2016离散数学作业3标准答案
离散数学概论习题答案第3章

第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。
集合包括最基本的数学概念,例如集合,元素和成员关系。
在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。
集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。
集合论,逻辑和一阶逻辑构成了数学公理化的基础。
同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。
接下来,我们将在两个单独的章节中介绍它们。
集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。
第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。
一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。
通常用大写英文字母表示集合。
例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。
用小写英文字母表示集合内元素。
若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。
集合分为有限集合和无限集合两种,下面给出定义。
表示集合方法有列举法和描述法两种方式,下面分别介绍。
1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。
这种表述方式为列举法。
例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。
且集合元素之间没有次序关系。
一个集合可以作为另个集合的元素。
例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。
因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。
,,,c d e f A以上给出的集合实例都是有限集合。
当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。
离散数学课后习题答案(第三章)

b)R1-R2;
c)R12;
d) r(R1-R2)(即R1-R2的自反闭包)。
解a)(A×A)-R1不是A上等价关系。例如:
A={a,b},R1={<a,a>,<b,b>}
A×A={<a,a>,<a,b>,<b,a>,<b,b>}
(A×A)-R1={<a,b>,<b,a>}
所以(A×A)-R1不是A上等价关系。
c)若R1是A上等价关系,则
<a,a>∈R1<a,a>∈R1○R1
所以R12是A上自反的。
若<a,b>∈R12则存在c,使得<a, c>∈R1∧<c,b>∈R1。因R1对称,故有
<b, c>∈R1∧<c,a>∈R1<b, a>∈R12
即R12是对称的。
若<a,b>∈R12∧<b, c>∈R12,则有
若c<0,则a<0u<0au>0
所以(a+bi)R(u+vi),即R在C*上是传递的。
关系R的等价类,就是复数平面上第一、四象限上的点,或第二、三象限上的点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。
3-10.9设Π和Π是非空集合A上的划分,并设R和R分别为由Π和Π诱导的等价关系,那么Π细分Π的充要条件是RR。
证明:若Π细分Π。由假设aRb,则在Π中有某个块S,使得a,b∈S,因Π细分Π,故在Π中,必有某个块S,使SS,即a,b∈S,于是有aRb,即RR。
反之,若RR,令S为H的一个分块,且a∈S,则S=[a]R={x|xRa}
但对每一个x,若xRa,因RR,故xRa,因此{x|xRa}{x|xRa}即[a]R[a]R
<<x,y>,<u,v>>∈R∧<<u,v>,<w,s>>∈R
离散数学作业3[答案]
![离散数学作业3[答案]](https://img.taocdn.com/s3/m/08f8c23043323968011c920a.png)
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年11月7日前完成并上交任课教师(不收电子稿)。
并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。
一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )= {{3},{1,3},{2,3},A B{1,2,3}} ,A⨯ B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024.3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈R⋂x∈>y且=且∈<{B,,xAyAyBx}则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3,3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<>∈x,,x,2{ByA那么R-1={<6,3>,<8,4>}5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是没有任何性质.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素{<c,b>,<d,c>},则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1,1>,<2,2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是{<1, a >, <2, b >}或{<1, b >, <2, a >} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.(1)错误。
离散数学(本)形考三答案

形考任务三单项选择题题目1谓词公式(x)(A(x)→B(x)∨C(x,y))中的()。
选择一项:正确答案是:x是约束变元,y都是自由变元题目2表达式的辖域是( ).选择一项:题目3下列公式成立的为( ).选择一项:正确答案是:┐P∧(P∨Q)Q题目4命题公式 (P∨Q)→R的析取范式是 ( ).选择一项:正确答案是:(┐P∧┐Q)∨R题目5设个体域D是整数集合,则命题的真值是().选择一项:正确答案是:T题目6设个体域D={a, b, c},那么谓词公式消去量词后的等值式为( ).选择一项:题目7下列公式 ( )为重言式.选择一项:正确答案是:Q→(P∨(P∧Q))↔Q →P题目8设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().选择一项:题目9命题公式为( )选择一项:正确答案是:可满足式题目10下列等价公式成立的为( ).选择一项:正确答案是:P→(┐Q→P)┐P→(P→Q)判断题题目11命题公式┐(P→Q)的主析取范式是P∨┐Q.( )选择一项:正确的答案是“错”。
题目12设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.( )选择一项:正确的答案是“错”。
题目13设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( )选择一项:正确的答案是“对”。
题目14命题公式P→(Q∨P)的真值是T.( )选择一项:正确的答案是“对”。
题目15设个体域D={1,2, 3, 4},A(x)为“x大于5”,则谓词公式(∀x)A(x)的真值为T.( )选择一项:正确的答案是“错”。
题目16设P:我们下午2点去礼堂看电影,Q:我们下午2点去教室看书.那么命题“我们下午2点或者去礼堂看电影或者去教室看书”符号化的结果为P∨Q.( )正确的答案是“错”。
离散数学第3版习题答案

离散数学第3版习题答案【篇一:华东师范大学离散数学章炯民课后习题第3章答案】xt>(1)2是正数吗?(2)x2+x+1=0。
(3)我要上学。
(4)明年2月1日下雨。
(5)如果股票涨了,那么我就赚钱。
解:(1) 不是(2) 不是(3) 不是(4) 是(5) 是2. 判断下列命题的真值:(1)若1+1=3,则2+2=4(2)若鸟会飞,则 1+1=3解:(1) 1(2) 011. 将下列两个命题符号化,并分别用真值表和等值演算的方法证明所得到的那两个命题公式是等值的。
(1)你不会休息所以就不会工作,你没有丰富的知识所以你就不会工作;(2)你会工作所以一定会休息并具有丰富的知识。
解:设p:你会休息,q:你会工作,r:你有丰富的知识。
原命题符号化为(1) (?p??q) ?(?r??q)(2) q?(p?r)12.(1)用等值演算的方法证明命题恒等式p?(q?p)=?p?(p??q)。
13. 构造一个只含命题变量p、q和r的命题公式a,满足:p、q和r的任意一个赋值是a的成真赋值当且仅当p、q和r中恰有两个为真。
解:(p?q??r)?( p??q?r)?(?p?q?r)14. 通过等值演算求p?(p?(q?p))的主析取范式和主合取范式。
解:主析取范式:(?p?q)?(?p??q)?(p??q)?(p?q )主合取范式不存在15. 一教师要从3名学生a、b和c中选派1~2人参加市级科技竞赛,需满足以下条件:(1)若a去,则c同去;(2)若b去,则c不能去;(3)若c不去,则a或b可以去。
问该如何选派?解:为此问题建立数学模型。
有三个方案:仅c去,仅b去,仅a和c去16. 证明{?,?}是功能完备集。
17. (1)证明p?(q?s),q,p??r?r?s。
证明:① p??r 前提引入② r 附加前提引入③ p ①②析取三段④ p?(q?s) 前提引入⑤ q?s ③④假言推理⑥ q 前提引入⑦ s ⑤⑥假言推理19. 构造下列推理的形式证明:“今天下午没有出太阳并且今天比昨天冷。
离散数学第3版习题答案

离散数学第3版习题答案
《离散数学第3版习题答案》
离散数学是一门重要的数学分支,它研究的是离散的结构和对象,而不是连续的。
离散数学第3版是一本经典的教材,它包含了大量的习题,这些习题涵盖了离散数学的各个方面,包括集合论、图论、逻辑、代数结构等。
在学习离散数学的过程中,习题是非常重要的,它们可以帮助我们巩固所学的知识,提高我们的解决问题的能力。
本文将为大家提供离散数学第3版习题的答案,希望能够帮助大家更好地学习和理解离散数学。
在这里,我们将逐个习题进行解答,并给出详细的步骤和解题思路。
通过这些答案,希望能够帮助大家更好地理解离散数学的知识点,提高解题能力。
在学习离散数学的过程中,我们要注重理论知识的掌握,同时也要注重实际问题的解决能力。
离散数学的知识可以帮助我们更好地理解计算机科学、信息技术等领域的知识,它对我们的学习和工作都有很大的帮助。
通过学习离散数学第3版习题答案,我们可以更好地理解离散数学的知识点,提高我们的解题能力,为我们的学习和工作打下坚实的基础。
希望大家能够认真对待每一个习题,通过不断地练习和思考,掌握离散数学的知识,提高自己的数学素养。
离散数学习题答案.docx

精品文档离散数学习题答案习题一及答案:( P14-15 )14、将下列命题符号化:( 5)李辛与李末是兄弟解:设 p:李辛与李末是兄弟,则命题符号化的结果是p( 6)王强与刘威都学过法语解:设 p:王强学过法语; q:刘威学过法语;则命题符号化的结果是p q ( 9)只有天下大雨,他才乘班车上班解:设 p:天下大雨; q:他乘班车上班;则命题符号化的结果是q p( 11)下雪路滑,他迟到了解:设 p:下雪; q:路滑; r :他迟到了;则命题符号化的结果是( p q)r15、设 p: 2+3=5.q:大熊猫产在中国 .r:太阳从西方升起 .求下列复合命题的真值:( 4)(p q r )(( p q)r )解: p=1, q=1,r=0 ,(p q r )(110)1,((p q)r )((11)0)(00)1(p q r )(( p q)r ) 1 1119、用真值表判断下列公式的类型:( 2)( p p)q解:列出公式的真值表,如下所示:p q p qp) ( p p)q( p001111011010100101110001由真值表可以看出公式有 3 个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:精品文档( 4)( p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:( p q)1p0q0q0所以公式的成真赋值有: 01,10, 11。
习题二及答案:( P38)5、求下列公式的主析取范式,并求成真赋值:( 2)(p q) (q r )解:原式( p q) q r q r( p p) q r( p q r ) ( p q r )m3m7,此即公式的主析取范式,所以成真赋值为011, 111。
6、求下列公式的主合取范式,并求成假赋值:( 2)( p q) ( p r )解:原式( pp r ) ( p q r )( p q r )M 4,此即公式的主合取范式,所以成假赋值为 100。
离散数学课后习题答案(第三章)(doc)

a) 用矩阵运算和作图方法求出 R 的自反、对称、传递闭包; b) 用 Warshall 算法,求出 R 的传递闭包。
解 a) 0 1 00
MR= 1 0 1 0 0 0 01
0 0 00
R 的关系图如图所示。
a
b
d
c
MR+MIA=
0 1 00 1 0 10
反之,若 S∩ScIX,设<x,y>∈S 且 <y,x>∈S,则 <x,y>∈S∧<x,y>∈Sc <x,y>∈S∩Sc <x,y>∈IX 故 x=y,即 S 是反对称的。
3-7.3 设 S 为 X 上的关系,证明若 S 是自反和传递的,则 S○S=S,其逆为真 吗?
证明 若 S 是 X 上传递关系,由习题 3-7.2a)可知(S○S)S, 令<x,y>∈S,根据自反性,必有< x,x> ∈S, 因此有< x,y >∈S○S, 即 SS○S。得到 S=S○S.
自反的; b)若 R1 和 R2 是反自反的,则 R1○R2 也
是反自反的; c)若 R1 和 R2 是对称的,则 R1○R2 也是
对称的; d)若 R1 和 R2 是传递的,则 R1○R2 也是
传递的。
证明 a)对任意 a∈A,设 R1 和 R2 是自 反的,则<a,a>∈R1,<a,a>∈R2 所以,<a,a>∈R1○R2,即 R1○R2 也是 自反的。
解:L= {<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>} D={<1,2>,<1,3>,<1,6>, <2,6>,<3,6>,<1, 1>,<2,2>,<3,3>,<6,6>} L∩D= {<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>, <2,2>,<3,3>,<6,6>}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第11周末前完成并上交任课教师(不收电子稿)。
并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。
一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )= {{3},{1,3},{2,3},A B{1,2,3}} ,A⨯B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈R⋂x∈>y且=且∈<{B,,xAyAyBx}则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3,3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<>∈x,,x,2{ByA那么R-1={<6,3>,<8,4>}5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是没有任何性质.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素{<c,b>,<d,c>},则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1,1>,<2,2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是{<1, a >, <2, b >}或{<1, b >, <2, a >} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则(1) R 是自反的关系; (2) R 是对称的关系.(1)错误。
R 不具有自反的关系,因为<3,3>不属于R 。
(2)错误。
R 不具有对称的关系,因为<2,1>不属于R 。
2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1∩R 2是自反的” 是否成立?并说明理由.解:成立.因为R 1和R 2是A 上的自反关系,即I A ⊆R 1,I A ⊆R 2。
由逆关系定义和I A ⊆R 1,得I A ⊆ R 1-1;由I A ⊆R 1,I A ⊆R 2,得I A ⊆ R 1∪R 2,I A ⊆ R 1⋂R 2。
所以,R 1-1、R 1∪R 2、R 1⋂R 2是自反的。
3.若偏序集<A ,R >的哈斯图如图一所示, 则集合A 的最大元为a ,最小元不存在. 解:错误. 集合A 的最大元不存在,a 是极大元.4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2)f ={<1, 6>, <3, 4>, <2, 2>};(3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.(1)不构成函数。
因为对于3属于A ,在B 中没有元素与之对应。
(2)不构成函数。
因为对于4属于A ,在B 中没有元素与之对应。
(3)构成函数。
因为A 中任意一个元素都有A 中唯一的元素相对应。
三、计算题 ο οο ο a b c d 图一 οο ο g e fh ο1.设}4,2{=BAE,求:==C5,2,1{},},4,1{},5,4,3,2,1{=(1) (A⋂B)⋃~C;(2) (A⋃B)-(B⋂A) (3) P(A)-P(C);(4) A⊕B.解:(1) (A∩B)∪~C={1}∪{1,3,5}={1,3,5}(2) (A∪B)- (B∩A)={1,2,4,5}-{1}={2,4,5}(3) P(A) ={Φ,{1},{4},{1,4}} P(C)={ Φ,{2},{4},{2,4}} P(A)-P(C)={{1},{1,4}}(4) A⊕B= (A∪B)- (B∩A)= {2,4,5}2.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(A-B);(2)(A∩B);(3)A×B.解:(1)A-B ={{1},{2}}(2)A∩B ={1,2}(3)A×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>, <2, {1,2}>}3.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y<0},试求R,S,R∙S,S∙R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3><2,1><2,2><3,1>}S=空集R*S=空集S*R=空集R-1={<1,1>,<2,1><3,1><1,2><2,2><1,3>}S-1 =空集r(S)={<1,1><2,2><3,3><4,4><5,5>}s(R)={<1,1><1,2><1,3><2,1><2,2><3,1>}4.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1) 写出关系R的表示式;(2 )画出关系R的哈斯图;(3) 求出集合B的最大元、最小元.(1)R={<1,1><1,2><1,3><1,4><1,5><1,6><1,7><1,8><2,2><2,4><2,6><2,8><3 ,3><3,6><4,4><4,8><5,5><6,6><7,7><8,8>}(3)集合B没有最大元,最小元是2四、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).1.证明:设,若x∈A⋃ (B⋂C),则x∈A或x∈B⋂C,即x∈A或x∈B 且x∈A或x∈C.即x∈A⋃B 且x∈A⋃C ,即x∈T=(A⋃B) ⋂ (A⋃C),所以A⋃ (B⋂C)⊆ (A⋃B) ⋂ (A⋃C).反之,若x∈(A⋃B) ⋂ (A⋃C),则x∈A⋃B 且x∈A⋃C,即x∈A或x∈B 且x∈A或x∈C,即x∈A或x∈B⋂C,即x∈A⋃ (B⋂C),所以(A⋃B) ⋂ (A⋃C)⊆ A⋃ (B⋂C).因此.A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).2.试证明集合等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C).2.证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x ∈B∪C,即x∈A且x∈B 或x∈A且x∈C,也即x∈A∩B 或x∈A∩C ,即x∈T,所以S⊆T.反之,若x∈T,则x∈A∩B 或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以T⊆S.因此T=S.3.对任意三个集合A, B和C,试证明:若A⨯B = A⨯C,且A≠∅,则B = C.(1)对于任意<a,b>∈A×B,其中a∈A,b∈B,因为A×B= A×C,必有<a,b>∈A×C,其中b ∈C因此B⊆C(2)同理,对于任意<a,c>∈A×C,其中,a∈A,c∈C,因为A×B= A×C必有<a,c>∈A×B,其中c∈B,因此C⊆B有(1)(2)得B=C4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.若R与S是集合A上的自反关系,则任意x∈A,<x,x>∈R,<x,x>∈S,从而<x,x>∈R∩S,注意x是A的任意元素,所以R∩S也是集合A上的自反关系.。