超全数列基本知识点复习讲义

合集下载

数列知识点归纳总结详细

数列知识点归纳总结详细

数列知识点归纳总结详细数列是数学中重要的概念之一,广泛应用于各个领域。

本文将对数列的基本概念、常见类型以及解题方法等进行详细的归纳总结。

通过本文的学习,读者可以全面了解数列的相关知识,为日后的学习和应用打下坚实的基础。

一、数列的概念数列是按照一定规律排列的数的集合。

其中,每个数都称为数列的项,每个项的位置称为项数。

通常用字母a1,a2,a3,…,an 等表示数列的项,其中an表示第n个项。

数列可以分为有限数列和无限数列。

有限数列是指项数有限的数列,而无限数列是指项数无限的数列。

二、数列的表示方式1. 显式表示法:数列的每一项都直接用公式表示。

常见的显式公式有等差数列的通项公式an=a1+(n-1)d 和等比数列的通项公式an=a1*r^(n-1)。

2. 递推关系式表示法:数列的每一项通过前一项来表示。

常见的递推关系式有等差数列的递推关系式an=an-1 +d 和等比数列的递推关系式an=an-1*r。

三、常见数列类型1. 等差数列:数列中的任意两项之差都相等。

常用的求和公式为Sn=n/2(a1+an),其中n为项数,a1为首项,an为末项。

2. 等比数列:数列中的任意两项之比都相等。

常用的求和公式为Sn=a1(1-r^n)/(1-r),其中n为项数,a1为首项,r为公比。

3. 斐波那契数列:数列中每一项都是前两项之和。

斐波那契数列的特点是每一项都等于前两项之和,即a1=a2=1,an=an-1+an-2(n>=3)。

4. 平方数列:数列中的每一项都是该项的平方。

例如1,4,9,16,…5. 等差平方数列:数列中的相邻两项之差为平方数。

例如3,8,15,24,…四、数列的求和1. 等差数列的求和公式为Sn=n/2(a1+an)。

2. 等比数列的求和公式为Sn=a1(1-r^n)/(1-r)。

3. 其他特殊数列的求和需要根据数列的特点进行推导计算。

五、数列的性质和运算1. 数列的项可以进行加减乘除等运算,同类型数列可以互相进行运算。

数列的有关知识点总结

数列的有关知识点总结

数列的有关知识点总结一、数列的基本概念1.1 数列的定义数列是指按照一定的顺序排列的一组数,这组数称为数列的项。

数列通常用符号{an}或(an)表示,其中an表示第n个数列的项。

例如,{1, 2, 3, 4, 5, ...}就是一个常见的数列,其第n 个项表示为an=n。

1.2 数列的分类根据数列的性质和规律,可以将数列分为不同的类型。

常见的数列包括等差数列、等比数列、等差数列、递减数列、递增数列等。

不同类型的数列具有不同的性质和规律,需要根据具体情况选择适当的方法进行研究和分析。

1.3 数列的通项公式对于某些特定的数列,可以通过观察数列的规律和性质,得到其通项公式。

通项公式可以表示数列的第n个项与n之间的关系,通常用公式an=f(n)表示,其中f(n)为关于n的函数。

通过通项公式,可以方便地计算数列的任意项,从而更好地理解数列的规律和性质。

1.4 数列的性质数列具有许多重要的性质,包括有界性、单调性、敛散性等。

这些性质对于研究数列的规律和性质具有重要的意义,可以帮助我们更好地理解和分析数列的特点。

二、等差数列2.1 等差数列的定义等差数列是指数列的相邻两项之差是一个常数的数列,这个常数称为公差。

例如,{1, 3, 5, 7, 9, ...}就是一个等差数列,公差为2。

2.2 等差数列的通项公式对于等差数列an=a1+(n-1)d,其中a1为等差数列的首项,d为公差,n为项数。

通过这个通项公式,可以方便地计算等差数列的任意项。

2.3 等差数列的性质等差数列具有许多重要的性质,包括有界性、单调性、求和性质等。

这些性质对于研究等差数列的规律和性质具有重要的意义,可以帮助我们更好地理解和分析等差数列。

2.4 等差数列的求和公式对于等差数列,有求和公式Sn=n/2(a1+an),其中Sn表示前n项和,a1表示首项,an表示第n项。

通过这个求和公式,可以方便地计算等差数列的前n项和。

三、等比数列3.1 等比数列的定义等比数列是指数列的相邻两项之比是一个常数的数列,这个常数称为公比。

数列的基本知识点

数列的基本知识点

数列的基本知识点一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现.⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.1、已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125); 2、数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a ); 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是()(答:A )二、 等差数列1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。

数学数列知识点归纳总结

数学数列知识点归纳总结

数学数列知识点归纳总结一、数列的概念1.1 数列的定义数列是按照一定的顺序排列的一系列数的集合,通常用一对大括号{}表示,其中的每个数称为数列的项。

例如:{1, 2, 3, 4, 5, ...}就是一个数列,它包含了无穷多个项,每个项都是自然数。

1.2 数列的表示数列可以用不同的方式表示,常见的表示方法有公式法、图形表示法和文字描述法。

- 公式法:可以用一个通项公式来表示数列的每一项,例如:an = n^2表示数列{1, 4, 9, 16, ...}的通项公式。

- 图形表示法:可以用图形来表示数列,例如:等差数列可以用直线表示,等比数列可以用曲线表示。

- 文字描述法:可以用文字描述数列的规律,例如:数列{2, 4, 6, 8, ...}可以描述为“每一项都比前一项大2”。

1.3 数列的分类数列可以按照不同的规律进行分类,常见的分类有等差数列、等比数列和斐波那契数列等。

- 等差数列:数列中相邻两项的差等于一个常数,这个常数称为公差。

- 等比数列:数列中相邻两项的比等于一个常数,这个常数称为公比。

- 斐波那契数列:数列中每一项都是前两项之和,例如:1, 1, 2, 3, 5, 8, 13, ...1.4 数列的通项公式数列的通项公式是指数列中任意一项与项号之间的函数关系式,一般用an表示第n项的值,n表示项号。

如果一个数列存在通项公式,则可以利用通项公式计算数列的任意项的值。

1.5 数列的性质数列有许多重要的性质,例如数列的有界性、单调性、敛散性以及极限等。

- 有界性:如果数列的项有上界或下界,则称该数列是有界的。

- 单调性:如果数列的项都单调递增或单调递减,则称该数列是单调的。

- 敛散性:数列是否有极限,如果有极限则称该数列是收敛的,否则是发散的。

二、等差数列2.1 等差数列的定义等差数列是指数列中相邻两项的差等于一个常数的数列,这个常数称为公差。

例如:{2, 4, 6, 8, ...}就是一个等差数列,公差为2。

数列知识点总结框架

数列知识点总结框架

数列知识点总结框架一、数列的概念和性质1. 数列的定义数列是指由一系列按照一定规律排列的数所组成的有序集合,常用符号表示为{an}或(a1,a2, a3, …),其中an表示第n个数。

数列可以是有限的,也可以是无限的。

2. 数列的常见形式常见的数列形式包括等差数列、等比数列、等差-等比数列、递推数列等。

3. 数列的通项公式对于数列{an},如果能找到一个关于n的表达式an=f(n),使得对于任意n,an都能用f(n)来表示,则f(n)便为数列的通项公式。

4. 数列的性质数列的性质包括有界性、单调性、极限性等。

其中,有界性指数列的值在一定范围内;单调性指数列中的项是递增或递减的;极限性指数列随着n的增大,其值趋于某一定值。

二、等差数列1. 等差数列的定义等差数列是指数列中的任意两项之间的差都相等的数列,其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。

2. 等差数列的性质等差数列的性质包括前n项和公式、n项倒数和公式、性质及推导等。

3. 等差数列的应用等差数列常用于算术平均数的计算、数列求和、数列前n项和等问题的解答。

三、等比数列1. 等比数列的定义等比数列是指数列中的任意两项之间的比值都相等的数列,其通项公式为an=a1*q^(n-1),其中a1为首项,q为公比。

2. 等比数列的性质等比数列的性质包括前n项和公式、无穷项和公式、收敛性等。

3. 等比数列的应用等比数列常用于几何平均数的计算、复利计算、无穷等比数列的求和等问题的解答。

四、递推数列1. 递推数列的定义递推数列是指数列中的每一项都是前面一项的某个函数,其通项公式可以通过前面一项来表示。

2. 递推数列的性质递推数列的性质包括递推关系、递推方程、解法等。

3. 递推数列的应用递推数列常用于递归函数的求解、动态规划问题的解答等。

五、数列求和1. 等差数列求和等差数列的前n项和可用公式S_n=(a1+an)n/2来表示,其中n为项数,a1为首项,an 为末项。

数列复习基本知识点归纳与总结

数列复习基本知识点归纳与总结

数列基本知识点归纳与总结一、数列的概念:数列是按一定次序排成的一列数。

数列中的每一个数都叫做这个数列的项。

数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,如果数列{}a n 的第n 项a n 与n 之间的关系可以用一个公式来表示,则这个公式就叫做这个数列的通项公式。

数列的通项公式也就是相应函数的解析式。

如(1)已知*2()156n n a n N n =∈+,则在数列{}na 的最大项为__(答:125); (2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);递推关系式:已知数列{}a n 的第一项(或前几项),且任何一项n a 与它的前一项a n-1(前n 项)间的关系可以用一个式子来表示,则这个式子就叫数列的递推关系式。

数列的分类:①按项数多少,分为有穷数列、无穷数列;②按项的增减,分为递增数列、递减数列、摆动数列、常数列。

③按项有无界限,分为有界数列、无界数列。

数列的前n 项和:a a a a s n n ++++= (3)21.已知s n 求a n 的方法(只有一种):即利用公式 a n=⎪⎩⎪⎨⎧≥=--)2(,)1(,11n n s s s n n注意:一定不要忘记对n 取值的讨论!最后,还应检验当n=1的情况是否符合当n ≥2的关系式,从而决定能否将其合并。

二、等差数列的有关概念:1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。

即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+).(1) 等差数列的判断方法:①定义法:)(1常数d a a n n =-+⇔{}a n 为等差数列。

高中数学数列知识点归纳

高中数学数列知识点归纳

高中数学数列知识点归纳一、数列的概念数列是按照一定顺序排列的一列数。

例如,1,2,3,4,5……就是一个自然数列。

数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项……以此类推。

数列的一般形式可以写成 a₁,a₂,a₃,…,aₙ,…,其中 aₙ 是数列的第 n 项。

我们用{aₙ} 来表示一个数列。

二、数列的分类1、按项数分类(1)有穷数列:项数有限的数列。

例如,数列 1,2,3,4,5 就是一个有穷数列。

(2)无穷数列:项数无限的数列。

比如自然数列 1,2,3,4,……就是一个无穷数列。

2、按项的大小变化分类(1)递增数列:从第 2 项起,每一项都大于它的前一项的数列。

例如,数列 1,2,4,8,16,……就是一个递增数列。

(2)递减数列:从第 2 项起,每一项都小于它的前一项的数列。

比如数列 10,8,6,4,2 就是一个递减数列。

(3)常数列:各项都相等的数列。

例如,数列 3,3,3,3,……就是一个常数列。

(4)摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。

比如数列 1,-1,1,-1,1,……就是一个摆动数列。

三、数列的通项公式如果数列{aₙ} 的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。

例如,数列 1,3,5,7,9,……的通项公式为 aₙ = 2n 1 。

通项公式可以帮助我们快速求出数列中的任意一项,也能让我们更深入地了解数列的性质。

四、数列的递推公式如果已知数列{aₙ} 的第 1 项(或前几项),且从第二项(或某一项)开始的任一项 aₙ 与它的前一项 aₙ₋₁(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做这个数列的递推公式。

例如,已知数列{aₙ} 的首项 a₁= 1 ,且 aₙ = aₙ₋₁+ 2 (n ≥2 ),则可以依次求出 a₂= a₁+ 2 =3 ,a₃= a₂+ 2 = 5 ,……五、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

第4章 数列-基础知识汇总

第4章 数列-基础知识汇总

第4章 数列§4.1 数列的概念1.定义:我们把按照确定的顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.第一项叫首项,常用1a 表示.2.通项公式:如果数列{}n a 的第n 项n a 与它的序号之间的对应关系可以用一个式子来表示,那这个式子叫做这个数列的通项公式.3.递推公式:如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.4.数列{}n a 的前n 项和:把数列{}n a 从第1项起到第n 项止的各项之和,称为数列{}n a 的前n 项和.记作n S ,即12...n n S a a a =+++.5.通项n a 与n S 之间的关系:11,1, 2.n nn S n a S S n -=⎧=⎨-≥⎩ §4.2 等差数列1.等差数列定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d 表示.2.等差中项:有三个数,,a A b 组成的等差数列可以看成是最简单的等差数列,此时A 叫做a 与b 的等差中项.可知2A a b =+.3. 等差数列的通项公式:1(1)n a a n d =+-.引申式:()n m a a n m d =+-,()n m a a n m d -=-,n m a a d n m-=- 4.等差数列的前n 项和公式: ()()11122n n n n n a a S na d -+=+= 5.等差数列常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈,…也成等差数列.⑤单调性:{}n a 的公差为d ,则:ⅰ)⇔>0d {}n a 为递增数列;ⅱ)⇔<0d {}n a 为递减数列;ⅲ)⇔=0d {}n a 为常数列;⑥数列{n a }为等差数列n a pn q ⇔=+(p,q 是常数)⑦若等差数列{}n a 的前项和,则、、…是等差数列. §4.3 等比数列1.等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫等比数列的公比,常用q 来表示(0q ≠).2.等比中项:若三数a b 、G 、成等比数列,那么G 叫做a 与b 的等比中项.此时2G ab =.n n S k S k k S S -2k k S S 23-3.通项公式:11n n a a q -=引申式:n m n m a a q -=,n m n ma q a -=. 4.等比数列前n 项和公式:()()111111n n n a q a a q S q q q--==≠-- 5.等比数列常用性质: ①若()+∈ +=+N q p n m q p n m ,,,,则m n p q a a a a ⋅=⋅; ② ,,,2m k m k k a a a ++为等比数列,公比为kq (下标成等差数列,则对应的项成等比数列) ③数列{}n a λ(λ为不等于零的常数)仍是公比为q 的等比数列; 对于正项等比数列{}n a ,则{}lg n a 是公差为lg q 的等差数列; ④若{}n a 是等比数列,则{}{}2n n ca a ,, 1n a ⎧⎫⎨⎬⎩⎭,{}()r n a r Z ∈是等比数列,公比依次是21.r q q q q ,,, ⑤单调性:110,10,01a q a q >><<<或{}n a ⇒为递增数列;{}110,010,1n a q a q a ><<<>⇒或为递减数列;{}1n q a =⇒为常数列;{}0n q a <⇒为摆动数列;⑥既是等差数列又是等比数列的数列是常数列. ⑦若等比数列{}n a 的前项和,则、、…是等比数列. n n S k S k k S S -2k k S S 23-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列一、数列定义:有序的一列数表示方法:1)最常见的枚举法:1,2,3,4,5,6……2)★★★通项公式:()n a f n =,理解:数列是一种特殊的函数,特殊在定义域上,定义域n 是从1开始的自然数,所以说,数列又可以从函数解析式的角度来分析数列特征3)递推关系:1()n n a f a +=,理解:递推公式是最直观的,比如说等差数列就是后一项和前一项的差相等,但是递推公式不利于分析数列的性质,比如想知道第100项是多少,就需要由递推公式去推出通项公式4)求和公式:n S ,理解:n S 和n a 的关系11(2)(1)n n S S n S n --≥⎧⎨=⎩(记⑤)★★★难点:递推公式⇒通项公式 通项公式⇔求和公式 ☆☆☆一般考察思路:/n n a S ⇒递推公式⇒通项公式n S ⇒⇒不等式(中间截取一段或者几段)二、等差数列1. 递推公式:1n n a a d +=+(d 可以是0) ()n m a a n m d =+-2. 通项公式:1(1)()na a n d f n =+-=(可以把这个式子看成一个关于n 的一次函数(记①))1(dn a d =+-)(一次项系数为d (记②),这个式子递增递减的变化取决于公差d (记③))3. 求和公式: 1()2n n a a nS +=(把n a 的式子代入)1(1)2n n na d -=+ (更常用) 21=()22d d n a n +-(可看成二次函数,无常数项。

二次项系数为2d,决定开口方向。

(记④)⇒从函数的角度看一个数列的n S 有没有最大值和最小值是由d 的正负决定的)考点1:由数列函数性质速算通项公式和求和公式例题1.已知一个等差数列{}n a ,25a =,57a =,求通项公式解析:1)通常解法:求通项公式,求1a 求d52233a a d -== ,1133a =,1132211(1)(1)=3333n a a n d n n =+-=+-⋅+ 2)口算解法:把n a 看成一个函数1(n a dn a d =+-)(由②,只需要记住一次项系数为d )所以23n a n =+一个数,然后代入2a ,解得那个数是113例题2.1)已知数列{}n a 的通项公式是25n a n =+,求n S解析:由①知,通项公式为关于n 的一次函数,则n a 是等差数列常规解法:21221(1)7,9,2,7262n n n a a d a a S n n n -===-==+⋅=+ 口算解法:(函数的角度)由②,知道2d =,由④知,22n d S n =+一个数n ⨯2=n +一个数n ⨯想求得这个数只需要代入一个n S 即可,21171S a ===+一个数1⨯,可知,这个数为6所以26nS n n =+2)已知数列{}n a 的前n 项和为23nS n n =-,求{}n a 的通项公式解析:由④,n S 是没有常数项的二次函数,所以{}n a 是等差数列由口算解法,可知6na n =+一个数,由112S a ==,64n a n =-3)已知数列的前n 项和为232nS n n =--,求{}n a 的通项公式解析:由④,n S 是没有常数项的二次函数,所以{}n a 是等差数列由⑤,2n ≥,221=(32)(3(1)(1)2)64nn S S n n n n n ---------=-1n =,110S a ==(思考:其实,在2n ≥部分,上一题中的2213(3(1)(1))n n n a S S n n n n -=-=-----这一题中的22132(3(1)(1)2)n n n a S S n n n n -=-=-------恰好常数项约掉了,所以即使这题中的n S 不是等差数列的n S ,在2n ≥部分也可按上题的方法求得) 例题3. 已知等差数列{}n a 和{}n b 的前n 项和分别为,n n A B ,且2331n n A n B n +=-,则?n na b = 解析:由④,n A 和n B 的前n 项和应该是无常数项的二次函数,所以,可以这样理解22233n n A n nB n n+=-,因为要求的n na b ,要的是比值,与,n n a b 分别是多少没有关系,所以令2223,3n n A n n B n n =+=-,那么由例题2(2)可以口算求得41,64n n a n b n =+=-考点2:判断数列增减性例题4.(2013辽宁理4文4)下面是关于公差0d >的等差数列{}n a 的四个命题1:p 数列{}n a 是递增数列 2:p 数列{}n na 是递增数列3:p 数列n a n ⎧⎫⎨⎬⎩⎭是递增数列 4:p 数列{}3n a nd +是递增数列 上述命题中真命题的个数是几个? 解析:★★判断数列增加性的方法:1.从通项公式,函数的角度分析,增函数,即为递增数列,减函数,即为递减数列2.从递推公式的角度分析,10n na a +->,即为增函数,反之,减函数1p ,由③,0d >函数是个增函数,正确2p ,1(1)n n b na na n n d ==+-,111(1)(1)(1)n n b n a n a n nd ++=+=+++11+2n n b b a nd +-=,由于0d >,所以增减性取决于1a ,因此不能确定 3p ,解答思路同2p ,增减性也取决于1a ,因此不能确定4p ,11(1)3(41)n b a n d nd a n d =+-+=+-,11(4(1)1)n b a n d +=++-1(4(1)1(41))40n n b b n n d d +-=+---=> 递增数列,正确考点3:数列的最值问题例题5.(2012年浙江理7)设n S 是公差为(0)d d ≠的无穷等差数列{}n a 的前n 项和,则下列命题错误的是? A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若数列{}n S 是递增数列,则对任意的n N ∈*,均有0n S >D .若对任意的n N ∈*,均有0n S >,则数列{}n S 是递增数列 解析:★★思路1:从函数的角度分析数列的增加性和最值A.数列{}n S ,把12,S S ……看成数列的每一项,可以把n S 看成一个函数,数列{}n S 有最大项,即函数n S 有最大值,由④,n S 是一个二次函数,二次项系数为2d,所以,0d <,开口向下,有最大值,正确 B .同理A ,有最大项,即开口向下,正确C .n S 为递增数列,即函数n S 在1n ≥上是增函数,所以开口向上。

而且,由④,n S 的常数项为0,所以(0)0f =,横过(0,0)。

开口向上,横过原点的函数,在1n ≥上,一定是恒正的,正确。

D .同C ,正确※※正确答案,本题错误的应该为C 选项,虽然n S 过零点,但是有可能对称轴并不在负半轴,而在(0,1)之间,这样的话,1S 是负的,后面依旧是单调递增的。

三、等差数列性质1.n a 之间的性质(等差中项)※反映了等差数列的对称性1122n n n n n p n p m n p qm n p qa a a a a a a a a a -+-++=+=+⇒=+−−−−−→+=+若2.n a 和n S 之间的性质=S ⨯奇数项数中项 例:12345152433()()5a a a a a a a a a a a ++++=++++= =2S ⨯偶数中间两项的和项数3.n S 之间的性质232,,n n n n n S S S S S --……成等差数列例:36396,,S S S S S --成等差数列,(3123S a a a =++,63456S S a a a -=++,96789S S a a a -=++,对应项的差是相等的,147258369,,;,,;,,a a a a a a a a a )已知34S =,610S =,求9?S = (注意,并不是914S =,是36396,,S S S S S --成等差数列,不是369,,S S S 成等差数列)3639694,6818S S S S S S =-=⇒-=⇒=例题6. 若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当?n =时,{}n a 的前n 项和最大 解析:★★思路2:对于满足单调性的数列若12,p a a a …是正的,12,p p a a ++…是负的,则p S 最大若12,p a a a …是负的,12,p p a a ++…是正的,则p S 最小789880300a a a a a ++>⇒>⇒> 87108990000a a a a a a >+<⇒+<−−−→< 8n ∴=时,取最大值等比数列一、等比数列等差数列等比数列递推公式1 1()n n a a d +=++1()n n a qa +=⨯注意:0q ≠等比数列的任意一项非零通项公式211(1)()n a a n d dn a d =+-=+-1111n nn a a a q q q-+=⨯=⨯ 前n 项和n S 3 1(1)2n n n S na d -=+11(1)(1)1(1)n n a q q S q q na⎧-≠⎪=-⎨=⎪⎩注:1.等差数列和等比数列是类似的,只是等差数列中加的关系在等比数列中变成了乘的关系,使得很多性质发生了变化2.等差数列的通项公式可以看成是一次函数,类似的等比数列的通项公式可以看做是指数函数。

等差数列是由一次项系数d 的正负可以决定函数的单调性,而且是线性的增加或者减少,但是等比数列的的变化趋势受很多因素的影响:(记①)1)1a 的正负:若0q >且1q ≠,作为指数函数,前面系数的正负决定了函数的增加性当1q >时,10a >增,10a <减 反之,当01q <<时,10a <增,10a >减 2)q 的正负:决定了数列是波动的,还是有单调性的若0q >,则可按照1)判断,若0q <,则数列是一正一负的,在x 轴的上下波动123)q 与1的大小关系:当1q <时,函数图像不断接近x 轴,收敛;当1q >,函数图像不断远离x 轴,发散3等比数列的求和公式要注意两点: 1) 求和公式是一个分段函数2) 等比数列的求和公式推导原理:错位相减12311211231n nn n n nS a a a a a qa qa qa qS qa qa qa qa qa --=++++=++++=+++++后面两个式子相减得到11111(1)(1)1n n n n n a q q S a qa a q q a S q---=-+=-+⋅⇒=-例题1.{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的不充分不必要条件 解析:由①,取决于1a 的正负 成等差数列成等比数列2232,,n n n n nS S S S S --成等比数列解释: 12n n S a a a =+++ 2122n n n n n S S a a a ++-=+++ 3221223n n n n n S S a a a ++-=+++对应的项的比值为nq ,所以各项的和比值也是nq例题2.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比?q =解析:24352040a a q q q a a +=⎧⎪↑↑↑⎨⎪+=⎩ 2q ∴=不必用通项公式把每一项都带进去,我们看到项数之间的关系,3a 比2a 大一,5a 比4a 大一,也就是说对应项的比值为q ,那么40就应该是20的q 倍所以说,这一章包括等比数列的概念,递推公式通项公式求和公式,还有等比数列的性质,一定要记住的是等比数列这里是怎么讲的,不光要记住这些性质,我们是通过等差数列和等比数列的类比来完成这件事情的。

相关文档
最新文档