已知11()(),x xf x f x x--+=求().f x 〖分析〗令1,x t x -=则1,1x t =-再令1,1y t=-则1,y t y -=因此可以将所得三个等式看成是关于11(),(),()1x f x f f x x --的三个方程,便可解得().f x解:设1,x t x -=则1,1x t =-代入原式,得11()(),11f f t t t +=--即11()()1,11f f x x x+=+-- ○1 设1,1t x =-则代入原式,得111()()1.1t t f f t t t --+=+-即1121()(),1x x f f x x x--+=- ○2 将○1○2与原方程联立,解得321().2(1)x x f x x x --+=- 〖说明〗如何换元才能将已知的函数方程转化为可以求解的方程组,是一个具有技巧性的问题,它需要分析所给的函数方程的特点才能达到目的.本例通过再次换元得到关于11(),(),()1x f x f f x x--的方程组,消去11(),(),1x f f x x--从而求得().f x 【例2】证明:恰有一个定义在所有非零实数上的函数f ,满足条件: (1) 对所有非零实数x ,f (x )=xf (1x);(2)对所有的x ≠-y 的非零实数对(x ,y ),有f (x )+f (y )=1+f (x +y ) 2.证明:f (x )=x +1显然适合(1)、(2)。
函数迭代和函数方程

2.5函数迭代和函数方程一、基本知识简述 1. 函数迭代设f 是D →D 的函数,对任意D x ∈,记x x f=)()0(,定义))(()()()1(x f f x f n n =+,*N n ∈,则称函数)()(x fn 为)(x f 的n 次迭代.一些简单函数的n 次迭代如下: (1) 若a x x f +=)(,则)()(x f n na x +=;(2) 若ax x f =)(,则)()(x fn x a n =; (3) 若ax x f =)(,则)()(x fn na x =;(4) 若axx x f +1)(=,则)()(x f n nax x +1=;(5) 若)1()(≠+a b ax x f =,则)()(x fn ab a b n x a --+-11)(=; )()(x f n 的一般解法是先猜后证法:先迭代几次,观察有何规律,由此猜测出)()(x fn 的表达式,然后证明,证明时,常用数学归纳法.2. 函数方程含有未知函数的方程称为函数方程,如果一个函数)(x f 对其定义域内自变量的一切取值均满足所给的函数方程,则称)(x f 为该方程的解.证明函数方程无解或寻求鞭解的过程就是解函数方程. 一般用以下方法:(1) 代换法:将方程中的自变量适当地以别的自变量代换,得到一个新的函数方程,然后设法求得未知函数.(2) 赋值法:根据所给的条件,适当地对自变量赋予某些特殊值,从而简化函数方程,逐步靠近未知结果,最终解决问题.(3) 待定系数法:当函数方程中的未知函数是多项式时,可用此法经比较系数而求解.(4) 递推法:设)(x f 是定义在整数集*N 是的函数,如果存在一个递推关系S和初始条件1)1(a f =,当知道了)1(f ,,),2( f ,)(n f 的值,由S 可以惟一地确定)1(+n f 的值,递推法主要用于解决递归函数问题.二、例题1.求函数迭代后的表达式例1设11)(+-=x x x f 记fn n x f f f x f 个)])([()(=,求)(1999x f例2已知函数3)(+=x x g ,)](5[)(1x g g x f -=.记)]([)(2x f f x f =,)]([)(23x f f x f =,)]([)(1x f f x f n n -= ,则函数)(),(2x f x f ,)(3x f 的表达式依次为___,____,___;而)(x f n 的表达式为____. 2.求迭代后的函数值例3自然数k 的各位数字和的平方记为已知函数)(1x f ,且)]([)(1k f f k f n n -=,求 )11(n f (*N n ∈)的值域.例4已知函数k n f =)(,k 是循环小数0.918273645的小数点后的第n 位数字,则))]([( x f f f 的值为____.例5设121)(+=x x f ,而))(()(11x f f x f n n =+,(*N n ∈),记2)2(1)2(+-=n n n f f a ,求99a例6.在自然数集N 上定义的函数⎩⎨⎧+-=)]7([3)(n f f n n f ),1000(),1000(<≥n n 求)90(f 的值.3.解函数方程例7.已知),0,(-∞∈x 函数)(x f 满足xx f x f 51)(3)(2=-,求)(x f 的最小值及相应的x 值.[同类变式]函数)(x f 满足xx f x f 5)(3)(2=--,求)(x f例8.已知xx xx x f f +-++=-12111)(2)(,求)(x f 的表达式.例9.实数集R 上的函数)(x f y =满足:(1)22121212sin 42cos )(2)()(x a x x f x x f x x f +=-++),,(21是常数a R x x ∈ (2)1)()0(4==πf f (3)当],0[4π∈x 时,2)(≤x f 试求:(1)函数)(x f y =的解析式 (2)常数a 取值范围.4.由函数方程函数值例10.如果)()()(y f x f y x f =+,并且2)1(=f ,求)1999()2000()5()6()3()4()1()2(f f f f f f f f ++++的值例11.定义在R 上的函数)(x f ,恒有)()()(y f x f y x f +=+,若4)16(=f ,求)2003(f . 例12.若)(x f 是定义域为R 的函数,并且)(1)](1)[2(x f x f x f +=-+,32)1(+=f ,求)1997(f 的值. 三、习题 1. 若⎩⎨⎧=为无理数为有理数,x x x f ,01)( 则)]([x f f 的值 ( )(A)等于1 (B)等于0(C)可能为1,也可能为0 (D)可能是0,1以外的数2.已知1)1(+=-x x f ,则)12(+x f = ( ) (A) x 2 (B) 12+x (C) 22+x (D) 32+x3. 已知43)(2+-=x x x f ,486950183))((234++++=x x x x x g f ,那么)(x g 的各项系数和为( )(A) 8 (B) 9 (C) 10 (D) 114. 若函数)(x f ,满足)()()(y f x f y x f +=+R y x ∈,,则下列各式中不恒成立的是( ) (A) 0)0(=f (B) )1(3)3(f f = (C) )1()(2121f f = (D) 0)()(<-x f x f5.已知函数⎪⎩⎪⎨⎧--=101)(x x f 000>=<x x x 定义)]([)()2(x f f x f =,)]([)()1()(x ff x f n n -=,*),2(N n n ∈≥,且)()()1(x f x f =,那么关于n 的方程0)2001()(=n f的最小下整数解为 ( )(A) 2000 (B) 2001 (C) 2002 (D) 2003 (二)填空题6.已知函数,)(2q px x x f ++= R x q p ∈、、,又集合{}x x f x A ==)(|,{}x x f f x B ==)]([|.{}3,1-=A ,则B =____7.已知11)(+-=x x x f ,12)(-+=bx a x x g ,且xx g f 21))((=,则a=______,b=_________.8.设函数2)1()(2+-=x x f (x ≤0),函数)(x g 适合x x g f =)]([,则)(x g _______.9. 已知函数22)(+--=+x x a x f ,且3)]([=a f f ,则a=________.10.已知)(x f 是一次函数,且10231024)()10(+=x x f,则)(x f =_____11.若函数)(x f 满足条件x f x f x=-)(4)(1,则)(x f 的最小值是____. 12.设)(x f y =是定义在R 上的函数,且对于任意实数a,b,有ab b af f =)]([,则)1999(f 13. 设121)(+=x x f ,而))(()(11x f f x f n n =+,(*N n ∈),记2)0(1)0(+-=n n n f f a ,求100a(三)解答题14. 设],0[2πα∈,函数)(x f y =的定义域为[0,1],且0)0(=f ,1)1(=f ,当y x ≥时,有)()sin 1(sin )()(2y f x f f y x αα-+=+,求 (1))(),(4121f f ; (2)α的值;(3)函数)2sin()(x x g -=α的单调递增区间.。
函数方程和函数迭代问题(奥数)

函数方程和函数迭代问题(奥数)第四讲函在国内外数学竞赛中函数方程和函数迭代问题备受命题者的青睐形式灵活多变,结构变化无穷,大致可分为如下三类:⑴探求函数的解析式;⑵探求函数的值⑶讨论函数的性质.一. 探求函数的解析式函数方程的求解事实上也是一个探求函数解析式的过程,而函数方程常见的初等解法有许多,下面对其作进一步详尽的介绍.1,换元法换元法的解题基本思想是:将函数方程中自变量适当代换成别的自变量(应注意力求不改变函数的定义域),得到一个或几个新的函数方程,然后将它们与原方程联立,通过消元求得原函数方程的解.例1 解函数方程 f(x)+f(xx 1-)=1+x (x ≠0,x ≠1) f(x)=x+1/x+1/(1-x) 例2 设f(x)是定义在实数集上的实值函数,且满足af(x-1)+bf(1-x)=cx,其中a,b,c 为实常数,求f(x) f(x)=c/(a-b)x+c/(a+b)2.赋值法赋值法基本思想是:对自变量多于一个的函数方程,将其中一个或几个自变量用一些特殊值赋进去代入原方程,从而简化函数方程,以达到求解的目的.例3 已知定义在R 的函数满足⑴ f(x 1+x 2)+f(x 1-x 2)=2f(x 1)cos2x 2+4asin 2x 2 (x 1,x 2∈R,a 为常数) f(x)=(a-1)(sin2x-cos2x)+a⑵ f(0)=f(4π)=1 ⑶ 当x ∈[0, 4π]时,f(x)≤2 试求⑴函数f(x)的解析式;⑵常数a 的取值范围.例4 f(x)是定义于非负实数集上且取非负实数值的函数,求所有满足下列条件的f(x)⑴ f[xf(y)]f(y)=f(x+y);⑵ f(2)=0⑶ 当0≤x <2 f(x)≠0 f(x)= 0,x>=22/(2-x),x<23递推法这一方法的其本思想是:当f(x)是定义在自然数集上的函数(实际上就是通项为a n =f(n)的数列)时,可根据题中所给函数方程,通过持殊值得到关于f(n)的递推关系,然后根据递推关系求出(即数列{a n}的通项表达式)例5已知f(x)是定义在自然数集上的函数,满足f(1)=23,且对任意x,y ∈N,有 f(x+y)=(1+1+x y )f(x)+(1+1+y x )f(y)+x 2y+xy+xy 2,求f(x) 4. 柯西法柯西首先讨论了一个很重要的函数方程f(x+y)=f(x)+f(y)的解法,由此解决了一系列其他函数方程.他的方法是,依次求出所有自然数值,整数值,有理数值,直至所有实数值的函数方程的解例6 设f(x) 是定义在有理数集上的函数,且对任意的有理数x,y 有f(x+y)=f(x)+f(y),试求f(x)5, 待定系数法这一方法的其本思想是:当f(x)是多顸式时,可设f(x)=a 0x n +a 1x n-1+….+a n (a 0≠0),代入函数方程的两端,然后比较方程两端x 最高次幂的指数和x 同次幂的系数,便可得出关于n 及a 0 a 1…a n .的方程组,解这个方程组便可确定n 及a 0 a 1…a n 的值,从而得到函数方程的解例7确定符合下列条件的所有多项式f(x) f(x+1)=21f[f(x)]+23 6 , 利用不等式夹逼利用不等式夹逼求解函数方程,主要是利用下列几个明显的结论:⑴ 若对任意x ∈I, 有f(x)≥g(x) 及f(x)≤g(x)则对任意x ∈I,有f(x)=g(x)⑵ 若对任意x,y ∈I,有f(x)≤g(y)则交换x,y 得f(y)≤g(x)于是对任意的x,y ∈I 有f(x)=g(y)由此可得f(x)=常数(x ∈I).⑶ 若f:N →N 满足m ≤f(n)<m+1或m-1<f(n)≤m 或m-1<f(n)<m+1(m,n ∈N)则f(n)=m,例8 设f(x) 是具有下列性质的函数⑴ f(n)对每一正整数n 有定义;⑵ f(n)是正整数;⑶ f(2)=2⑷ f(mn)=f(m)f(n),对一切m,n 成立;⑸ f(m)>f(n),当m >n 时试证: f(m)=f(n)例9 设f(n )是定义在自然数集N 上的函数,它的值域也是全体自然数所成的集N,并且对任意两个自然m 与n,只要m ≥n 就有f(m) ≥n, 试证: f(m)= m 对任意的自然数m 成立.例10 设f(n )是定义在自然数集N 上的函数,满足: ⑴f(n )的值域为整数;⑵当m <n 时,f(m)<f(n);⑶当m,n 互素时,f(mn)=f(m)f(n),试求符合上述条件的一切函数f(x).二. 探求函数的值在各级各类数学竞赛中除了求函数方程的解以外,还经常遇到由函数方程给出的特殊定义的抽象函数,要求参赛者探求其函数的特殊的函数值.例11. 设N 是自然数集, f(x)是定义在N 上并在N 内取值的函数,且对x,y ∈N,有f[f(x)+y]=x+y,求f(1988)的所有可能的值例12. 设f(n )对所有正整数有定义,取非负整数值,并且对所有正整数m,n 有f(m+n)-f(m)-f(n)=0或1.又f(2)=0.f(3)>0,f(9999)=3333,求f(1982).例13. 设f(x),g(x)是定义在正整数集Z +上并取整数的严格递增函数,如果它们满足:⑴f(Z +) ∪ g ( Z +) = Z +(⑵f(Z +) ∩ g ( Z +) =⑶g(n)=f(f(n))+1试求f(240).三.讨论函数的性质探求讨论函数的有关性质,历年来都是数学竞赛的命题热点之一,例如探求函数的周期性,函数的不等式证明,以及解反函数的不等式等问题。
函数方程的几种方法

函数方程三、求解函数方程的几种方法:可能会遇到函数方程的问题,在这里我们介绍几种典型的求解函数的方法。
一.代换法 1.解函数方程:x xx f x f +=-+1)1()( (1) 解:令1,0,1≠-=y y y x ;则x y -=11,将此代入(1:yy y f y y f 12)11()1(-=-+-或 x x x f x x f 12)11()1(-=-+-。
(2) 此时(1)及(2)并无法解出)(x f ;所以我们再令1,0,11≠-=z z x ;则z =此代入(1)式则可得z z z f z f --=+-12)()11(, 即x f x f +-)()11(。
(3)将(1),(2)及(3)联立,则可得到一个以)1(),11(),(x x f x f x f --一次方程组;我们利用消去法来解此问题. (1)+(3)-:x x x x x x f 1212)1()(2----++=)1(21)(23---=⇒x x x x x f 。
经检验是原函数方程的解. 2.(2007越南数学奥林匹克)设b 是一个正实数,试求所有函数R R f →:得)3(3)()(1)(1)(y y f bx y f b b b x f y x f yy-+⋅=+-+-+对任意实数x 、y 均成立。
解:将原方程变形为:1)(3))(()(-++⋅+=++y f bx y x yb x f b y x f , (x , y ∈①令x b x f x g +=)()(,则①等价于1)(3)()(-⋅=+y g x g y x g ,(x , )R y ∈②在②中令0=y 得1)0(3)()(-⋅=g x g x g )(R x ∈这表明1)0(0)(==g x g 或。
1)若0)(=x g )(R x ∈,则x b x f -=)(;2)若1)0(=g ,在②式中令0=x 得:1)(1)(33)0()(--=⋅=y g y g g y g ,即0)(31)(=--y g y g 。
高二数学函数方程与迭代(共10张PPT)

只是在壹旁看着而已,咱要走了,有缘咱们会再见の 说完她人影 已经闪到了几十里开外,虚空中出现了壹个黑色口子,她向根汉摇了摇手 便沉进了这个无垠の虚空中
看到这壹幕,根汉心中不由得壹惊
但是转眼就这样子离开,
.
也就是说这个女子最 , ,至少也需要绝强者之境才能够做到
但似乎并没有这女子使用の这么飘逸 难道又是准至尊 , , , 有仙韵 就在这时, ,也和根汉说闻到了仙韵." ?" , 差也是壹位绝强者. , 当年九天寒龟也曾经向根汉展示过这壹招
,自己の几件至宝都会壹起出来.女人则 " 笑道" 又有魔韵,还有人韵,可以说是万 , 古奇遇
你是什么来历..."女人并没有恶意 面目慈善 根汉皱眉道:
?那是什么东西
那又叫做三界气韵,
,
, ,魔有魔韵 每壹个生灵出生之时
..." " 女人倒也不瞒,解释道: 壹般来说,
而你 の身上 有三种 气韵, 三界 气 韵 都有 了...""
?"
"咱当然不是仙
如果真有の话 你不需要知道咱是谁 你要是不告诉咱の话 ..." , ..." , 想不到姐姐也知道咱 根汉有些意外, 怪不得你身上能身具三界气韵了 原来如 , 人了,这世上の仙人早就消失了
,现在人间界也不会是这副模样...""那姐姐你是?"根汉好奇の问,女人摇头道:"
思考1答案
思考3答案
3答案
4答案
根汉皱眉道:"仙韵?魔韵?那是什么东西?""呵呵,那又叫做三界气韵,人有人韵,仙有仙韵,魔有魔韵,每壹个生灵出生之时,便会带有壹种韵. ""呼呼,那你叫什么名字?"根汉又问,"咱总得知道你の名字吧?你和咱师尊认识吗?""老疯子吗?"女子楞了楞后说:"算是认识吧,有些渊源. 不时の就会有壹两个神秘の强者,出现在自己の眼前,令自己感觉压力山大. 几分钟后,两人来到了壹条小巷中,根汉站在巷口,看着壹个白衣女子飘向了自己,真有仙风鹤骨,这个女子不仅面目慈善,而且也很漂亮,不食 人间仙火の那种气质. ""至尊有没有进入仙界,你哪知道,或许人家都上了仙界呢. 第二十人登台,宗王五重,同样还是壹招败给了根汉. 不过她这么快就苏醒,还是头壹回. "这回来の是壹个大叔,修为大概在元古境,可以说是很低の修为,手持壹把两头斧,长有四五米,壹身横肉确实是有些吓人. 第三十人登台,宗王七重の强者,竟然还是壹招败给了根汉. 中年妇人手中多出了两把黑色の大剑,壹左壹右带着这妇人冲向了根汉,直取根汉の左右两路. "说完根汉身形闪转腾挪,直接从酒楼の窗户闪了出去,女道士也有些无奈,虽然不想跟去,但还是飘了过去. ""重活の仙人?"根汉有些惊厄. "见这中年妇人驾驭壹对飞剑,还有些不平稳の样子,根汉实在是有些无语,右手直接往虚空中壹摆,壹道劲风刮向了这中年妇人. "仅仅十个人上台,就已经令全场上万人震动了,演武场内吵闹声,嬉笑声都几乎没有了,大家都在心里猜测,这个小娃娃有什么来头. 不过她这么快就苏醒,还是头壹回.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本讲主要讲述竞赛数学中六大模块之一的函数方程问题.
在联赛大纲中明确要求函数方程问题在联赛中不作过高要求,也就是说专业级的函数方程问题一般都在冬令营乃至集训队的考试中出现,在联赛中出现的函数方程问题一般难度不高.本讲的目标是能够解决联赛级别的函数方程问题.
函数迭代严格来说其实并不算函数方程的内容,联赛中涉及到的函数迭代问题一般来说也就是寻找迭代规律进而探求一般表达式这种类型,即确定()()((((()))n n
f x f f f f x =⋅⋅⋅⋅⋅⋅1442443
的具体表达式;
函数方程,是指这样一种特殊的方程,它的解是某一个函数表达式.绝大部分函数方程的求解需要
用到高深的数学工具.能用初等数学方法求解的函数方程数量不多,且其方法往往非常独特巧妙,难以想到.因此函数方程问题成为高难度数学竞赛命题者青睐的对象,在2010年IMO 中第1、3题都是函数方程问题,每年的IMO 中也至少会出现一道函数方程问题.
联赛与高考中的函数方程问题很多并不要求求出函数解析式,而是要求根据给定的函数方程探究该函数的性质:对称性、奇偶性、单调性、周期性并进而证明某个相关命题或确定某个特定的函数值;
根据函数方程求解析式的方法一般有:1、赋值法;2、换元法;3、迭代解方程组法;4、柯西法等等.
本讲我们主要关注前面这些常规的解法,而对于柯西法以及函数方程的较专业的解法本讲只是略讲.
这里仅给出一些利用基本的找规律方法来解决的问题,而桥函数方法、不动点方法这里不涉及.实际上,如果我们令()()()01,,n n a x a f x a f x ===,那么函数迭代问题就变成了递归数列求通项问题,因此我们主要在以后的递归数列一讲讲述此类问题.
知识点睛
经典精讲
8.1函数迭代问题
本讲关键词
第8讲 函数迭代与函
数方程初步
【例1】 (1)若函数()21f x x
=
+且()()()n n
f x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦L 144424443,则()
()991f = . (2)()x
f x x c
=
+,c 为常数,求()()n f x .
【例2】 分别求下列函数的n 次迭代:
(1)()f x x b =+ (2)(),1f x ax b a =+≠ (3)()2f x ax =
经典精讲
8.2函数方程问题
【例3】 (1) 已知1
,0,11x f x x x
⎛⎫=≠ ⎪-⎝⎭求)(x f .
(2)函数)(x f 在0=x 处没有定义,但对所有非零实数x 有:x x f x f 312)(=⎪⎭
⎫ ⎝⎛+,求)(x f
【例4】 求这样的函数()f x ,它对一切实数x 有意义,且对1x ≠满足1
(1)()()1
x x f f x x x +--=-.
【例5】 设():\{0,1}f x R R →满足1
()(
)1x f x f x x
-+=+,求)(x f .
【例6】 ():f x N N ++→满足(1)1f =,()()(),,f m n f m f n mn m n N ++=++∈,求)(x f .
【例7】 ():f x R R →满足,a b R ∀∈,有(())f af b ab =,试求(2010)f .
【例8】 设():f x R R →,满足方程(2)(2)()(),()0,f x f y f x y f x y f π+=+⋅-=且)(x f 不恒为0,求证
)(x f 为周期函数并求其周期;并探讨)(x f 的奇偶性
【例9】 设():f x R R →为增函数,,x y R ∀∈,有(())()(0)f f x y f x y f +=++,求)(x f .
【例10】设():
f x Q R
→满足,x y Q
∀∈,有()()()
f x y f x f y
+=+,求)
(x
f.
【例11】设():
f x R R
→为连续函数,且f (x)不恒为0,,x y R
∀∈,有()()()
f x y f x f y
+=⋅,求)
(x
f.
【例12】求所有的函数++
Q Q
f→
:,使得
() ()()2()
()
f xy
f x f y xyf xy
f x y
++=
+
.
【演练1】分别求下列函数的n 次迭代: (1)()2f x x c =+ (2)()3
f x x c
=+
实战演练
【演练2】():f x R R →满足:1
()()(1)12
f x x f x ++-=,求(0),(1),f f 以及()f x 的所有可能解.
【演练3】已知集合():f x N R +→满足
223
()(1)()(1)(),(1)112
y x f x y f x f y x y xy xy f x y +=++++++=++,求)(x f .
【演练4】():f x Q R →满足()()()()1,(1)2f xy f x f y f x y f =-++=,求)(x f .
【演练5】如果对任意实数x ,y ,均有
()()
||22f x f y x y f x y +-⎛⎫+- ⎪⎝⎭≥ ①
则称()f x 为“强凸”函数. 取n 为1≥的正整数,对任意整数i ,定义“差分”1+⎛⎫⎛⎫
∆=- ⎪ ⎪⎝⎭⎝⎭
i i i f f n n ② (Ⅰ)在①中取()2i i x y n
n +⎛⎫
=
⎪⎝⎭,,,试证:14+∆∆+i i n ≥ ③ (Ⅱ)证明:
1
1
4n n n i
i i i n --+==∆
∆+∑∑≥ ④
(Ⅲ)证明:满足①的“强凸”函数不可能存在.。