材料科学基础各章复习要点

合集下载

最全的大学材料科学基础复习要点

最全的大学材料科学基础复习要点

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

(2)特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础考研知识点总结

材料科学基础考研知识点总结

材料科学基础考研知识点总结第一章原子结构和键合1.原子键合●金属键●离子键●共价键●氢键●范德华力:静电力诱导力色散力第二章固体结构1.晶体学基础●空间点阵和晶胞●七个晶系14种点阵2.金属的晶体结构●晶体结构和空间点阵的区别3.合金的相结构●晶相指数和晶面指数●晶向指数●晶面指数●六方晶系指数●晶带●晶面间距●晶体的对称性●宏观对称元素●极射投影●金属的晶体结构●三种典型的金属的晶体结构●多晶型性●置换固溶体●间隙固溶体●固溶体的围观不均匀性●影响固溶度的主要因素●固溶体的性质●中间相●正常价化合物●电子化合物●与原子尺寸因素相关的化合物●超结构(有序固溶体)4.常见离子晶体结构●离子晶体配位规则(鲍林规则)●负离子配位多面体规则(引入临界离子半径比值)●电价规则(整体不显电性)●负离子多面体共顶,棱和面规则(由于共用顶,棱和面间距下降,导致库仑力上升,稳定性下降)●不同种类正离子配位多面体规则(能量越高区域越分散)●节约规则(【俄罗斯方块原理】)●典型离子晶体结构●AB型化合物【CsCl结构 NaCl结构 ZnS型结构】●AB2型化合物结构【CaF2 萤石 TiO2金红石型结构】●硅酸盐的晶体结构●孤岛状硅酸盐●组群状硅酸盐●链状硅酸盐●层状硅酸盐●架状硅酸盐5.共价晶体结构第三章晶体中的缺陷1.点缺陷●点缺陷形成●点缺陷的平衡浓度2.位错●刃型位错●螺型位错●混合位错●伯氏矢量●位错运动●位错弹性性质(认识)●位错生成与增值●实际位错中伯氏矢量3.面缺陷●外表面与内表面(了解)●晶界和亚晶界●晶界的特性●孪晶界●相界第四章固体中的扩散1.扩散的表象理论●菲克第一定律●菲克第二定律●扩散方程●置换固溶体扩散(柯肯达尔效应)2.扩散热力学●扩散的热力学分析(上坡扩散)3.扩散的微观理论与机制●扩散机制●晶界扩散及表面扩散●扩散系数4.扩散激活能5.影响扩散的因素●温度●晶体结构●晶体缺陷●化学成分●应力作用6.反应扩散7.离子晶体中的扩散第五章材料的变形1.弹性变形●弹性的不完整性●包申格效应●弹性后效●弹性滞后2.黏弹性变形3.塑性变形●单晶体塑性变形●滑移●孪生●扭折●多晶体的塑性变形●晶粒取向的影响●晶界的影响●合金的塑性变形●单相固溶体塑性变形●影响因素●曲服现象●应变实效●多相合金的塑性变形●弥散分布型合金的塑性变形●塑性变形对组织性能影响●显微组织变化●亚结构变化●性能变化●形变织构●残余应力4.回复与再结晶●冷变形金属在加热时组织与性能的变化●回复●再结晶●晶粒的长大5.热加工●动态回复●动态再结晶●蠕变●超塑性第六章凝固1.相平衡和相率●吉布斯相律2.纯晶体的凝固●液态结构●晶体凝固的热力学条件●形核●晶粒长大●结晶动力学及凝固组织●凝固理论应用3.合金的凝固●正常凝固●区域熔炼●合金成分过冷4.铸锭组织与凝固技术●铸锭的宏观组织●铸锭的缺陷第七章相图1.二元相图基础●2.二元相图●匀晶相图●共晶相图●包晶相图●铁碳相图3.三元相图基●基本特点●表示方法●杠杠定律及重心定律第八章材料的亚稳态1.纳米材料2.准晶3.非晶态4.固态相变形成亚稳相●固体相变形成的亚稳相●固溶体脱溶分解产物●脱熔转变●连续脱溶●不连续脱溶●脱溶过程亚稳相●脱溶分解对性能影响●马氏体转变●特征●形态●贝氏体转变●钢中贝氏体转变特征●贝氏体转变的基本特征。

材料科学基础(各章总结)讲诉

材料科学基础(各章总结)讲诉

第一章:结晶学基础一、晶体的基本概念晶体:晶体是内部质点在三维空间按周期性重复排列的固体。

晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的平行六面体一致。

晶体的基本性质:晶体均一性、各向异性、自限性、对称性、最想内能性。

等同点:晶体结构中物质环境和几何环境完全相同的点。

空间格子:联结分布在三维空间内的结点就构成了空间格子。

单位平行六面体:在空间格子中,所选取的平行六面体的对称性符合整个空间点阵的对称性;棱与棱之间的直角应力求最多;在遵循上两个条件的前提下,所选取的平行六面体的体积应最小。

考虑到对称性不能为直角时,选结点间距最小的行列做平行六面体的棱,棱间交角接近直角。

按照上述选择原则选取的平行六面体称为单位平行六面体。

点群(对称型):结晶多面体中全部对称要素的组合,称为该结晶多面体的对称型。

由于在结晶多面体中,全部对称要素相交于一点(晶体几何中心),在进行对称操作时该点不移动,所以对称型也称为点群。

平移群:晶体结构中所有平移轴的结合。

空间群:在一个晶体结构中所存在的一切对称要素的集合。

二、晶体的对称要素对称中心(符号C):假想的几何点,相应的对称变换是对于这个点的倒反。

对称面(符号P):假想的平面,相应的对称变换是对此平面的反映。

对称轴(符号L n):假想的直线,相应的对称变换是绕此直线的旋转。

倒转轴(符号L i n):一种复合对称要素,由一根假想的直线和此直线上的一个定点构成。

相应的对称变换是绕此直线旋转一定角度以及对此定点的倒反。

映转轴(符号L s n):一种复合对称要素,由一根假想的直线和垂直此直线的一个平面构成。

相应的对称变换是绕此直线旋转一定角度以及对此平面的反映。

三、晶体的对称分类七个晶系包括:三斜晶系、单斜晶系、正交(斜方)、三方晶系、四方(正方)晶系、六方晶系和等轴(立方)晶系四、各晶系的几何常数五、结晶符号1、晶面符号(米氏符号也称晶面符号):(hkl)表示2、晶棱符号::[uvw]表示六、晶体的微观对称要素(1)平移轴:是一直线方向,相应的对称变换为沿此直线方向平移一定的距离。

材料科学基础重点知识

材料科学基础重点知识

材料科学基础重点知识第5章纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。

结晶过程:形核和长大过程交错重合在一起展开2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。

从热力学看,没有过冷度结晶就没有趋动力。

根据rk?1?t所述当四氟肼度?t=0时临界晶核半径r*为无穷大,临界形核功(?g?1?t2)也为无穷大,无法形核,所以液态金属不能结晶。

晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。

孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、光滑形核和非光滑形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。

非光滑形核:液态金属原子依附于固态杂质颗粒上灶性的方式。

临界晶核半径:δg达至最大值时的晶核半径r*=-2γ/δgv物理意义:r0,晶核不能自动形成。

r>rc时,δgv占优,故δg<0,晶核可以自动构成,并可以平衡生长。

临界形核功:δgv*=16πγ3/3δgv3形核率:在单位时间单位体积母相中形成的晶核数目。

受形核功因子和原子扩散机率因子控制。

4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。

在凝固结晶前沿的过冷度随离界面距离的增加而减小。

纯金属结晶平面生长。

正数的温度梯度:四氟肼度随其距界面距离的减少而减少。

氢铵金属结晶树枝状生长。

5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。

坚硬界面即非小平面界面:固液两相间界面微观来看高低不平,存有很厚的过渡阶段层,故从宏观来看界面反而弯曲,不发生坎坷小平面的界面。

《材料科学基础》复习提纲

《材料科学基础》复习提纲

《材料科学基础》复习提纲一、(共20分)名词解释(每个名词2分)简单正交点阵、晶向族、无限固溶体、配位数、交滑移、大角度晶界、上坡(顺)扩散、形核功、回复、滑移系底心正交点阵、晶面族、有限固溶体、致密度、攀移、小角度晶界、下坡(逆)扩散、形核率、再结晶、孪生二、(共30分)简要回答下列问题1、计算面心立方晶体的八面体间隙尺寸。

2、简述固溶体与中间相的区别。

3、已知两个不平行的晶面(h1k1l1)和(h2k2l2),求出其所属的晶带轴。

4、计算面心立方晶体{111}晶面的面密度。

5、简述刃型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。

6、简述刃型位错攀移的实质。

7、简述在外力的作用下,螺型位错的可能运动方式。

8、当碳原子和铁原子在相同温度的 -Fe中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数?9、简述单组元晶体材料凝固的一般过程。

10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O 合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为50% A、10%B、40%C,写出图中I和P合金的室温平衡组织。

1、计算体心立方晶体的八面体间隙尺寸。

2、简述决定组元形成固溶体与中间相的因素。

3、已知二晶向[u1v1w1]和[u2v2 w2],求出由此二晶向所决定的晶面指数。

·4、计算体心立方晶体{110}晶面的面密度。

5、简述螺型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。

6、简述刃型位错滑移的实质。

7、简述在外力的作用下,刃型位错的可能运动方式。

8、当碳原子和铁原子在相同温度的a-Fe 中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数?9、简述纯金属凝固的基本条件。

10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为%、(A+B)%和(A+B+C)%的相对量。

材料科学基础复习资料

材料科学基础复习资料

材料科学基础复习资料
导论
材料科学是研究材料的结构、性质和应用的科学,是现代工程技术领域的基础学科。

它对于工程师和科学家在材料选择、设计和开发方面至关重要。

本篇文档将以复习资料的形式,对材料科学的基础知识进行系统梳理和总结。

第一章材料的结构与组成
1.1 原子结构与元素周期表
- 原子的组成:质子、中子和电子
- 元素周期表的基本结构和主要特征
- 元素周期表的分类:金属、非金属和半金属
1.2 结晶与非晶结构
- 结晶的概念和特征
- 结晶的晶体结构:离子晶体、共价晶体和金属晶体
- 非晶态材料的特点和应用
1.3 晶体缺陷
- 点缺陷:空位、间隙、杂质点等
- 线缺陷:位错、脆性断裂和塑性变形
- 面缺陷:晶界、孪晶和堆垛层错
第二章材料的物理性质
2.1 密度与晶体的结构密度
- 密度的概念和计算方法
- 晶格常数与密度的关系
2.2 热膨胀与晶体的结构变化
- 热膨胀的定义和计算方法
- 晶体结构变化对热膨胀的影响
2.3 热导率与导热机制
- 热导率的定义和计算方法
- 材料的导热机制:电子传导、晶格振动传导和辐射传导。

材料科学基础复习

材料科学基础复习

第一章、晶体结构基础1、晶体的基本概念晶体的本质:质点在三维空间成周期性重复排列晶体的基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性2、对称的概念物体中的相同部分作有规律的重复对称要素:对称面、对称中心、对称轴(对称轴的类型和特点)(L1、L2、L3、L4、L6、C 、P )4次倒转轴不能被其他的对称要素及其组合取代对称操作:借助对称要素,使晶体的相同部分完全重复的操作对称要素的组合必须满足晶体的整体对称要求,不是无限的。

3、对称型(点群):宏观晶体中只存在32种对称型对称型的概念(所具有的宏观对称要素以一定的顺序组合起来)4、晶体的分类 、晶族分类的依据5、晶面的取向关系 、晶面指数的含义和计算(举例)6、空间点阵的概念、 14种布拉维格子( P (R) 、I 、F 、C 格子)7、晶胞的概念 、晶胞参数(计算)8、微观对称要素的特征、空间群的概念(只存在230种空间群)在微观对称操作中都包含有平移动作9、球体紧密堆积原理 (六方密堆、立方密堆)10、鲍林规则(离子晶体)11、决定晶体结构的因素:化学组成、质点相对大小、极化性质12、同质多晶、类质同晶13、典型的晶体结构(晶体结构的描述方法)CaF2结构、金刚石结构、金红石结构、刚玉结构、 CaTiO3、尖晶石结构14、硅酸盐晶体结构、硅酸盐晶体结构分类的依据15、层状硅酸盐晶体的结构特点,(晶胞参数a 和b 值相近)16、石英、鳞石英、方石英的结构特点第二章、晶体结构缺陷1、缺陷的概念(凡是造成晶体点阵的周期性势场发生畸变的一切因素)2、热缺陷 (弗伦克尔缺陷、肖特基缺陷)及计算 热缺陷是一种本征缺陷、高于0K 就存在,影响热缺陷浓度的因数:温度和热缺陷形成能(晶体结构)3、杂质缺陷、固溶体(晶态固体) 固溶体、化合物、混合物之间的比较4、非化学计量化合物结构缺陷 种类、形成条件、特点,缺陷的计算等5、连续置换型固溶体的形成条件6、影响形成间隙型固溶体的因素7、组分缺陷(补偿缺陷):不等价离子取代 形成条件、特点(浓度取决于掺杂量和固溶度) 缺陷浓度的计算、与热缺陷的比较8、缺陷反应方程和固溶式产生的各种缺陷杂质基质−−→−i Cl K K Cl 2l C Cl Ca CaCl '++−→−⨯∙⨯∙'+'+−→−ClK K KCl 2l C 2V Ca CaCl9、固溶体的研究与计算写出缺陷反应方程固溶式、算出晶胞的体积和重量理论密度(间隙型、置换型)和实测密度比较10、位错概念刃位错:滑移方向与位错线垂直,伯格斯矢量b与位错线垂直螺位错:滑移方向与位错线平行,伯格斯矢量b与位错线平行第三章、非晶态固体1、熔体的概念:不同聚合程度的各种聚合物的混合物硅酸盐熔体的粘度与组成的关系2、非晶态物质的特点3、玻璃的通性4、Tg 、Tf 相对应的粘度和特点5、网络形成体、网络变化体、网络中间体计算(如Pb玻璃中Pb2+的作用)6、玻璃形成的热力学观点(结晶化、玻璃化、分相)7、玻璃形成的动力学条件3T图---临界冷却速率8、玻璃形成的结晶化学条件(键强、键型)9、玻璃的结构学说(二种玻璃结构学说的共同之处和不同之处)10、玻璃的结构参数(注意给出的条件)Z可根据玻璃类型确定,先计算R,再计算X、Y11、硼的反常现象12、硅酸盐晶体与硅酸盐玻璃的区别硅酸盐晶体与硅酸盐玻璃在结构上的区别:(1)在硅酸盐晶体中,[SiO4]骨架按一定的对称规律有序排列;在硅酸盐玻璃中[SiO4]骨架的排列是无序的。

材料科学基础复习大纲

材料科学基础复习大纲

材料科学基础复习大纲第二章晶体结构2.1 结晶学基础1、概念:晶体晶胞晶胞参数七大晶系晶面指数晶面族晶向指数晶向族2、晶面指数和晶向指数的计算2.2 结合力与结合能按照结合力性质不同分为物理键和化学键化学键包括离子键共价键金属键物理键包括范德华键氢键晶体中离子键共价键比例估算(公式2.16)离子晶体晶格能2.3 堆积(记忆常识)1、最紧密堆积原理及其使用范围:原理略适用范围:典型的离子晶体和金属晶体原因:该原理是建立在质点在电子云分布呈球形对称以及无方向性的基础上的2、两种最紧密堆积方式:面心立方最紧密堆积ABCABC 密排六方最紧密堆积ABABAB系统中:每个球周围有6个八面体空隙 8个四面体空隙N个等径球体做最紧密堆积时系统有2N个四面体空隙N个八面体空隙八面体空隙体积大于四面体空隙3、空间利用率:晶胞中原子体积与晶胞体积的比值(要学会计算)两种最紧密堆积方式的空间利用率为74.05﹪(等径球堆积时)4、影响晶体结构的因素内因:质点相对大小(决定性因素)配位数(概念及计算)极化(概念,极化对晶体结构产生的影响)外因(了解):同质多晶类质多晶同质多晶转变2.4 单质晶体结构(了解)2.5 无机化合物结构(重点每年必考)分析结构从以下几个方面入手:晶胞分子数,何种离子做何种堆积,何种离子添隙,添隙百分比,正负离子配位数,正负离子电价是否饱和,配位多面体,添隙半径的计算(刚好相切时),隙结构与性质的关系。

1、NaCl型:4个NaCl分子 Cl离子做面心立方密堆积,Na离子填充八面体空隙,填充率100﹪,正负离子配位数均为6,电价饱和。

【NaCl6】或【ClNa6】八面体结构与性能:此结构在三维方向上键力均匀,因此无明显解理,破碎后呈颗粒状,粒为多面体形状。

离子键结合,因此有较高的熔点和硬度2、立方ZnS结构:4个ZnS分子S离子做面心立方密堆积,Zn离子填充四面体空隙填充率50﹪,离子配位数均为4,电价饱和,【ZnS4】四面体会画投影图(图2.26)注意:一定要画虚线,一定要标高,一定要有图例(白球黑球代表什么离子)3、萤石(CaF2)结构:(唯一正离子做堆积的结构)4个CaF2分子 Ca离子做面心立方密堆积,F离子填充四面体空隙,填充率100﹪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学基础各章复习要点
第一章晶体结构
名词解释:
(1)类质同晶和同质多晶
(2)萤石型和反萤石型
(3)二八面体和三八面体
(4)正尖晶石和反尖晶石
主要内容:
1、单质金属原子形成晶体时结构上的差异(A1、A
2、A3型)
2、从晶体结构特点说明金属或合金在力学性能上表现出良好的塑性和延展性
3、通过8-m规则说明金刚石的晶体结构特点
4、NaCl型晶体结构特点,为什么AX型化合物大多具有NaCl型结构?
在AX型晶体结构中,一般阴离子X的半径较大,而阳离子A的半径较小,所以X做紧密堆积,A填充在其空隙中。

大多数AX型化合物的r+/r-在0.414~0.732之间,应该填充在八面体空隙,即具有NaCl型结构;并且NaCl型晶体结构的对称性较高,所以AX型化合物大多具有NaCl型结构。

5、CsCl型结构特点;立方ZnS和六方ZnS晶体结构差异;
6、金红石和萤石型晶体结构特点。

CaF2晶体结构与性能的关系。

7、刚玉(α-Al2O3)型结构特点。

8、ABO3 (钙钛矿、钛铁矿、碳酸钙)晶体结构特点;AB2O4尖晶石型结构特点
9、BaTiO3的铁电效应,为什么钛酸钙不存在自发极化现象?
10、硅酸盐晶体结构共同特点
11、五类硅酸盐晶体结构特点,Si/O, 典型代表名称和分子式
12、绿宝石、堇青石结构与性能关系
13、滑石、叶腊石晶体结构特点,结构与性能关系
14、高岭石、蒙脱石晶体结构特点及与性能的关系
15、α-方石英、α-鳞石英晶体结构差异
16、O2-作而心立方堆积时,根据电价规则,在下面情况下,空隙内各需填入何种价态的阳离子,并对每一种结构举出一个例子。

(a) 所有四面体空隙位置均填满;(b) 所有八而体空隙位置均填满;(c) 填满一半四面体空隙位置;(d) 填满一半八面休空隙位置。

第二章晶体结构缺陷
名词解释
(1)弗伦克尔缺陷和肖特基缺陷
(2)刃位错和螺位错
(3)热缺陷和杂质缺陷
(4)置换型固溶体和填隙型固溶体
(5)点缺陷和线缺陷
主要内容:
1、缺陷反应方程式写法
2、热缺陷浓度计算
3、杂质缺陷、固溶体及固溶分子式
4、非化学计量化合物结构缺陷(半导体)种类、形成条件、缺陷浓度、电导率与气体压力的关系。

5、连续置换型固溶体的形成条件
6、影响形成间隙型固溶体的因素
7、组分缺陷(补偿缺陷):不等价离子取代
形成条件、特点(浓度取决于掺杂量和固溶度)
缺陷浓度的计算、与热缺陷的比较
8、固溶体的研究与计算
写出缺陷反应方程——固溶式、算出晶胞的体积和重量——理论密度(间隙型、置换型)——和实测密度比较
9、(a)MgO晶体中,肖脱基缺陷的生成能为6eV(9.612×10-19J),计算在25℃和1600℃时热缺陷的浓度。

(b)如果MgO晶体中,含有百万分之一摩尔的A12O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势,说明原因。

10、非化学计量化合物FexO中,Fe3+/Fe2+=0.1,求FexO中的空位浓度及x值。

第三章熔体与玻璃体
1、描述硅酸盐熔体结构的聚合物理论要点
2、聚合物的形成大致分为三个阶段
3、硅酸盐熔体粘度与组成的关系
4、碱金属离子R+硅酸盐熔体粘度的影响
5、硼硅酸盐系统中的硼反常现象
6、极性共价键的物质易形成玻璃的原因。

7、晶子学说和无规则网络学说
8、硅酸盐玻璃和硅酸盐晶体的结构特点
9、石英玻璃和石英晶体的结构特点
10、玻璃结构参数的计算,计算结构参数的意义。

第四章固体的表面与界面
1、离子晶体的表面结构特点
2、玻璃的表面结构特点
3、影响润湿的因素
4、p125 7-2
5、粘土颗粒荷电的原因
6、粘土胶团结构
7、粘土泥浆中引入电解质溶液为什么能使泥浆流动性增加?
8、粘土具有可塑性的原因
9、瘠性料的悬浮与塑化的方式
第五章相图
•判断初晶区
•判断化合物的性质。

根据化合物组成点是否落在其初晶区内,判断化合物性质是一
致熔或不一致熔。


划分副三角形; •
标出界线上的温降方向; •
判断界线的性质; •
确定无变量点性质; •
分析冷却析晶路程
第六章 扩散
1、固体中扩散的特点
2、菲克定律(宏观现象)
菲克第一定律:稳态扩散
菲克第二定律:不稳态扩散
稳定扩散和不稳定扩散的定义;菲克二定律的表达式及物理意义。

3、菲克第一定律的应用:氢气在钢瓶中的泄露问题(扩散通量表达式,如何减小泄露?)
4、扩散系数的物理意义(从D = γ.λ2.τ解释扩散系数和哪些因素有关)
5、各种晶体结构中空位、间隙扩散系数表达式:D=D 0exp(-Q/RT)
6、扩散推动力(化学位梯度)
7、扩散系数的一般热力学关系式 会推导
8、浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么?
9、影响扩散的因素 比较D 表面 D 晶面 D 晶内的相对大小
第七章 固相反应
1、固相反应的定义、泰曼温度
2、固相反应的转化率
3、固相反应的一般动力学关系(反应的总阻力=各个分阻力之和)
4、固相反应的特点 (化学反应动力学范围、扩散动力学范围)
能够导出杨德尔方程
明确杨德尔方程、金斯特林格方程、卡特方程的适用条件
5、如果要合成MgAl2O4,可提供选择的原料为MgCO3、Mg(OH)2、MgO 、Al2O3·3H2O 、γ-Al2O3、α- Al2O3,从提高反应速率的角度出发,选择什么原料较好?
第八章 相变
1、相变的概念
2、相变的分类
3、一级相变、二级相变
4、相变过程中的亚稳态 ,相变过程的推动力,明确相变为什么需要过冷或过热。

6、晶核的形成条件、临界晶核r k 。

(要有△T )
能够导出均匀成核和非均匀成核的临界半径和临界自由能。

(注意:一定搞清式中每一个符号代表什么)
7、影响成核速率的因素:核坯的数目、质点加到核坯上的速率
均匀成核:Iv=P·D )ex p(*RT
G G B I M K S S ∆+∆-=
非均匀成核:
8、晶体生长速率与哪些因素有关
9、成核与晶体生长相比,需要更大的△T(能够解释晶体成核和生长与过冷度的关系)
10、总结晶速度方程
11、分相现象、分相的概念及判断
明确亚稳区和不稳区的分相特点
12、试讨论非均匀成核的活化能与接触角θ的关系,并证明当接触角θ为90度时,非均匀活化能的是均匀成核活化能的一半。

第九章烧结
1、烧结的概念、定义
2、烧成与烧结、烧结与固相反应
3、烧结的推动力(过剩的表面能 G)
4、烧结的模型
(烧结初期的动力学关系、颈部增长率与烧结收缩率之间的关系)
5、固态烧结的类型、特点、公式(与时间、粒径的关系)
蒸发-凝聚传质过程的特点(△L/L=0)影响扩散传质的因素如何促进烧结
6、液态烧结的类型、特点、公式(与时间、粒径的关系)
7、液相烧结与固相烧结的异同点
8、晶粒生长与二次再结晶的概念
9、能否通过延长烧结时间来提高产品的致密度。

相关文档
最新文档