数列基础知识点和方法归纳
数列基础知识点和方法归纳

1. 等差数列的定义与性质定义:(为常数),,推论公式:等差中项:成等差数列,等差数列前项和: 性质:是等差数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为; (4)若是等差数列,且前项和分别为,则;(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项, 即:当,解不等式组可得达到最大值时的值. 当,由可得达到最小值时的值. (6)项数为偶数n 2的等差数列,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇, .1-=n n S S 偶奇2. 等比数列的定义与性质定义:(为常数,),.推论公式:等比中项:成等比数列,或.等比数列中奇数项同号,偶数项同号等比数列前n 项和公式:性质:是等比数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等。
(2)仍为等比数列,公比为n q。
. (3)是正项等比数列,则注意:由求时应注意什么?时,;时,.3.求数列通项公式的常用方法(1)定义法求通项公式(已知数列为等差数列或等比数列)(2)已知的关系与n或的关系时与nnas,求。
⎩⎨⎧≥-==-)2()1(11nssnsannn例:?数列的前项和.求数列的通项公式;解:当时,当时数列的通项公式为.练习:设数列的前项和为,且.求数列的通项公式。
(3)求差(商)法 例:数列,,求 解: 时,,∴①时, ②① —②得:,∴,∴练习:在数列中,,, 求数列的通项公式。
数列知识点总结(经典)

数列基础知识点和方法归纳
1.等差数列的定义与性质
定义: ( 为常数),
等差中项: 成等差数列
前n 项和()()11122
n n a a n n n S na d +-==+ 性质: 是等差数列
(1)若 , 则
(2)数列 仍为等差数列, 仍为等差数列, 公差为 ;
(3)若三个成等差数列, 可设为
(4)若 是等差数列, 且前 项和分别为 , 则
(5) 为等差数列 ( 为常数, 是关于 的常数项为0的二次函数) 的最值可求二次函数 的最值;或者求出 中的正、负分界项,
2.等比数列的定义与性质
定义: ( 为常数, ), .
等比中项: 成等比数列 , 或 .
前 项和: (要注意! )
性质: 是等比数列
(1)若 , 则
(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q .
注意: 由 求 时应注意什么?
时, ;
时, .
4.求数列前n 项和的常用方法
(1) 裂项法
(2)错位相减法
如: ①
()23412341n n n x S x x x x n x nx -=+++++-+·……
② ①—②()21
11n n n x S x x x nx --=++++-……
时, , 时,。
新高考数列知识点总结归纳

新高考数列知识点总结归纳数列是数学中重要的概念之一,它是由一系列按特定规律排列的数按一定的次序形成的有序集合。
而在新高考数学考试中,数列作为一个重要的知识点,经常出现在试卷中。
本文将对新高考数列相关的知识点进行总结归纳,以期帮助同学们更好地掌握数列的概念和相关的解题方法。
一、数列的基本概念数列由一系列按特定规律排列的数按照一定的次序形成,通常用{a₁,a₂,a₃,...,aₙ}表示。
其中,a₁表示数列的第一个数,aₙ表示数列的第n个数。
数列中相邻两项之间的差称为公差,通常用d表示。
若给定数列的第一项和公差,可以通过an = a₁ + (n-1)d来计算数列的第n项。
二、等差数列等差数列是指数列中相邻两项之间的差恒定的数列。
在新高考数学中,等差数列是最常见的数列类型之一。
1. 等差数列的通项公式对于等差数列{a₁,a₂,a₃,...,aₙ},如果其公差为d,首项为a₁,那么它的通项公式为an = a₁ + (n-1)d。
2. 等差数列的和等差数列的和可以通过求和公式Sn = n/2[2a₁ + (n-1)d]来计算,其中Sn表示等差数列的前n项和。
3. 等差数列的性质等差数列具有以下性质:- 等差数列的相邻两项的和相等;- 等差数列的前n项和与n成正比;- 等差数列的对称轴为前后两项和的平均值。
三、等比数列等比数列是指数列中相邻两项之间的比恒定的数列。
在新高考数学中,等比数列也是常见的数列类型之一。
1. 等比数列的通项公式对于等比数列{a₁,a₂,a₃,...,aₙ},如果其公比为q,首项为a₁,那么它的通项公式为an = a₁ * q^(n-1)。
2. 等比数列的和等比数列的和可以通过求和公式Sn = a₁ * (1 - q^n)/(1 - q)来计算,其中Sn表示等比数列的前n项和。
3. 等比数列的性质等比数列具有以下性质:- 等比数列的相邻两项的比相等;- 等比数列的前n项和与n无关;- 等比数列的对数轴为前后两项比的平均值的对数。
数学数列知识点归纳总结

数学数列知识点归纳总结一、数列的概念1.1 数列的定义数列是按照一定的顺序排列的一系列数的集合,通常用一对大括号{}表示,其中的每个数称为数列的项。
例如:{1, 2, 3, 4, 5, ...}就是一个数列,它包含了无穷多个项,每个项都是自然数。
1.2 数列的表示数列可以用不同的方式表示,常见的表示方法有公式法、图形表示法和文字描述法。
- 公式法:可以用一个通项公式来表示数列的每一项,例如:an = n^2表示数列{1, 4, 9, 16, ...}的通项公式。
- 图形表示法:可以用图形来表示数列,例如:等差数列可以用直线表示,等比数列可以用曲线表示。
- 文字描述法:可以用文字描述数列的规律,例如:数列{2, 4, 6, 8, ...}可以描述为“每一项都比前一项大2”。
1.3 数列的分类数列可以按照不同的规律进行分类,常见的分类有等差数列、等比数列和斐波那契数列等。
- 等差数列:数列中相邻两项的差等于一个常数,这个常数称为公差。
- 等比数列:数列中相邻两项的比等于一个常数,这个常数称为公比。
- 斐波那契数列:数列中每一项都是前两项之和,例如:1, 1, 2, 3, 5, 8, 13, ...1.4 数列的通项公式数列的通项公式是指数列中任意一项与项号之间的函数关系式,一般用an表示第n项的值,n表示项号。
如果一个数列存在通项公式,则可以利用通项公式计算数列的任意项的值。
1.5 数列的性质数列有许多重要的性质,例如数列的有界性、单调性、敛散性以及极限等。
- 有界性:如果数列的项有上界或下界,则称该数列是有界的。
- 单调性:如果数列的项都单调递增或单调递减,则称该数列是单调的。
- 敛散性:数列是否有极限,如果有极限则称该数列是收敛的,否则是发散的。
二、等差数列2.1 等差数列的定义等差数列是指数列中相邻两项的差等于一个常数的数列,这个常数称为公差。
例如:{2, 4, 6, 8, ...}就是一个等差数列,公差为2。
数列知识点归纳

数列知识点归纳
1. 定义:数列是按照一定规律排列的数的集合。
2. 公式表示:数列可以用通项公式表示,通项公式中含有一个变量n,表示数列中的第n项。
3. 等差数列:如果一个数列中相邻两项之间的差值相等,那么这个数列就是等差数列。
其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
4. 等比数列:如果一个数列中相邻两项之间的比值相等,那么这个数列就是等比数列。
其通项公式为an=a1*q^(n-1),其中a1为首项,q为公比,n为项数。
5. 递推公式:数列也可以用递推公式表示,递推公式中含有一个或多个前一项的变量,表示第n项与前一项之间的关系。
6. 求和公式:数列的前n项和可以用求和公式表示,包括等差数列和、等比数列和及其它一些特殊数列和。
7. 应用:数列在数学中有广泛的应用,如在数学分析、数值计算、概率论、组合数学等领域中都有涉及。
在物理、化学、生物、经济等学科中也有广泛应用。
数列函数知识点归纳总结

数列函数知识点归纳总结一、数列的概念1.1 数列的定义数列是由一列有序的数按照一定的规律排列形成的。
1.2 数列的常见表示方式数列可以用通项公式、递推公式、列表等方法表示。
1.3 数列的分类根据数列的性质可分为等差数列、等比数列、等差数列等。
二、等差数列2.1 等差数列的定义和通项公式若数列中任意相邻两项的差是一个常数d,那么这个数列就是等差数列。
等差数列的通项公式可以表示为an=a1+(n-1)d。
2.2 等差数列的性质等差数列的通项公式、前n项和公式、公差和首项的关系等。
2.3 等差数列的应用在实际问题中,可以利用等差数列来描述一些数量随时间或次数变化的规律。
三、等比数列3.1 等比数列的定义和通项公式若数列中任意相邻两项的比是一个常数q,那么这个数列就是等比数列。
等比数列的通项公式可以表示为an=a1*q^(n-1)。
3.2 等比数列的性质等比数列的通项公式、前n项和公式等。
3.3 等比数列的应用等比数列在成倍增长或成倍减少的情况下有着广泛的应用。
四、数列的求和4.1 数列求和的概念数列求和就是将数列中的前n项相加,得到一个数列前n项和的公式。
4.2 等差数列的求和等差数列的前n项和公式可以表示为Sn=n*(a1+an)/2。
4.3 等比数列的求和等比数列的前n项和公式可以表示为Sn=a1*(1-q^n)/(1-q)。
五、数列的递推5.1 递推数列的概念递推数列就是通过数列中的前一项来定义后一项的一种特殊数列。
5.2 递推数列的通项公式递推数列可以通过已知的初始条件和递推关系求解通项公式。
5.3 递推数列的应用递推数列在描述一些连续变化的规律的问题中有着重要的应用。
六、数列函数6.1 数列函数的定义数列函数是将自然数集合映射到实数集合的函数。
6.2 数列函数的性质数列函数有着和一般函数相似的性质,包括单调性、有界性、周期性等。
6.3 数列函数的应用数列函数可以用来描述一些随时间变化的规律,并在实际问题中有着重要的应用。
数列 知识点总结及数列求和,通项公式的方法归纳(附例题)

⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。
当自变量从小到大依次取值时对应的一列函数值。
由于自变量的值是离散的,所以数列的值是一群孤立的点。
(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。
(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。
总结数列第一节知识点归纳

总结数列第一节知识点归纳数列是高中数学中重要的一个概念,它是指按一定规律排列的一组数。
数列的学习是数学学习的基础,而数列的第一节知识点是我们对于数列的认识和基本概念的初步了解。
本文将对数列的第一节知识点进行归纳总结。
1. 什么是数列数列是按照一定规律排列的一组数。
数列的构成元素有两个要素,即首项和公差。
首项是数列中的第一个数,而公差是数列中相邻两项之间的差值。
数列的一般形式可以表示为:{a₁, a₂, a₃, ..., aₙ},其中a₁表示首项,aₙ表示第n项。
2. 等差数列等差数列是指数列中相邻两项之间的差值保持不变的数列。
等差数列的通项公式为:aₙ = a₁ + (n-1)d,其中aₙ表示第n项,a₁表示首项,d表示公差。
初学等差数列,重要的是掌握如何计算任意一项和前n项的和。
3. 等差数列的性质(1)等差数列的项数无限。
(2)等差数列的相邻两项之间的差值是相等的。
(3)等差数列的平均数等于中间项。
4. 等差中项等差中项是指等差数列中两个已知项的中间项。
计算等差中项的方法是将已知项相加除以2。
若已知项为a和b,那么等差中项为(a+b)/2。
5. 等比数列等比数列是指数列中相邻两项之间的比值保持不变的数列。
等比数列的通项公式为:aₙ = a₁ * q^(n-1),其中aₙ表示第n项,a₁表示首项,q表示公比。
对于初学等比数列的学生,要掌握如何计算任意一项和前n项的和。
6. 等比数列的性质(1)等比数列的项数无限。
(2)等比数列的相邻两项之间的比值是相等的。
(3)等比数列的前n项和等于首项与公比的幂次和减一的商。
7. 递推公式递推公式是指通过已知的一项或多项来推导出后面的项的公式。
对于等差数列,递推公式为:aₙ = aₙ₋₁ + d;对于等比数列,递推公式为:aₙ = aₙ₋₁ * q。
8. 数列的应用数列的应用非常广泛,涉及到很多实际问题。
例如金融领域中的利息计算、生物学中的生长规律、物理学中的运动规律等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列基础知识点和方法归纳 1. 等差数列的定义与性质定义:(为常数),,推论公式:a n =a m +(n −m )d(n,m ∈N ∗,n >m)等差中项:成等差数列,a n =a n−1+a n+12,2a n =a n−1+a n+1(n ≥2)等差数列前项和: 性质:是等差数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等 (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为; (4)若是等差数列,且前项和分别为,则; (5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值.当,由可得达到最小值时的值.(6)项数为偶数n 2的等差数列,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列,有)()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, .1-=n n S S 偶奇1n n a a d +-=d ()11n a a n d =+-x A y ,,2A x y ⇔=+n ()()11122n n a a n n n S nad +-==+{}n a m n p q +=+m n p q a a a a +=+;232n n n n n S S S S S --,,……a d a a d -+,,n n a b ,n n n S T ,2121m m m m a S b T --={}n a 2n S an bn ⇔=+a b ,n n S 2n S an bn =+{}n a 100a d ><,100n n a a +≥⎧⎨≤⎩n S n 100a d <>,100n n a a +≤⎧⎨≥⎩n S n {}n a {}n a2. 等比数列的定义与性质定义:(为常数,),.推论公式:a n =a m q n−m (n,m ∈N ∗且n >m) 等比中项:成等比数列,或.等比数列中奇数项同号,偶数项同号a n 2=a n−1a n+1(n ≥2)等比数列前n 项和公式: S n ={na 1(q =1)a 1(1−q n )1−q =a 1−a n q 1−q(q ≠1)性质:是等比数列(1)若,则(下标和定理) 注意:要求等式左右两边项数相等。
(2)仍为等比数列,公比为n q 。
. (3)是正项等比数列,则{log c an }是等比数列。
注意:由求时应注意什么?时,; 时,.1n na q a +=q 0q ≠11n n a a q -=x G y 、、2G xy ⇒=G ={}n a m n p q +=+mn p q a a a a =··232n n n n n S S S S S --,,……{}n a n S n a 1n =11a S =2n ≥1n n n a S S -=-3.求数列通项公式的常用方法(1)定义法求通项公式(已知数列为等差数列或等比数列)(2)已知的关系与n 或的关系时与n n a s ,求。
⎩⎨⎧≥-==-)2()1(11n s s n s a n n n例: 数列的前项和.求数列的通项公式;解:当时,当时数列的通项公式为.练习:设数列的前项和为,且.求数列的通项公式。
(3)求差(商)法例:数列,,求解: 时,,∴① 时, ② ① —②得:,∴,∴练习:在数列{a n }中,a 1=1,a 1+a 222+a 332+⋯+ann 2=a n (n ∈N ∗), 求数列{a n }的通项公式。
(4)累乘法形如a n+1a n=f (n )的递推式由1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏n S n a {}n a 12211125222n n a a a n +++=+……n a 1n =112152a =⨯+114a =12211125222n n a a a n +++=+……2n ≥12121111215222n n a a a n --+++=-+……122n n a =12n n a +=114(1)2(2)n n n a n +=⎧=⎨≥⎩例:数列中,,求解,∴又,∴. 练习:已知a 1=3,a n+1=3n−13n+2a n (n ≥1), 求数列{a n }的通项公式。
(5)累加法形如 a n+1−a n =f (n )的递推式。
由,求,用迭加法时,两边相加得∴ 例:已知数列满足a 1=1,a n =a n−1+3n −2(n ≥2),(1)求a 2与a 3的值。
(2)求数列的通项公式练习:已知数列中, ,().求数列的通项公式;(6)构造法形如(为常数,)的递推式。
可转化为等比数列,设 令,∴,∴是首项为为公比的等比数列 ∴,∴ 例:已知数列满足,.求数列的通项公式;解:(1),, 而,故数列是首项为2,公比为2的等比数列,,因此.{}n a 1131n n a na a n +==+,n a 3212112123n n a a a n a a a n --= (11)n a a n=13a =3n a n =110()n n a a f n a a --==,n a 2n ≥21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………1(2)(3)()n a a f f f n -=+++……0(2)(3)()n a a f f f n =++++……1n n a ca d -=+c d 、010c c d ≠≠≠,,()()111n n n n a x c a x a ca c x --+=+⇒=+-(1)c x d -=1d x c =-1n d a c ⎧⎫+⎨⎬-⎩⎭11d a c c +-,1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭练习1:已知数列{a n }中a 1=12,a n+1=3a n +3,求数列{}n a 的通项公式。
练习2:已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式。
(7)倒数法 例:,求 由已知得:,∴ ∴为等差数列,,公差为,∴, ∴ 练习:已知数列的首项,a 1=1。
a n+1=a nan +2(n ∈N ∗)求数列的通项公式。
总结:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法。
11212nn n a a a a +==+,n a 1211122n n n n a a a a ++==+11112n n a a +-=1n a ⎧⎫⎨⎬⎩⎭111a =12()()11111122n n n a =+-=+·21n a n =+4. 求数列前n 项和的常用方法(1)定义法:如果已知数列为等差或者等比数列,这用对应的公式求和等差数列前项和: 等比数列前n 项和公式: S n ={na 1(q =1)a 1(1−q n )1−q =a 1−a n q 1−q(q ≠1)常见公式:S n =∑k n k=1=12n (n +1) 1+3+5+⋯+(2n −1)=n 212+22+32+⋯+n 2=16n (n +1)(2n +1) , 13+23+33+⋯+n 3=14[n (n +1)]2(2)错位相减法给S n =a 1+a 2+a 3+⋯+a n 两边同乘以一个适当的数或者式,然后把所得的等式与原等式相减,对应项互相抵消,最后得出前n 项的和S n .一般适用于为等差数列,为等比数列,求数列(差比数列)前项和,可由,求,其中为的公比.例:①②① —②1x ≠ 时,,时, 练习:已知数列是等差数列,是等比数列,且,,.(1)求数列和的通项公式(2)数列满足,求数列的前项和.(2) 裂项法把数列的通项公式拆成两项差的形式,相加过程中消去中间项,只剩下有限项再求和。
常见形式:①若是公差为的等差数列,则1an a n+1=1d (1a n−1an+1)② 1(2n−1)(2n+1)=12(12n−1−12n+1)③ 1n (n+1)(n+2)=12(1n (n+1)−1(n+1)(n+2))④ √a+√b =1a−b (√a −√b)⑤√n+k+√n=1k(√n +k −√n)n ()()11122n n a a n n n S nad +-==+{}n a {}n b {}n n a b n n n S qS -n S q {}n b 2311234n n S x x x nx -=+++++……()23412341n n n x S x x x x n x nx -=+++++-+·……()2111n nn x S x x x nx --=++++-……()()2111nnnx nx Sxx -=---1x =()11232n n n S n +=++++=……{}n a d如:是公差为的等差数列,求 解:由∴ 练习:已知数列的前n 项和,①求数列的通项公式; ②求数列的前n 项和。
(3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.相加[练习]已知,则由∴原式(3)分组求和法有一类数列,既不是等差数列也不是等比数列,若将这个数列适当拆分开,可分为几个等差或等比或常见数列,然后分别求和,再将其合并即可。
一般适用于为等差数列,为等比数列,求数列{a n +b n }前项和。
练习:已知数列为等差数列,公差为d ,为等比数列,公比为q ,且d=q=2, b 3+1=a 10=5,C n =log 2bn① 求{c n }的通项公式, ②求{a n +b n }的前n 项和S n 。
{}n a d 111nk k k a a =+∑()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑……11111n d a a +⎛⎫=- ⎪⎝⎭121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭............()()()12112n n n n S a a a a a a -=++++++ (2)2()1x f x x =+111(1)(2)(3)(4)234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222222111()111111x x x f x f x x x xx ⎛⎫⎪⎛⎫⎝⎭+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭11111(1)(2)(3)(4)111323422f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦{}n a {}n b n {}n a {}n b。