统计学第四版一元线性回归
统计学第四版贾俊平人大-回归与时间序列stata

回归分析与时间序列一、一元线性回归11。
1 (1)编辑数据集,命名为linehuigui1.dat输入命令scatter cost product,xlabel(#10,grid) ylabel(#10,grid),得到如下散点图,可以看到,产量和生产费用是正线性相关的关系。
(2)输入命令regcost product,得到如下图:可得线性函数(product为自变量,cost为因变量):y=0。
4206832x+124。
15,即β0=124。
15,β1=0。
4206832(3)对相关系数的显著性进行检验,可输入命令pwcorr cost product,sig star (.05) print(。
05),得到下图:可见,在α=0。
05的显著性水平下,P=0。
0000<α=0。
05,故拒绝原假设,即产量和生产费用之间存在显著的正相关性。
11。
2 (1)编辑数据集,命名为linehuigui2。
dat输入命令scatterfenshu time,xlabel(#4, grid) ylabel(#4,grid),得到如下散点图,可以看到,分数和复习时间是正线性相关的关系。
2)输入命令cor fenshu time计算相关系数,得下图:可见,r=0.8621,可见分数和复习时间之间存在高度的正相关性。
11.3 (1)(2)对于线性回归方程y=10-0。
5x,其中β0=10,表示回归直线的截距为10;β1=—0.5,表示x变化一单位引起y的变化为—0.5。
(3)x=6时,E(y)=10-0.5*6=7.11.4(1)R2=SSRSST =SSRSSR+SSE=3636+4=0.9,判定系数R2测度了回归直线对观测数据的拟合程度,即在分数的变差中,有90%可以由分数与复习时间之间的线性关系解释,或者说,在分数取值的变动中,有90%由复习时间决定。
可见,两者之间有很强的线性关系.(2)估计标准误差S e=√SSEn−2=√418−2=0.25分,即根据复习时间来估计分数时,平均的估计误差为0.25分.11.5 (1)编辑数据集,命名为linehuigui3。
统计学一元线性回归模型

• 回归分析仅对存在因果关系而言。
正相关 线性相关 统计依赖关系 不相关 相关系数: 有因果关系 无因果关系 回归分析 相关分析 负相关 1 XY 1 正相关 非线性相关 不相关 负相关
1、关于模型关系的假设
• 模型设定正确假设。The regression model is correctly specified. • 线性回归假设。The regression model is linear in the parameters。
Yi 0 1 X i i
• 称为观察值围绕它的期望值的离差 (deviation),是一个不可观测的随机变量, 又称为随机干扰项(stochastic disturbance)或 随机误差项(stochastic error)。
i Yi E (Y | X i )
• 例2.1.1中,给定收入水平Xi ,个别家庭的支出 可表示为两部分之和:
• 回归分析构成计量经济学的方法论基础,其主 要内容包括:
– 根据样本观察值对经济计量模型参数进行估计,求得 回归方程;
– 对回归方程、参数估计值进行显著性检验;
– 利用回归方程进行分析、评价及预测。
二、总体回归函数 Population Regression Function, PRF
1、条件均值(conditional mean)
E (Y | X i ) f ( X i )
• 含义:回归函数(PRF)说明被解释变量Y的 平均状态(总体条件期望)随解释变量X变化 的规律。 • 函数形式:可以是线性或非线性的。 • 例2.1.1中,将居民消费支出看成是其可支配收 入的线性函数时:
统计学-第11章一元线性回归学习指导

第11章一元线性回归(相关与回归)学习指导一、本章基本知识梳理基本知识点含义或公式相关关系 客观现象之间确实存在的、但在数量表现上不是严格对应的依存关系。
函数关系 客观现象之间确实存在的、而且数量表现上是严格对应的依存关系。
因果关系有相关关系的现象中能够明确其中一种现象(变量)是引起另一种现象(变量)变化的原因,另一种现象是这种现象变化的结果。
起影响作用的现象(变量)称为“自变量”;而受自变量影响发生变动的现象(变量)称为“因变量”。
因果关系∊相关关系,但相关关系中还包括互为因果关系的情况。
相关关系的种类 按涉及变量多少分为单相关、复相关;按相关方向分为正相关、负相关;按相关形态分为线性相关、非线性相关等。
线性(直线) 相关系数 简称相关系数,反映具有直线相关关系的两个变量关系的密切程度。
()()∑∑∑∑∑∑∑---==2222y yn x xn yx xy n SS S r yx xy相关系数的 显著性检验 ——t 检验 ()().2;,212:0:,0:020221Hn t t Hn t t rn r t HH,拒绝不能拒绝检验统计量-〉-〈--=≠=ααρρ回归方程中的 参数β0和β1为回归直线的截距、起始值,表示在没有自变量x 的影响(即x =0)时,其他各种因素对因变量y 的平均影响;β1为回归系数、斜率,表示自变量x 每变动一个单位,因变量y 的平均变动量。
β1的最小平方估计:∑∑∑∑∑⎪⎭⎫ ⎝⎛--=221x x n yx xy nβ估计标准误差反映因变量实际值与其估计值之间的平均差异程度,表明其估计值对实际值的代表性强弱。
其值越大,实际值与估计值之间的平均差异程度越大,估计值的代表性越差。
()代替。
用大样本条件下,分母可;n n yyS e 2ˆ2--=∑总离差平方和S S T反映因变量的n 个观察值与其均值的总离差。
回归离差平方和S S R 反映自变量x 的变化对因变量y 取值变化的影响;或者说,是由于x 与y 之间的线性关系引起的y 取值的变化,也称为可解释的平方和。
计量经济学(第四版)课件:一元线性回归分析基础

一元线性回归分析基础
第三节 最小二乘估计量的性质
β*1= - β1 =(1/n)∑Yt- ∑btYt =∑[(1/n)- bt]Yt 令 at= [(1/n)- bt] 由于和bt均为非随机变量,所以at也是非随机变量。 因此 β*1 =∑atYt 即β*1是Yt的线性组合。
一元线性回归分析基础
第三节 最小二乘估计量的性质
二、无偏性 指β*1和β*2 的期望值分别等于总体参数β1和β2。 即E(β*1)=β1 E(β*2 )=β2 E(β*2 )=E(β2+∑btut) =β2+∑btE(ut) =β2 E(β*1)=E(β1+∑atut) =β1
总体
有限总体
无限总体
任何样本都是有限的
一元线性回归分析基础
第三节 最小二乘估计量的性质
一、线性特性
是指参数估计值β*1和β*2分别为观察值Yt或扰动项ut的线性组合。
证: β*2 =∑Xtyt/ ∑Xt2 =∑Xt(Yt- )/∑X2t =∑(Xt/∑Xt2)Yt 令 bt= (Xt/∑Xt2) 得 β*2 = ∑ bt Yt 即β*2 是Yt的线性组合
一元线性回归分析基础
第三节 最小二乘估计量的性质
2.证明最小方差性 假设β**2是其他方法得到的关于β2的线性无偏估计 β**2=∑ctYt 其中,ct=bt+dt,dt为不全为零的常数 则容易证明 var(β**2)≥ var(β*2) 同理可证明β1的最小二乘估计量β*1具有最小方差。 高斯—马尔可夫定理(Gauss-Markov theorem): 满足性质1、2、3的最小二乘估计量是最优线性无偏估计量(best linear unbiased estimator:BLUE)
(09)第9章 一元线性回归(2011年)

变量之间是否存在关系? 如果存在,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体 变量之间的关系?
9-9 *
9.1 变量间的关系 9.1.1 变量间是什么样的关系?
统计学 STATIS TICS
函数关系
(第四版) 1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y y 随变量 x 一起变化,并完 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 x 3. 各观测点落在一条线上
y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 反映了除 x 和 y 之间的线性关系之外的随机因素 对 y 的影响 是不能由 x 和 y 之间的线性关系所解释的变异性 0 和 1 称为模型的参数
9 - 30 *
统 计 学 数据分析 (方法与案例)
作者 贾俊平
统计学 STATIS TICS
(第四版)
统计名言
不要过于教条地对待研究的结果, 尤其当数据的质量受到怀疑时。
——Damodar N.Gujarati
9-2 *
第 9 章 一元线性回归
9.1 9.2 9.3 9.4 变量间关系的度量 一元线性回归的估计和检验 利用回归方程进行预测 用残差检验模型的假定
9-7
*
第 9 章 一元线性回归
9.1 变量间的关系
9.1.1 变量间是什么样的关系? 9.1.2 用散点图描述相关关系 9.1.3 用相关系数度量关系强度
一元线性回归分析

一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。
《一元线性回归》ppt课件

E (Y|Xi)01Xi2 E (Y|Xi)01 2Xi
三、总体回归模型与随机干扰项 〔 population regression model,PRM & stochastic disturbance/error〕
• 描画总体中解释变量X和被解释变量Y的个体值Yi之间的变 化规律:Yi=f〔Xi〕+μi
称为线性总体回归函数。其中,0,1是未知参数,称为回归系 数〔regression coefficients〕。
A1:“线性〞的含义
• 对变量为线性——解释变量以一次方的方式出现 • ○ 从几何上看,此时总体回归线是一条直线
• 对参数为线性——回归系数以一次方的方式出现 • ○ 从几何上看,此时总体回归线并不一定是直线
四、样本回归函数 〔sample regression function,SRF〕
•描画样本中解释变量X和被解释变量Y的之间的平均变化规 律:Y^i=f〔Xi〕
1、样本回归函数〔SRF〕
• 总体的信息往往无法掌握,因此PRF实践上未知 • 现实的情况只能是在一次观测中得到总体的一个样本,经过样本的信息来 估计总体回归函数。
1969 1991 2046 2068 2101
968 1045 1243 1474 1672 1881 1078 1254 1496 1683 1925
2189 2233
1122 1298 1496 1716 1969 1155 1331 1562 1749 2013
2244 2299
1188 1364 1573 1771 2035 1210 1408 1606 1804 2101
问题:能否从样本估计总体回归函数?
例2.2:从例2.1的总体中获得如下一个样本:
统计学课件 第十一章 一元线性回归

相关系数的显著性检验
(例题分析)
各相关系数检验的统计量
作者:张占贞 作者:张占贞
青岛科技大学经济与管理学院 青岛科技大学经济与管理学院
统计学
STATISTICS (第三版 第三版)
§11.2
一元线性回归
11.2.1 11.2.2 11.2.3 11.2.4
一元线性回归模型 参数的最小二乘估计 回归直线的拟合优度 显著性检验
统计学
STATISTICS (第三版 第三版)
变量间的关系
作者:张占贞 作者:张占贞
青岛科技大学经济与管理学院 青岛科技大学经济与管理学院
统计学
STATISTICS (第三版 第三版)
函数关系
是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y y 随变量 x 一起变化,并完 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 3. 各观测点落在一条线上
作者:张占贞 作者:张占贞 青岛科技大学经济与管理学院 青岛科技大学经济与管理学院
统计学
STATISTICS (第三版 第三版)
相关系数的经验解释
|r|≥0.8时,可视为两个变量之间高度相关 0.5≤|r|<0.8时,可视为中度相关 0.3≤|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关 5. 上述解释必须建立在对相关系数的显著性 进行检验的基础之上
3. 根据显著性水平α=0.05,查t分布表得tα/2(n-2)=2.069 由于 | t|=7.5344>tα/2(25-2)=2.069 , 拒绝 H0 , 不良贷 款与贷款余额之间存在着显著的正线性相关关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算相关系数
统计学
STATISTICS (第四版)
相关系数的性质
性质1:r 的取值范围是 [-1,1]
|r|=1,为完全相关
r =1,为完全正相关 r =-1,为完全负正相关
r = 0,不存在线性相关关系
-1r<0,为负相关 0<r1,为正相关 |r|越趋于1表示关系越强;|r|越趋于0表示关
➢ 当结果被绘制出来之后,他发现并非每一个子代都与父代 一样,不同的是,尺寸小的豌豆会得到更大的子代,而尺 寸 大 的 豌 豆 却 得 到 较 小 的 子 代 。 Galton 把 这 一 现 象 叫 做 “返祖”(趋向于祖先的某种平均类型),后来又称之为“向 平均回归”。一个总体中在某一时期具有某一极端特征(低 于或高于总体均值)的个体在未来的某一时期将减弱它的极 端性(或者是单个个体或者是整个子代),这一趋势现在被称 作“回归效应”。人们发现它的应用很广,而不仅限于从 一代到下一代豌豆大小问题
系越弱
9 - 20
统计学
STATISTICS (第四版)
相关系数的性质
性质2:r具有对称性。即x与y之间的相关系数和y与x之间 的相关系数相等,即rxy= ryx
性质3:r数值大小与x和y原点及尺度无关,即改变x和y的 数据原点及计量尺度,并不改变r数值大小
性质4:仅仅是x与y之间线性关系的一个度量,它不能用 于描述非线性关系。这意为着, r=0只表示两个 变量之间不存在线性相关关系,并不说明变量之
9-5
统计学
STATISTICS (第四版)
9-6
统计学
STATISTICS (第四版)
9-7
第 9 章 一元线性回归
9.1 变量间的关系
9.1.1 变量间是什么样的关系? 9.1.2 用散点图描述相关关系 9.1.3 用相关系数度量关系强度
统计学
STATISTICS (第四版)
怎样分析变量间的关系?
9 - 12
统计学
STATISTICS (第四版)
相关关系
(correlation)
1. 一 个 变 量 的 取 值 不 能
由另一个变量唯一确
定
y
2. 当变量 x 取某个值时, 变量 y 的取值对应着 一个分布
3. 各 观 测 点 分变量间的关系 9.1.2 用散点图描述相关关系
3. 各观测点落在一条线上
x
9 - 11
统计学
STATISTICS (第四版)
相关关系
(几个例子)
子女的身高与其父母身高的关系
从遗传学角度看,父母身高较高时,其子女的身高一般也比 较高。但实际情况并不完全是这样,因为子女的身高并不完 全是由父母身高一个因素所决定的,还有其他许多因素的影 响
一个人的收入水平同他受教育程度的关系
统计学
STATISTICS (第四版)
学习目标
相关关系的分析 参数的最小二乘估计 回归直线的拟合优度 回归方程的显著性检验 利用回归方程进行预测 用残差证实模型的假定 用 Excel 和SPSS进行回归
9-4
统计学
STATISTICS (第四版)
子代与父代一样吗?
➢ Galton被誉为现代回归和相关技术的创始人。1875年, Galton利用豌豆实验来确定尺寸的遗传规律。他挑选了7组 不同尺寸的豌豆,并说服他在英国不同地区的朋友每一组 种植10粒种子,最后把原始的豌豆种子(父代)与新长的豌 豆种子(子代)进行尺寸比较
统计学
STATISTICS (第四版)
完全正线性相关
正线性相关
9 - 15
散点图
(scatter diagram)
完全负线性相关
负线性相关
非线性相关
不相关
统计学
STATISTICS (第四版)
用散点图描述变量间的关系
(例题分析)
【例9-1】为研究销售收入与广告费用支出之间的关系, 某医药管理部门随机抽取20家药品生产企业,得到它 们的年销售收入和广告费用支出(万元)的数据如下。 绘制散点图描述销售收入与广告费用之间的关系
收入水平相同的人,他们受教育的程度也不可能不同,而受 教育程度相同的人,他们的收入水平也往往不同。因为收入 水平虽然与受教育程度有关系,但它并不是决定收入的惟一 因素,还有职业、工作年限等诸多因素的影响
农作物的单位面积产量与降雨量之间的关系
在一定条件下,降雨量越多,单位面积产量就越高。但产量 并不是由降雨量一个因素决定的,还有施肥量、温度、管理 水平等其他许多因素的影响
统计学 数据分析
(方法与案例)
作者 贾俊平
统计学
STATISTICS (第四版)
统计名言
不要过于教条地对待研究的结果, 尤其当数据的质量受到怀疑时。
——Damodar N.Gujarati
9-2
第 9 章 一元线性回归
9.1 变量间关系的度量 9.2 一元线性回归的估计和检验 9.3 利用回归方程进行预测 9.4 用残差检验模型的假定
建立回归模型时,首先需要弄清楚变量之 间的关系。分析变量之间的关系需要解决 下面的问题
变量之间是否存在关系?
如果存在,它们之间是什么样的关系?
变量之间的关系强度如何?
样本所反映的变量之间的关系能否代表总体 变量之间的关系?
9-9
9.1 变量间的关系 9.1.1 变量间是什么样的关系?
统计学
STATISTICS (第四版)
函数关系
1. 是一一对应的确定关系
2.
设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完
y
全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量
原始数据
9 - 16
统计学
STATISTICS (第四版)
散点图
(销售收入和广告费用的散点图)
9 - 17
9.1 变量间的关系 9.1.3 用相关系数度量关系强度
统计学
STATISTICS (第四版)
相关系数
(correlation coefficient)
1.度量变量之间线性关系强度的一个统计量
若相关系数是根据总体全部数据计算的,称为总体
相关系数,记为
若是根据样本数据计算的,则称为样本相关系数, 简称为相关系数,记为 r
也称为Pearson相关系数 (Pearson’s correlation coefficient)
2.样本相关系数的计算公式
3. r (xx)(yy) (xx)2(yy)2