高中数学竞赛专题讲座---函数方程与迭代

合集下载

竞赛讲座函数

竞赛讲座函数

第一章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。

定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。

定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。

定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。

定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。

A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。

集合{f (x )|x ∈A }叫函数的值域。

通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。

例如:函数y =x -11的反函数是y =1-x1(x ≠0).定理1 互为反函数的两个函数的图象关于直线y =x 对称。

定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。

定义7 函数的性质。

(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。

函数迭代和函数方程课件

函数迭代和函数方程课件

1 2 3
函数方程的基本概念 函数方程是指包含未知函数的方程。例如,$f(x) + f(2x) = 3x$是一个函数方程。
解函数方程的方法 解函数方程的方法包括代换法、迭代法、微分法 等。这些方法可以帮助我们找到满足给定条件的 函数。
函数方程的应用 函数方程在数学、物理、工程等领域有广泛的应 用。例如,在物理学中,牛顿第二定律就是一个 典型的函数方程。
感您的 看
THANKS
函数方程的应用场景
数学建模
在解决实际问题时,常常需要 建立数学模型,其中涉及到的 未知数或符号可以通过函数方
程求解。
物理问题
在研究物理现象或规律时,有 时需要通过建立和解决函数方 程来得出结论。
工程问题
在解决工程问题时,常常需要 建立数学模型,其中涉及到的 未知数或符号可以通过函数方 程求解。
经济问题
迭代函数的性质
迭代函数通常具有封闭性、递归性、可计算性和复杂性等性质。这些性质决定了迭代函数 的性质和行为。
迭代函数的收敛性
对于某些迭代函数,当迭代次数趋于无穷时,函数的值会趋于某个固定值,这种性质称为 收敛性。例如,$f(x) = x/2$的迭代序列${f^n(x)}$会收敛到0。
具体函数方程的解析
在数学研究中,迭代函数和函数 方程经常结合使用,以相互补充
和加强。
通过将迭代函数的动态变化过程 与函数方程的等式关系相结合, 可以更全面地研究函数的性质和
行为。
在解决一些复杂的数学问题时, 迭代函数和函数方程的结合应用 可以提供更有效的方法和思路。
04
例解析
具体迭代函数的解析
迭代函数的基本概念
迭代函数是指通过将函数作用于自身而得到的函数。例如,$f(x) = x^2$是一个迭代函数, 因为$f(f(x)) = (x^2)^2 = x^4$。

高一数学竞赛讲座2函数方程与函数迭代

高一数学竞赛讲座2函数方程与函数迭代

函数方程与函数迭代函数方程问题一直是各国重大竞赛中的热点问题,以IMO 为例,在已进行的四十七届竞赛的试题中,有30多道是函数方程的试题,几乎是每届一题.在我国冬令营与国家集训队的测试题中,函数方程问题也是屡见不鲜的.究其原因,它往往是给出较弱的条件,却要从中得出甚强的结论(一般是要直接求出表达式).【基础知识】表示某一类(或某一个)函数所具有的一定性质的关系式叫做函数方程(其中()f x 为未知函数).如果一个函数对其定义域内变量的一切值均满足所给的方程,则称()f x 为这个函数方程的解.寻求函数方程的解或证明函数方程无解的过程,就是解函数方程.我们粗略地归纳其典型的解题方法,主要可以分成以下几类: 1.换元法: 2.解方程(组)法 3.待定系数法 4.代值减元法当所给的函数方程中变量不止一个时,和普通方程一样,求解时首先要设法减少变量个数,代值减元就是一种减少变量的方法,它通过适当地对自变量赋于特殊值,从而简化方程,逐步靠近未知结果,最终解决问题.5.柯西法先求出对于自变量取所有正整数的值时函数方程的解具有的形式,然后依次证明对自变量取整数值,有理数值以及取实数值时函数方程的解仍具有这种形式,从而得到方程的解.这里我们给出一个定理:柯西函数方程的解定理:若()f x 是单调(或连续)函数,且满足()()()f x y f x f y +=+(,),x y R ∈则()(1).f x xf =(我们将此定理的证明放于例题中进行讲解.)6.递归法借助数列对函数方程加以研究的方法.设()f n 是定义在R +上的函数,如果存在递推关系S 和初始条件1(1),f a =当知道(1),(2),,()f f f n 的值后,由S 可以惟一确定(1)f n +的值,我们称()f n 为递归函数.递推法主要解决递归函数问题.7.不动点法一般地,设函数()f x 的定义域为D ,若存在0x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点,或称00(,)x x 为函数()y f x =图象的不动点.对于一些简单的函数,利用不动点,把函数变形后再迭代,最后利用数学归纳法证明,往往会使算法简单些.【典例精析】【例1】已知11()(),x xf x f x x--+=求().f x 〖分析〗令1,x t x -=则1,1x t =-再令1,1y t=-则1,y t y -=因此可以将所得三个等式看成是关于11(),(),()1x f x f f x x --的三个方程,便可解得().f x解:设1,x t x -=则1,1x t =-代入原式,得11()(),11f f t t t +=--即11()()1,11f f x x x+=+-- ○1 设1,1t x =-则代入原式,得111()()1.1t t f f t t t --+=+-即1121()(),1x x f f x x x--+=- ○2 将○1○2与原方程联立,解得321().2(1)x x f x x x --+=- 〖说明〗如何换元才能将已知的函数方程转化为可以求解的方程组,是一个具有技巧性的问题,它需要分析所给的函数方程的特点才能达到目的.本例通过再次换元得到关于11(),(),()1x f x f f x x--的方程组,消去11(),(),1x f f x x--从而求得().f x 【例2】证明:恰有一个定义在所有非零实数上的函数f ,满足条件: (1) 对所有非零实数x ,f (x )=xf (1x);(2)对所有的x ≠-y 的非零实数对(x ,y ),有f (x )+f (y )=1+f (x +y ) 2.证明:f (x )=x +1显然适合(1)、(2)。

高中数学竞赛题:函数迭代含详解

高中数学竞赛题:函数迭代含详解

高中数学竞赛专题训练:函数迭代一、单选题1.设1()f x =对任意自然数n ,定义11()(())n n f x f f x +=.则1993()f x 的解析式为()AB C D 2.函数()f x 是定义在R 上的奇函数,且()02=f ,对任意x R ∈,都有()()()42f x f x f +=+成立.则()1998=f .()A .3996B .1998C .1997D .03.已知函数()f x 在(0,)+∞上有定义且为增函数,并满足1()(())1f x f f x x⋅+=.则(1)f =()A .1B .0C .12+D .124.已知()11xf x x+-=,记()()1f x f x =,()()()()11,2,k k f x f f x k +== ,则()2007f x =()A .11x x+-B .11x x -+C .xD .1x-5.已知对每一对实数x 、y ,函数f 满足()()()1f x f y f x y xy +=+--.若()11f =,则满足()()f n n n Z =∈的个数是().A .1个B .2个C .3个D .无数多个6.函数()f x 是定义在R 上的奇函数,且对任意x R ∈都有()()()10 5 f x f x f x +=+-.若()50f =,则()2005f 的值为().A .2000B .2005C .2008D .07.设函数()f x 的定义域是(,)∞+∞对于下列四个命题:(1)若()f x 为奇函数,则()()f f x 也为奇函数;(2)若()f x 为周期函数,则()()f f x 也为周期函数;(3)若()f x 为单调递减函数,则()()f f x 为单调递增函数;(4)若方程()()f f x x =有实根,则方程()f x x =也有实根,其中,正确的命题共有个()A .1B .2C .3D .48.设()1211x f x x -=+,对2n ≥,定义()()()11n n f x f f x -=.若()2912x f x x +=-,则()2009 f x =______.9.设()()211xf x eg x ln x -=,=(+).则不等式()()()()1f g x g f x -的解集为_______.10.已知()[]12,0,1f x x x =-∈,那么方程()()()12f f f x x =的解的个数是_________.11.已知函数()f x 满足()()()3,1000;=+5,<1000.x x f x f f x x -≥⎧⎪⎨⎪⎩则()84f =________.12.设函数()f x 定义在R 上,对任意x R ∈,()110062f x +=+()310054f -=.则()2013f =___________.13.设定义在整数集上的函数f ,满足()()14,2000,n 19,2000.n n f f f n n -≥⎧⎪=⎨⎡⎤+<⎪⎣⎦⎩则()1989f =_____.14.设函数()f n 定义在正整数集上,对于任一正整数n ,有()()43f f n n =+,且对任意非负整数k ,有()1221k k f +=+.则()2303f =__________.15.设f(x)为定义在整数集上的函数,满足条件(1)()11f =,()20f =;(2)对任意的x 、y 均有()()()()()11f x y f x f y f x f y +=-+-则()2015f =______.三、解答题16.已知二次函数()()20f x ax bx c a =++≠.若方程()f x x =无实根,求证:方程()()f f x x =也无实根.17.已知()f x 是定义在实数集R 上的函数,()02f =,对任意x R ∈,有()()5254f x f x +=--,①()()3256f x f x -=-②,求()2012f 的值.18.对任意正整数m ,n ,定义函数(,)f m n 满足如下三个条件:①(1,1)1f =;②(1,)(,)2()f m n f m n m n +=++;③(,1)(,)2(1)f m n f m n m n +=++-.(1)求(3,1)f 和(1,3)f 的值;(2)求(,)f m n 的解析式.参考答案:1.C【详解】n=1时,()1f x =假设n k =时,()k f x =则1n k =+时,()1k f x +==所以()1993f x 故答案为C2.D【详解】令2x =-,则有()()()224f f f =-+,即()()()224.f f f +=()()()()42204f f f x f x ∴==⇒+=,即()f x 是以4为周期的函数.()()()199********.f f f ∴=⨯+==3.D【详解】设()1f a =,1x =.由已知函数等式得()()()1111f f f +=,()11af a +=,()11f a a+=.设1x a =+,有()()11111f a f f a a ⎛⎫+++= ⎪+⎝⎭,11111f a a a ⎛⎫+= ⎪+⎝⎭,()11 11f a f a a ⎛⎫+== ⎪+⎝⎭.由()f x 是增函数,则有1111a a+=+,解得a=当()112f =时,有()()11111a f f a a <=<+=<矛盾,所以()112f =.选D.4.B【详解】()111x f x x +=-,()()1223121111, 111f f x f x f x f x f x ++-==-==--+,()34311f f x x f +==-据此,()4111n xf x x++=-,()()424311, 1n n x f x f x x x ++-=-=+,()4n f x x=因2007为4n+3型,故选B.5.B【详解】令1y =得()()()111f x f f x x +=+--,即()()12f x f x x +=++.令0x =得()()102f f =+.由()11f =知()01f =-.当n N +∈时,()()()()()()()113101012nnk k n n f n f k f k f k f ==+⎡⎤=--+=++=-⎣⎦∑∑.同理,()()312n n f n -+-=--.所以,()()312n n f n +=-,n Z ∈.令()f n n =,解得2n =-或1n =.6.D【详解】由题意得()()()()5105fx f x f x -+=-+,所以,()()()101515f x f x f x +=-=--从而,()()()2550f x f x f x =--=-故()f x 是以50为周期的周期函数.因此,()()()20055040550f f f =⨯+==.7.C【详解】若()f x )为奇函数,则()()()()()()f f x f f x f f x -=-=-.故()()f f x 也为奇函数.因此,命题(1)正确.若()f x 为周期函数,设T 为()f x 的一个周期,则()()()()f f x T f f x +=.故()()f f x 也为周期函数,因此,命题(2)正确.若()f x 为单调递减函数,则对任何x y <,由:()()()()()()f x f y f f x f f y >=<.故()()f f x 为单调递增函数,因此,命题(3)正确.但命题(4)不正确例如,取:()2,011,0;0, 1.x x f x x x ⎧=≠⎪==⎨⎪=⎩或;则()()4,010,0;1, 1.x x f f x x x ⎧+≠⎪==⎨⎪=⎩或;.故方程()()f f x x =有01、两个实根,但0x ≠或1时,()2f x x x =+>,而()()01,10f f ==,知方程()f x x =没有实根.8.12xx+-【详解】因为()3012x x f x f x +⎛⎫== ⎪-⎝⎭,所以,()()311f x f x =.而2009306629=⨯+,于是,()()20092912xf x f x x+==-.故答案为12xx +-9.(]1,1-【详解】注意到()()()()2f g x g f x x -=.故()()()()2f g x g f x x -=.又定义域为()1,-+∞,从而,不等式的解集为(]1,1-.10.8【详解】∵()12f x x =-112,0,2121,,12x x x x ⎧⎡⎤-∈⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪-∈⎢⎥⎪⎣⎦⎩即()f x 有关于x 的两个一次表达式.同理,()()f f x 有关于()f x 的两个一次表达式,而每个()f x 有关于x 的两个表达式,以所()()f f x 有关于x 的四个一次表达式.同理,()()()f f f x 有关于x 的八个不同的一次表达式,因此,所求方程解的个数是8.11.997【详解】记()()()()()n n f x f f f x个.则()()()()()1848489999f f f f === ()()()()()()18518418310041001998f ff===()()()()()()18418318210031000997f f f===()()()()()()18318218310029991004f f f ===()()()()()()18218118210019981003f ff===()()()18110001000997f f ==== .因此,()84997f =.12.12+【详解】由题意知()112f =+12=+()13100724f ==,()()1120131007100622f f =+==.13.()19891990f =【详解】(1989)[(2008)](1994)[(2013)](1999)[(2018)](2004)1990f f f f f f f f f f =======14.4607【详解】注意到23432303343434342=+⨯+⨯+⨯+⨯.而()()()()()4343f n f f f n f n +==+,则()()2332303343434342f f =++⨯+⨯+⨯=…()()()234323444433434343423434343421230342124607f =+⨯+⨯+⨯+=+⨯+⨯+⨯++=++-=15.1±【详解】在条件(2)中令0x =,则()()()()()011f y f f y f f y =-+,由()11f =,知()()010f f y -=.在上式中令0y =,则()()()01000f f f =⇒=.在条件(2)分别令1,1,2x =-得()()()()()1110f y f f y f f y +=-+()1f y =-,()()()()()1112f y f f y f f y -=--+()()()()1111f f y f f y =--=-+,()()()()()2211f y f f y f f y +=-+-()()1f f y =-,由()()()111f y f f y -=-+()()()12f y f f y =-+()()()21f y f f y ⇒=-()11f ⇒-=±.若()11f -=,则()()2f y f y +=,由条件(1)知()1,0,x f x x ⎧=⎨⎩为奇数为偶数,经检验,f 满足条件故()20151f =.若()11f -=-,则()()2f y f y +=-()()()01x 141,14x f x mod x mod ⎧⎪=≡⎨⎪-≡-⎩,为偶数,,经检验,f 满足条件故()20151f =-.综上,()20151f =±.16.见解析【详解】将函数式()()20f x ax bx c a =++≠代入方程()f x x =,移项后,得()210ax b x c +-+=()0a ≠.已知这个方程无实根,所以它的判别式为负,即()21140b ac ∆=--<.进而,由()()()()()2f f x a f x bf x c =++,将()f x 的表达式代入方程()()f f x x =,得()()222a ax bx cb ax bxc c x++++++=()0a ≠.变形,得()()222220a ax bx c x ax b ax bx c x bx c x ⎡⎤⎡⎤++-++++-++-=⎣⎦⎣⎦,提公因式,得()()22110ax b x c a ax bx c x b ⎡⎤⎡⎤+-++++++=⎣⎦⎣⎦,即()()()22110f x x a x a b x ac b ⎡⎤⎡⎤-+++++=⎣⎦⎣⎦.由条件知方程()0f x x -=无实根,所以,上面这个四次方程()()22110a x a b x ac b +++++=与有相同的实根.所得辅助二次方程的判别式是()()()2222221411444a b a ac b a b b ac ⎡⎤∆=+-++=+---⎣⎦()()()22221144440a b ac a a ⎡⎤=---=∆-<⋅-<⎣⎦,所以,这个辅助二次方程无实根,进而推出原四次方程()()f f x x =无实根.17.2【详解】在式①中取()1322x y y R =-∈,得()()212f y f y +=-.在式②中取()1233x y y R =+∈,得()()12f y f y =-,于是,()()2f y f y +=,即()f x 是一个周期为2的函数,故()()()201221006002f f f =⨯+==.18.(1)(3,1)11f =,(1,3)7f =(2)22(,)231f m n m mn n m n =++--+【分析】(1)由已知关系式直接推得即可;(2)由(1,1),(1,2),,f f 依次推出(1,)f n ,再由(1,),(2,)f n f n ,L ,依次推出(,)f m n 即可.【详解】解:(1)因(1,)(,)2()f m n f m n m n +=++,令1m n ==代入得:(2,1)(1,1)2(11)145f f =++=+=,令2m =,1n =代入得:(3,1)(2,1)2(21)5611f f =++=+=,又(,1)(,)2(1)f m n f m n m n +=++-,令1m n ==代入得:(1,2)(1,1)2(111)123f f =++-=+=.令1m =,2n =代入得:(1,3)(1,2)2(121)347f f =++-=+=.(2)由条件②可得(2,1)(1,1)2(11)22f f -=⨯+=⨯,(3,1)(2,1)2(21)23f f -=⨯+=⨯,……(,1)(1,1)2(11)2f m f m m m --=⨯-+=⨯.将上述1m -个等式相加得:2(,1)2(23)(1,1)1f m m f m m =++⋅⋅⋅++=+-.由条件③可得:(,2)(,1)2(11)2f m f m m m -=+-=,(,3)(,2)2(21)2(1)f m f m m m -=+-=+,……(,)(,1)2(11)2(2)f m n f m n m n m n --=⨯+--=⨯+-.将上述n 1-个等式相加得:2(,)2[(1)(2)(2)]1f m n m m m m n m m =+++++⋅⋅⋅++-++-22231m m n n m n =++--+.【点睛】本题主要考查了函数的递推关系式,注意观察规律,细心完成即可.。

【推荐下载】高中数学竞赛第34讲函数迭代与函数方程教案

【推荐下载】高中数学竞赛第34讲函数迭代与函数方程教案

第34讲函数迭代与函数方程本节主要内容有函数迭代与函数方程问题.在研究函数的表达式或函数性质时,通常是没有给出函数的解析式,往往只给出函数的某些性质,而要求出函数的解析式,或证明该函数具有另外的一些性质,或证明满足所给性质的函数不存在或有多少个,或求出该函数的某些特殊函数值……。

A 类例题例1 已知x x e f xsin )(3,则函数()f x 。

解令xe t;则ln 0xt t,。

将此代入x xe f xsin )(3式可得ttt f ln sin ln )(3(0t )。

即3()ln sin ln f x x x(0x )代入(1)式,显然其满足方程x x e f x sin )(3。

说明解函数方程(())()f x g x (其中()x 及()g x 是已知函数)时,可设()t x ,并在的反函数存在时,求出反函数1()xt ;将它们代回原来的方程式以求出()f x 。

但若()x 为未知函数时,这个方法就不能用了。

由于代换后的函数未必与原函数方程等价,所以最后一定要检验所得到的解是否满足原来的函数方程。

例2 已知)(x f 为多项式函数,解函数方程xxx f x f 42)1()1(2(1)分析由于)(x f 为多项式函数,注意)1(x f 与)1(x f 和)(x f 的次数是相同的。

解因为)(x f 为多项式函数,而)1(x f 与)1(x f 并不会改变)(x f 的次数,故由(1)可知)(x f 为二次函数。

不妨设c bxaxx f 2)(,则22(1)(1)(1)(2)()f xa xb x cax a b x a b c ,22(1)(1)(1)(2)()f x a x b x c axb a x a bc ,所以22(1)(1)222()24f xf x axbx a c xx ,所以22,24,0,ab ac解得1,2,1,a b c所以12)(2xxx f 。

易检验出此)(x f 确实满足x xx f x f 42)1()1(2。

高二数学竞赛班一试讲义--函数迭代与函数方程

高二数学竞赛班一试讲义--函数迭代与函数方程
4 则 f (2010) ____________.
3.设
f1(x)
2 ,而 x 1
fn1 (x)
f1[ fn (x)] , n N .记 an

fn (2) 1 fn (2) 2
,则 a99


4.设
f
(x)

x 1
,记
x 1
fn (x)

f {f[ f(x)]} ,则
思考:设 an f (n) (x) ,则 an f (an1) , a0 x , a1 f (x) ,转化为数列递推。
2.函数方程:将含有未知函数的等式称为函数方程. 3.柯西方法解函数方程的步骤是:先求出对于自变量取所有自然数时函数方程的解具有的
形式,然后依次证明对自变量取整数值、有理数值以及实数值时函数方程的解仍具有这
例 5.设定义在[0,2]上的函数 f (x) 满足下列条件:
①对于 x [0, 2] ,总有 f (2 x) f (x) ,且 f (x) 1, f (1) 3 ;
②对于 x, y [1, 2] ,若 x y 3 ,则 f (x) f ( y) f (x y 2) 1 .
f
(x)

lim
n
f
(xn )

lim
n
xn
f
(1)

xf
(1)
综上所述,对于任意实数 x ,有 f (x) xf (1)
4.递推法函数方程.
二、例题精析
例 1.设 f : D E R \ 0,1,且 f (x) f ( x 1) 1 x
x
○1
求 f (x) .(第 32 届美国普特南数学竞赛题)

函数方程与迭代(PPT)3-1

函数方程与迭代(PPT)3-1

f ( x1 )[ f ( x2 x1 ) 1] 0 x R 时, f ( x) 为单调递增函数
Q f (1) 2, 则 f (2) f (1) f (1) 4 f (3x x2) 4 f (2),3x x2 2 1 x 2
∴不等式的解集为{x | 1 x 2} (4) f (3) f (1 2) f (1) f (2) 8
方程[ f ( x)]2 1 f ( x 3) f (2) 1 可化为[ f ( x)]2 1 f (3) f ( x) 5,
2
2
即[ f ( x)]2 4 f ( x) 5 0, 解得f ( x) 1或f ( x) 5 (舍),
由(1)得 x=0.故原方程的解为 x=0.
3.⑴ f (x) f (x 0) f (x) f (0), x 0 时, f (x) 1, f (0) 1

f (x)
f(x 2

x ) [ f ( x )]2 ≥ 0 .假设存在某个
使f ( x0 )

0,
则对任何 x 0,有f (x) f [(x x0 ) x0] f (x x0 ) f (x0 ) 0 与已知矛盾,
5.函数方程的解法: 代换法(或换元法) 把函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数
的定义域不会发生变化),得到一个新的函数方程,然后设法求得未知函数 待定系数法
当函数方程中的未知数是多项式时,可用此法经比较系数而得
球,是土星上和木星大红斑类似的长时间维持的大型风暴圈。土星环年,意大利天文学家伽利略观测到在土星的球状本体旁有奇怪的附属物。9 年,荷兰学者惠更斯证实这是离开本体的光环。7年意大利天文学家卡西尼,发现土星光环中间有一条暗缝(后称卡西尼环缝),他还猜测光环 是由无数小颗粒构成。两个多世纪后的分光观测证实了他的猜测,但在这二百年间,土星环通常被看做是一个或几个扁平的固体物质盘。直到8 年,英国物理学家麦克斯韦从理论上论证了土星环是无数个小卫星在土星赤道面上绕土星旋转的物质系统。土星环位于土星的赤道面上。在空间 探测前,从地面观测得知土星环有五个,其中包括三个主环(A环、B环、C环)和两个暗环(D环、E环)。B环宽又亮,它的内侧是C环,外侧 是A环。A、B两环之间为宽约8公里的卡西尼缝,是;泰国试管婴儿/ ;天文学家卡西尼在7年发现的,产生环缝的 原因是因为光环中有卫星运行,卫星的引力造成的。B环的内半径9,公里,外半径,公里,宽度,公里,可以并排安放两个地球。A环的内半径,公里, 外半径7,公里,宽度,公里。C环很暗,它从B环的内边缘一直延伸到离土星表面只有,公里处,宽度约9,公里。99年在C环内侧发现了更暗的D环, 它几乎触及土星表面。在A环外侧还有一个E环,由非常稀疏的物质碎片构成,延伸在五、六个土星半径以外。979年9月“先驱者”号探测到两 个新环──F环和G环。F环很窄,宽度不到8公里离土星中心的距离为.个土星半径,正好在A环的外侧。G环离土星很远展布在离土星中心大约~ 个土星半径间的广阔地带。“先驱者”号还测定了A环、B环、C环和卡西尼缝的位置、宽度,其结果同地面观测相差不大“先驱者”号的紫外辉 光观测发现,在土星的可见环周围有巨大的氢云环本身是氢云的源。除了A环、B环、C环以外的其他环都很暗弱。土星的赤道面与轨道面的倾角 较大,从地球上看,土星呈现出南北方向的摆动,这就造成了土星环形状的周期变化。仔细观测发现,土星环内除卡西尼缝以外,还有若干条旅 行者号98年拍摄的土星照片旅行者号98年拍摄的土星照片(张)缝,它们是质点密度较小的区域,但大多不完整且具有暂时性。只有A环中的恩克 缝为永久性,不过,环缝也不完整。科学家认为这些环缝都是土星卫星的引力共振造成的,犹如木星的巨大引力摄动造成小行星带中的柯克伍德 缝一样。“先驱者”号在A环与F环之间发现一个新的环缝,称为“先驱者缝”,还测得恩克缝宽度为9公里。由观测阐明土星环的本质要归功于 美国天文学家基勒,他在8

函数方程与迭代(2019年新版)

函数方程与迭代(2019年新版)
函数 f(x)在 x=0 处没有定义,但对所有非零实数 x 有
B f(x)+2 f ( 1 ) =3x.满足方程 f(x)=f(-x)的实数( ). x (A)恰有一个 (B)恰有两个 (C) 有无穷多个 (D) 不存在
思考
2.(第
14
届(2003
年)希望杯高一第
1
试)设
f1( x)

Байду номын сангаас
2 x1
,
21 而
与叔牙足也 莫如与秦王遇於渑池 必轻楚矣 留二日 又诛其将 其游诸侯见尊礼如此 曰:“胙所从来远 能以伎能立名者甚多 压纽 顾王策安所决耳 郡不出铁者 楚考烈王卒 治乱以相 三百人者闻秦击晋 任重权不可以非理挠 作高祖功臣侯者年表第六 鲁句践与荆轲博 二十一年 故之大
卜官 齐有司趋而进曰:“请奏宫中之乐 其明年 大破之 端和将河内 ”臣意对曰: 自意少时 舜曰:“女其往视尔事矣 是复阏与之事 ”上曰:“吾闻李斯相秦皇帝 及岱宗 平公四年卒 阴阳相错 迹至籍少公 八年 晋使中行献子伐齐 恐事之不合 自知见卖 轻车武射也 举袂而言曰:
赦之 晏婴与晋叔向语 势非寡也 ”会饮田氏 而大农颜异诛 郑人或谓子贡曰:“东门有人 禅云云;夥颐见杀 塞临晋 故百物皆化;於是天子乃令王然于、柏始昌、吕越人等 攻惠公 晋阳反 何谓贤 而踪迹验问 使子击守之 春夏以水 次曰季友 知唯德之不建 简子书藏之府 不为不孝
自齐王毁废孟尝君 战於番吾之下 由是反鲁 破之 赐毕万魏 ”王曰:“吾以五而伐一 故不得王;坛三垓 至周厉王 正北 秦归燕太子 晋侯病 ” 项王亡将锺离眛家在伊庐 各有所由兴 破荆军 见且斩爱姬 丙辰 生致之雒阳 怠惰之为安 虽不当世 与上会留 掩细柳 反为楚 孝王新得齐人
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数方程与迭代1.迭代法先看一个有趣的问题:李政道博士1979年4月到中国科技大学,给少年班的同学面试这样一道题: 五只猴子,分一堆桃子,怎么也平分不了,于是大家同意先去睡觉,明天再说.夜里一只猴子偷偷起来,把一个桃子吃掉后正好可以分成5份,收藏起自己的一份后又去睡觉了.第二只猴子起来后,像第一只猴子一样,先吃掉一个,剩下的又刚好分成5份,也把自己的一份收藏起来睡觉去了.第三、第四、第五只猴子也都是这样:先吃掉一个,剩下的刚好分成5份.问这堆桃子最少是多少个? 设桃子的总数为x 个.第i 只猴子吃掉一个并拿走一份后,剩下的桃子数目为i x 个,则14(1)5i i x x -=-, 1,2,3,4,5i =.且0x x =.设44()(1)(4)455f x x x =-=+-.于是:14()(4)45x f x x ==+-, 224(())()(4)45x f f x x ==+-,334((()))()(4)45x f f f x x ==+-, 444(((())))()(4)45x f f f f x x ==+-,554((((()))))()(4)45x f f f f f x x ==+-,由于剩下的桃子数都是整数,∴55|4x +.∴最小的x 为:5543121x =-=. 上面的解法,我们利用了一个函数自身复合多次,这就叫迭代.一般地,设:f D D →是一个函数,对x D ∀∈,记(0)()f x x =,(1)()()f x f x =,(2)()(())f x f f x =,…,(1)()()(())n n f x f f x +=,n N *∈,则称函数()()n f x 为()f x 的n 次迭代,并称n 为()()n f x 的迭代指数.反函数记为()()n f x -.一些简单函数的n 次迭代如下:(1)若()f x x c =+,则()()n f x x nc =+; (2)若()f x ax =,则()()n n f x a x =;(3)若()a f x x =,则()()n n a f x x =; (4)若()1x f x ax =+,则()()1n x f x nax =+; (5)若()f x ax b =+(1a ≠),则()1()1nn na f x a xb a -=+-; ()()n f x 的一般解法是先猜后证法:先迭代几次,观察规律并猜测表达式,证明时常用数学归纳法.1.求迭代后的函数值例1 自然数k 的各位数字和的平方记为1()f k ,且11()[()]n n f k f f k -=,求(11)n f (n N *∈)的值域. 解:由条件可知: Λ;169)652()256()11(;256)961()169()11(;169)94()49()11(;49)61()16()11(;164)4()11(;4)11()11(21621521421321221=++===++===+===+======+=f f f f f f f f f f f所以(11)n f (n N *∈)的值域为{4,16,49,169,256}。

例2 设12()1f x x =+,而11()[()]n n f x f f x +=,n N *∈.记(2)1(2)2n n n f a f -=+,求99a . 解:∵32)2(1=f ,∴811-=a ,1)2(2)2(1+=-n n f f ,2)2(1)2(2121)2(211)2(22)2(1)2(1111+-⋅-=++-+=+-----n n n n n n f f f f f f 即121--=n n a a ,故101989921)21(81-=--=a 。

例3 求解函数方程:x x x f x f x x f cos )11()1()11(=-++-++-)1,0(±≠x 解:设11)(+-=x x x g ,则x x g g g g x g ==))))(((()()4(并且x x g g x g 1))(()2(-==,x x x g g g x g -+==11)))((()3(,于是原方程变为:x x g f x g f x g f cos )]([][)]([)3()2(=++, ①令)(x g x =得:)(cos )()]([)]([)3()2(x g x f x g f x g f =++ ②令)()2(x g x =得:)(cos )]([)()]([)2()3(x g x g f x f x g f =++③令)()3(x g x =得:)(cos )]([))(()()3()2(x g x g f x g f x f =++ ④ 由①②③④得: x x g x g x g x f cos 2)(cos )(cos )(cos )(3)3()2(-++=,∴)cos 211cos 1cos 11(cos 31)(x xx x x x x f --++++-=. 2.不动点法 一般地,若()f x ax b =+,则把它写成()()11b b f x a x a a =-+--,因而 ……()()()11n n b b f x a x a a =-+-- 这里的1b a-就是方程ax b x +=的根.一般地,方程()f x x =的根称为函数()f x 的不动点. 如果0x 是函数()f x 的不动点,则0x 也是()()n fx 的不动点.可用数学归纳法证明.利用不动点能较快地求得函数()f x 的n 次迭代式. 3.相似法若存在一个函数()x ϕ以及它的反函数1()x ϕ-,使得1()((()))f x g x ϕϕ-=,我们称()f x 通过()x ϕ和()g x 相似,简称()f x 和()g x 相似,其中()x ϕ称为桥函数.如果()f x 和()g x 相似,即1()((()))f x g x ϕϕ-=,则有:()1()()((()))n n f x g x ϕϕ-=.4. 函数方程的一般解法函数方程的变化多,求解技巧性很强,往往涉及不同领域的数学知识,特别是附加了条件的函数,更是五花八门,各有巧妙。

迭代只是其中的一种方法,在高中数学各级竞赛中,都有可能会遇到函数方程的问题,还有可能会用到观察法、代换法、柯西法、赋值法(特殊值法)等几种典型的求解函数的方法。

如: (2)2()(),11b b f x a x a a =-+--(3)3()()11b b f x a x a a =-+--1.代换法例4(2007越南数学奥林匹克)设b 是一个正实数,试求所有函数R R f →:,使得)3(3)()(1)(1)(y y f b x y f b b b x f y x f y y -+⋅=+-+-+对任意实数x 、y 均成立。

解:将原方程变形为:1)(3))(()(-++⋅+=++y f b x y x y b x f b y x f (x , )R y ∈① 令x b x f x g +=)()(,则①等价于1)(3)()(-⋅=+y g x g y x g (x , )R y ∈②在②中令0=y 得1)0(3)()(-⋅=g x g x g )(R x ∈这表明1)0(0)(==g x g 或(1) 若0)(=x g )(R x ∈,则x b x f -=)( (2) 若1)0(=g ,在②式中令0=x 得:1)(1)(33)0()(--=⋅=y g y g g y g ,即0)(31)(=--y g y g )(R y ∈ ③ 考虑函数t t h t -=-13)(,它的导函数13ln 3)('1-=-t t h ,则11)(log log 0)('33<+=⇔=e t t h .于是可知0)(=t h 有两根11=t 和c t =2)10(<<c .于是③式等价于1)(=y g 或c R y ∈(, c 为满足10<<c 的常量)假设存在R y ∈0使c y g =)(0,则)(3)()()0(101)(0000y g c y g y y g g y g -⋅=⋅=-==-- ∴c cy g ≠-=-1)(0或1,∴c y g =)(0矛盾,因此1)(=y g )(R y ∈,∴x b x f -=1)( 综上知:x x b x f b x f -=-=1)()(和说明:代换法是解函数方程最基本方法,很多函数方程中所特有的性质是通过代换法去发现的。

本题也是通过代换法打开了解题的思路。

2.柯西法例5 设)(x f 为定义在实数集R 上的单调连续函数,试解函数方程)()()(y x f y f x f +=⋅。

解:由)()()(y x f y f x f +=⋅用归纳法得:)()()()(2121n n x x x f x f x f x f ΛΛ++=当n x x x ===Λ21时,有)()]([nx f x f n =. ①若1=x ,n x f n f )]([)(=,令a f =)1(,得n a n f =)(,在①式中令n x 1=得:)1()]1([f nf n = 因)(x f 定义在实数集R 上,n 是偶数时,必有0)1(≥f ,这样0≥a ,∴n a nf 1)1(= 若m 为正整数,利用上式得:n mm n m a a n f n n n f n m f n m f ===+++=⋅=)()]1([)111()1()(1Λ.在原方程中,令0=y 有:)()0()(x f f x f =⋅,因)(x f 单调)(x f 不恒为0,∴01)0(a f ==.在原方程中,令x y -= 有n m x y -=-=(n , )N m ∈,则有)0()()(f n m f n m f =⋅-即n mn m a a n m f n m f --===-1)()(1)((又因为)(n m f -有意义,∴0,a >这样,我们便在有理数集内求得了函数方程)0()(>=a a x f x .又因)(x f 单调,不能恒为1,则)10()(≠>=a a a x f x 且为指数函数,当α=a 为无理数,设i i b a <<α且a i , b i 为无限接近于α的有理数.则由)(x f 单调知ααa f =)(,∴原方程的解为)10()(≠>=a a a x f x 且说明:柯西法是由解柯西方程)()()(y f x f y x f +=+而归纳出来的方法。

3.特殊值法例6 (2008年IMO 第4题)求所有的函数),0(),0(:+∞→+∞f 满足对所有的正实数ω,x , y , z ,yz x =ω都有:22222222)()())(())((z y x z f y f x f f ++=++ωω解:令1====z y x ω得:1)1()1())1((2=⇒=f f f ,对任意0>t 令t =ω,1=x ,t z y ==得:t t t f t f 21)(21))((22+=+,去分母整理:0))()(1)((=--t t f t tf ,所以对每个0>t 有t t f =)(或者t t f 1)(= ① 若存在b , ),0(+∞∈c ,使得b b f ≠)(,c c f 1)(=,则由①知,b , c 都不等于1。

相关文档
最新文档