二次根式 公开课教案 教师
2023二次根式教案4篇

2023二次根式教案4篇二次根式教案篇1教学目的:1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;2、会求二次根式的代数的值;3、进一步提高学生的综合运算能力。
教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值教学过程:一、二次根式的混合运算例1计算:分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。
(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。
注意的计算。
练习1:P206/8--①P207/1①②例2计算问:计算思路是什么?答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。
二、求代数式的值。
注意两点:(1)如果已知条件为含二次根式的式子,先把它化简;(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。
例3已知,求的值。
分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。
求得与的值。
在计算中,先把及的式了有理化分母。
可使计算简便。
例4已知,求的值。
观察代数式的特点,请说出求这个代数式的值的思路。
答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。
三、小结1、对于二次根式的混合混合运算。
应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。
如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。
2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。
3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。
二次根式教案(优秀8篇)

本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
二次根式运算市公开课获奖教案省名师优质课赛课一等奖教案

二次根式运算教案一、教学目标1.了解二次根式的定义和性质。
2.掌握二次根式的基本运算法则,包括加减乘除。
3.能够运用二次根式的运算法则解决实际问题。
二、教学重点1.理解二次根式的含义和运算规律。
2.掌握二次根式的基本运算法则,包括加减乘除。
三、教学难点1.能够灵活运用二次根式的运算法则。
2.提高学生解决实际问题的能力。
四、教学方法1.讲解法:通过讲解理论知识,阐述二次根式的含义和运算规律。
2.示范法:通过示范例题,引导学生理解二次根式的运算方法。
3.练习法:通过练习题,巩固学生对二次根式运算法则的掌握。
4.讨论合作法:让学生分组讨论,合作解决实际问题。
五、教学过程1.引入(5分钟)通过一个简单的问题引入二次根式运算的概念,例如:“小明买了一块长宽分别为√2米和2√3米的矩形地毯,求地毯的面积。
”2.讲解二次根式的定义和性质(10分钟)讲解二次根式的定义和性质,明确二次根式的含义以及根式的加减乘除法则。
3.示范例题(15分钟)通过一些简单的例题,演示二次根式的基本运算方法,包括加减乘除。
4.练习题(15分钟)让学生独立完成一些练习题,巩固对二次根式运算法则的掌握。
5.讨论合作解题(15分钟)将学生分组讨论一些实际问题,例如:“小明有一块长宽分别为√5米和√3米的矩形地毯,他想铺在房间的地面上,房间的长宽分别为3√2米和2√3米,问地毯是否能完全覆盖房间的地面?”引导学生通过二次根式的运算解决问题。
6.总结归纳(5分钟)总结二次根式的运算法则和解题思路,强调学生在实际问题中的运用能力。
七、课堂练习(15分钟)八、作业布置(5分钟)九、教学反思。
二次根式优秀教案

二次根式优秀教案教案标题:探索二次根式的特性与运算教案目标:1. 理解二次根式的定义和特性;2. 掌握二次根式的运算方法;3. 能够应用二次根式解决实际问题。
教学重点:1. 二次根式的定义和特性;2. 二次根式的运算方法。
教学难点:1. 二次根式的运算方法。
教学准备:1. 教师准备:教学课件、黑板、粉笔、教学素材;2. 学生准备:教材、笔记本。
教学过程:Step 1:导入(5分钟)教师通过提问和讲解引入二次根式的概念,并与学生一起回顾平方根的定义和运算方法。
Step 2:探索二次根式的特性(15分钟)教师将学生分成小组,每个小组分配一道二次根式的问题,让学生通过讨论和研究,总结出二次根式的特性,并向全班展示他们的研究结果。
Step 3:讲解二次根式的定义和特性(10分钟)教师根据学生的研究结果,讲解二次根式的定义和特性,并通过示例演示如何化简和比较二次根式。
Step 4:练习二次根式的运算方法(20分钟)教师提供一些二次根式的练习题,让学生独立完成,并在完成后进行讲解和订正。
教师可以设计一些有趣的练习题,以激发学生的学习兴趣。
Step 5:应用二次根式解决实际问题(15分钟)教师给学生提供一些实际问题,要求学生运用二次根式的知识解决,并让学生展示解题过程和答案。
Step 6:归纳总结(5分钟)教师与学生一起总结本节课的重点内容,并强调二次根式的重要性和应用价值。
Step 7:作业布置(5分钟)教师布置相关的作业,要求学生进一步巩固和应用二次根式的知识。
教学延伸:教师可以引导学生进行更深入的研究,如二次根式的图像、二次根式的应用等,以拓宽学生对二次根式的理解和应用。
教学评价:1. 教师观察学生在小组合作中的表现;2. 教师检查学生在练习和解决实际问题中的答案和解题过程;3. 教师评价学生的作业完成情况。
教学反思:教师根据学生的表现和反馈,对教学过程进行反思和总结,以进一步改进教学方法和策略。
最新二次根式教案详案

最新二次根式教案详案一、教学内容本节课我们将学习《二次根式》这一章节,具体内容包括二次根式的定义、性质、运算及其应用。
涉及的教材章节为第二章第三节。
二、教学目标1. 理解二次根式的定义,掌握二次根式的性质和运算方法。
2. 能够运用二次根式解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和运算能力。
三、教学难点与重点难点:二次根式的性质和运算方法。
重点:二次根式的定义及其应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:练习本、计算器。
五、教学过程1. 实践情景引入利用课件展示实际生活中含有二次根式的例子,如土地面积、建筑物的对角线长度等,让学生认识到二次根式在实际生活中的应用。
2. 知识讲解(1)二次根式的定义:讲解二次根式的概念,如√a(a≥0)。
(2)二次根式的性质:讲解二次根式的性质,如乘法、除法、开方等。
(3)二次根式的运算:讲解二次根式的加减乘除运算方法。
3. 例题讲解选取具有代表性的例题,讲解解题思路和步骤,让学生掌握二次根式的运算方法。
4. 随堂练习让学生完成教材上的练习题,巩固所学知识。
5. 课堂小结六、板书设计1. 二次根式2. 内容:(1)二次根式的定义(2)二次根式的性质(3)二次根式的运算方法七、作业设计1. 作业题目(2)应用题:某正方形的对角线长为10cm,求该正方形的面积。
2. 答案(1)√9=3,√16=4,√25=5。
(2)正方形的面积=50cm²。
八、课后反思及拓展延伸1. 反思:本节课学生对二次根式的定义和性质掌握较好,但在运算方面还需要加强练习。
2. 拓展延伸:引导学生探索二次根式的有理化方法,为后续学习打下基础。
重点和难点解析1. 教学目标中的能力培养2. 教学难点与重点的区分3. 实践情景引入的生活化例子4. 例题讲解的代表性5. 作业设计的针对性与答案的详细性6. 课后反思与拓展延伸的实际应用一、教学目标中的能力培养(1)理解二次根式的定义:学生应掌握二次根式的概念,理解其数学表达形式,并能够识别生活中的二次根式。
《二次根式》教学教案

《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。
2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。
它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。
再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。
本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。
(2)了解二次根式的概念。
2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。
三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。
教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。
本节课的教学难点为:理解二次根式的双重非负性。
四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。
(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。
八年级二次根式市公开课获奖教案省名师优质课赛课一等奖教案

八年级二次根式教案引言:二次根式作为数学中的一个重要概念,是八年级数学学习中的一项重要内容。
学习二次根式不仅能够加深对实数概念的理解,还能够培养学生分析问题和解决问题的能力。
本篇教案将带领学生从概念的认识到运用的掌握,通过多种教学方法和活动,帮助学生全面理解和掌握二次根式。
一、概念引入1. 导入:教师出示一个正方形,让学生估计其边长的平方根是多少,并思考如何求得精确值。
2. 概念引入:由学生提出的求正方形边长的平方根的方法,引出二次根式的概念。
教师讲解二次根式的定义,并进行例题演示。
二、二次根式的性质1. 定理1:二次根式的平方等于被开方数。
- 教师进行证明,帮助学生理解该定理的正确性。
- 学生进行练习,巩固该定理的掌握程度。
2. 性质1:对于非负实数a和b,有√(a × b) = √a ×√b。
- 教师进行案例演示,引导学生进行思考和发现。
- 学生进行小组讨论,总结归纳该性质并给出证明。
- 学生通过练习题,巩固该性质的应用。
3. 性质2:对于非负实数a和b,有√(a ÷ b) = √a ÷√b。
- 教师进行案例演示,引导学生进行思考和发现。
- 学生进行小组讨论,总结归纳该性质并给出证明。
- 学生通过练习题,巩固该性质的应用。
三、二次根式的化简与扩展1. 化简二次根式:- 教师引导学生通过整理根式中的因式,并利用性质对根式进行化简。
- 学生通过练习题,熟悉和掌握化简二次根式的方法。
2. 扩展二次根式:- 教师出示一些无理数,引导学生进行运算。
- 学生进行小组讨论,总结归纳无理数的运算规律和性质。
- 学生通过练习题,巩固对扩展二次根式的掌握。
四、二次根式的应用1. 解决问题:教师通过实际问题引导学生将问题转化为二次根式,并进行求解。
2. 小组探究:学生分组完成一个二次根式相关的探究项目,包括建模和解决问题。
3. 拓展学习:学生通过相关课外阅读和实际应用,拓展二次根式的应用领域,如几何、物理等。
二次根式市公开课获奖教案省名师优质课赛课一等奖教案逐字稿

二次根式教案逐字稿一、教学目标1. 理解和掌握二次根式的概念;2. 能够正确运用二次根式的运算法则进行计算;3. 能够解答有关二次根式的基本练习题。
二、教学重点1. 二次根式的定义和性质;2. 二次根式的运算法则。
三、教学难点1. 二次根式的运算规律;2. 解决复杂二次根式的计算问题。
四、教学准备1. 教材《高中数学教程》第三册;2. 教具:白板、黑板、彩色粉笔等;3. 笔记本电脑、投影仪。
五、教学过程第一步:导入新知识(5分钟)为了引起学生的兴趣,导入阶段,可以通过一个生动的案例加深学生对二次根式的理解。
例如:小明家的车库墙上有一个镜子,它的形状是一个正方形。
车库门边缘的长度为12米,我们想要知道镜子面积的大小。
请同学们思考一下,如何计算这个正方形镜子的面积?第二步:引入概念和性质(10分钟)为了引出二次根式的概念和性质,教师可以使用PPT展示的方式,结合实际案例,引导学生发现二次根式的特点。
然后,教师解释二次根式的定义和性质,比如根式的符号、根式的系数、根式的指数等,以及根式与分式之间的关系。
第三步:举例说明运算法则(15分钟)在教授了二次根式的概念和性质后,教师可以通过具体的例子,逐一讲解二次根式的运算法则。
教师应尽量采用多种多样的实例,让学生能够全面掌握运算法则。
同时,教师可以请学生上黑板进行实际操作,巩固所学的知识。
第四步:练习与巩固(15分钟)在完成了运算法则的讲解后,学生可以进行一些练习题,以检验他们对所学内容的理解和掌握程度。
教师可以分发一些练习册,或者在黑板上出示一些习题,要求学生在规定的时间内完成。
教师应及时纠正学生答题中的错误,以加强学生对二次根式运算法则的应用能力。
第五步:拓展与应用(15分钟)为了拓展学生对二次根式的认识,教师可以引导学生进行一些拓展性的讨论,如二次根式的图像特征、二次根式与实际问题的联系等。
同时,教师还可以给学生一些实际的应用题目,让他们将所学知识应用到实践中,提高解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:二次根式的加减
——第一课时
教学目标
知识技能:会进行二次根式加减法运算
数学思考:通过整式加减法运算与二次根式加减法运算体会类比思想.
解决问题:通过加减运算,培养学生的运算能力
情感态度:通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.
教学重点、难点
重点:二次根式加减运算
难点:探索二次根式加减运算的方法和准确地进行二次根式加减运算
教学准备
PPT 课件学案
教学方法
启发式探究式
教学过程
一、新课导入
如图,从小明家到学校的距离为_________km ,从学校到图书馆的距离为____________km ,那么从小明家到图书馆的距离是__________km (通过变换不同的三组数据【3与8,3x 与8x ,2823与】,让学生从中感受总结规律特点:)
【活动方略】教师通过PPT
放映,学生观察
【设计意图】通过观察不同数据的变化,找寻其中的特点
二、探究新知
2823+3x+8x=11x 5853+
【设计意图】通过变换不同的x 值,更直观的感受被开方数相同的二次根式可以合并这一特点 教师小结:被开方数相同的二次根式可以进行合并---(黑板板书)
三、跟踪练习(抢答题)
35371+)(57-5122)
(66-3+)(3124+)( 【活动方略】教师出题,学生用眼动脑
【设计意图】巩固小结知识内容,加深理解记忆,抛出新问题
四、互动小游戏
小明家 学校 图书馆
通过直观互动游戏方式让学生更快更容易地掌握知识点
游戏规则:每个组根据你手中拿到的卡片设计一道二次根式加减法的计算题(不超过三项加减),随机抽取部分组上黑板展示本组的题目,再由其他组(只要不是出题组)上黑板写出计算过程,最后由出题组做点评......
【活动方略】学生课前准备活动卡片,由学生分组讨论,每个组出一道题,再从其中抽取部分组到黑板将本组出好的题目展示出来,由其它组上黑板解答
【设计意图】通过活动加深知识的掌握程度,同时使学生更加深刻的体会小组合作的能力,并且锻炼学生上台的勇气,给学生大胆展示自己的机会
五、小结归纳(黑板板书)
二次根式加减法的基本步骤:
1、将二次根式化为最简二次根式
2、找出其中被开方数相同的二次根式(同类二次根式)
3、将被开方数相同的二次根式进行合并
【活动方略】引导学生小结归纳,反思本节课所学知识
【设计意图】通过总结,概括本节课重点内容,巩固知识
六、巩固检测
1、判断题
是最简二次根式)(481
2(
222-233=)(224)(2、选择题
进行合并的是()与)下列二次根式中,能(3127、A 32、B 18、C 24、D
)的结果是()()计算(1-2-22 A 、-1B 、0C 、1D 、2
3、计算题
45-801)(27-98182+)(4、能力提升
)
(________
m m 751数也相同的二次根式指被开方数相同、根指提示:同类二次根式是是同类二次根式,则与)已知(=-n n n 243-3-12-822)()计算:(【活动方略】学生独立思考、独立解题。
教师巡视、指导,并让学生上台展示自己的解题过程
【设计意图】检查学生对知识的掌握程度
七、课堂小结
这节课你学到了什么?
二次根式加减法的基本步骤--一化、二找、三合并
八、课后作业布置
必做题:课本15页2(1)、(3)、(4)4(1)
选做题:)()计算(2-323⨯+
【活动方略】学生课后独立思考完成,教师批改、总结
【设计意图】通过课外作业,使学生巩固课堂知识,并能有所提高。
九、板书设计
世上没有一件工作不辛苦,Array没有一处人事不复杂。
不要
随意发脾气,谁都不欠你的。