高考数学能力备考之填空题解题策略

合集下载

谈高考数学选择填空答题策略

谈高考数学选择填空答题策略

此题本意考查导数的几何意义 , 求导运算 以及三角 函数 的知 识, 考查了学生的综合能力 。 直接做有一定 的运算量 , 而答案特点
就是相对 于直接法而 言 , 根据题 目的特点找 准突破 口 , 节 约
主要是钝角或锐角 。该函数在整个定 义域 上是 减函数 , 图像为下 时间 , 提高效率 。可 以借助 以下几种方式 : 1 . 排 除法 降趋势 , 则其图像上任 一点的切线倾斜角 一定为钝角 , 答 案 A、 B 因为选择题 的答 案就在选 项 中, 如果根据题 目的条件 , 缩小 舍掉 , 函数 的最大值无 限接 近 4 , 则其图像 与直线是渐近关 系 , 倾 答 案的范 围 , 就可 能排除选项 中的某些 明显错 误的项 , 那么选对 斜角最大值趋近于 , 则答 案选 择 D, 在解题 时基本不 用动 笔算 , 节 的概率将 大大提高 , 主要适合 比较大小类型 、 求解 析式 、 确定 函数 省 了时间。但这都建立在对函数问题的研 究有 很扎 实的基本功 , 会研究 函数 。 图像 等问题。
m = 2符合题意 , 排 除不含 m= 2的选项 A、 C、 D。所 以选 B。

解析 : 由3 = 、 / + 1 , 得广 ( 3 ) = 4应填 4 。 请 思考为什 么不必求 广 - ) 呢?
【 示例 5 】 函数 , , : 、 /
笔者结合典型事例 , 在此对高考数学选择填 空题 的常见解 法
作一初步探讨 。

在仔细审题 的基础上 ,根据题 目的条件和选项 的结构特征 , 舍掉明显错误 的答 案 , 缩小选择范围 , 提高答题的正确率 。 但需 要 有较强的综合能力 , 整体把握题型的特 点。此法 对于一些 求变量 范 围, 确定若干个命题 的真假 问题上 , 可 以尝试此法 。

高三学生必备:高考怎样快速提升数学填空题的解题速度和准确率

高三学生必备:高考怎样快速提升数学填空题的解题速度和准确率

高考怎样快速提升数学填空题的解题速度和准确率相比而言,选择题要易于填空题。

因此要提高选择题的速度则是要掌握总结一些解选择题的技巧,譬如遇到计算繁复的可以用选项来代入等等方法。

而填空题想提高速度则必须以准确性做保障,如果不能保障正确,速度再快也没意义。

因此,填空题应该首先是不计较速度地练。

以江苏高考为例,江苏高考数学没有选择,只有14道填空。

一般是1~10是基础,11~14有难度。

那么首先应该做的,是先不计速度地做题,知道自己是个什么水平,一般能解决多少题,基础题不计时间能不能都做得出,如果不能,那么就是基础知识有问题,这是最需要也是最容易解决的。

等能够做到基础填空基本OK后,考察能力题能提高则提高,不能提高则不必一味抓着不放。

这时候应该能对整体题型,难度,出题方式有了大体了解,做题也能保证该对的都能对了(注意:是不限时间下),这时需要开始提高速度了。

基本方法是限时训练。

找模拟或其他的卷子来限时训练,这里需要注意的是,这个限时不是一味求快,而是根据自己水平和考试需求来确立。

仍以江苏高考为例,江苏高考数学160分(两个小时),填空题14题共70分,后面有6道大题。

对于一般文科生而言填空题时间要花20~60分钟不等,那么就需要根据整体需求来确定前面所需时间。

成绩不太好、后面大题大多情况无力攻克难点的可以在前面多一点时间,确保正确率;而有能力考高分的,前面便要节约时间了,一般控制于30分钟为佳。

举这个例子是为了说明,限时训练需要一个适合自己的限时。

在限时训练下,渐渐可以掌握限时下的解题节奏、取舍之道,速度也就不成问题了。

以上便是我关于你的问题的一些心得,因为我是江苏的,所以只能以江苏高考来举例,你可以借鉴一下,找到适合自身的方法,希望对你有帮助。

解答填空题有什么方法吗?填空题题小,跨度大,覆盖面广,形式灵活,可以有目的、和谐地结合一些问题,突出考查考生准确、严谨、全面、灵活运用知识的能力和基本运算能力,要想又快又准地答好填空题,除直接推理计算外,还要讲究一此解题策略,尽量避开常规解法。

高考数学填空题的解题方法小结

高考数学填空题的解题方法小结

高考数学填空题的解题方法总结数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是高考数学中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题。

这说明了填空题是数学高考命题改革的试验田,创新型的填空题将会不断出现。

因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备。

解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整。

合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求。

数学填空题,较大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时须按规则进行切实的计算或者合乎逻辑的推演和判断。

求解填空题的基本策略是要在"准"、"巧"、"快"上下功夫。

常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

1.填空题的类型填空题主要考查学生的基础知识、基本技能以及分析问题和解决问题的能力,具有小巧灵活、结构简单、概念性强、运算量不大、不需要写出求解过程而只需要写出结论等特点。

从填写内容看,主要有两类:一类是定量填写,一类是定性填写。

2.填空题的特征填空题不要求写出计算或推理过程,只需要将结论直接写出的“求解题”。

填空题与选择题也有质的区别:第一,表现为填空题没有备选项,因此,解答时有不受诱误干扰之好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。

从历年高考成绩看,填空题得分率一直不很高,因为填空题的结果须是数值准确、形式规范、表达式简,稍有毛病,便是零分。

因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则须合理灵活地运用恰当的方法,在“巧”字上下功夫。

填空题的答题技巧1

填空题的答题技巧1

填空题的答题技巧1【方法技巧与总结】1、面对一个抽象或复杂的数学问题时,不妨先考虑其特例,这就是数学中常说的特殊化思维策略“特殊化思维”是解高考数学填空题的一种常用解题策略,其实质是把一般情形转化为特殊情形,把抽象问题转化为具体问题,把复杂问题转化为简单问题,实现快速、准确求解的目的.2、等价转化可以把复杂问题简单化,把陌生问题熟悉化,把原问题等价转化为便于解决的问题,从而得出正确结果.3、数形结合实际上就是把代数式的精确刻画与几何图形的直观描述有机地结合起来,相互转化,实现形象思维和抽象思维的优势互补.一方面,借助图形的性质使许多抽象概念和关系直观而形象,以利于探索解题途径;另一方面,几何问题代数化,通过数理推证、数量刻画,获得一般化结论.【核心考点】核心考点一:特殊法速解填空题【典型例题】例1.已知函数3()(22)x xf x x a -=⋅-是偶函数,则a =__________.【答案】1【解析】函数3()(22)x xf x x a -=⋅-是偶函数,3y x =为R 上的奇函数,故22x xy a -=⋅-也为R 上的奇函数,所以0x =时,002210y a a =⋅-=-=,所以1a =,经检验,1a =满足题意,故答案为:1.例2.设x R ∈,用[]x 表示不超过x 的最大整数,则“[][]x y ”是“x y ”的__________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)【答案】必要不充分【解析】[][]x y ,即[][]x y >或[][]x y =,当[][]x y >时,可推出x y >;但当[][]x y =时,如 2.1x =, 2.3y =,此时x y <,所以“[][]x y ”不能推出“x y ”,即充分性不成立;x y ,即x y >或x y =,当x y =时,必有[][]x y =;当x y >时,可推出[][]x y >或[][]x y =,所以“x y ”能推出“[][]x y ”,即必要性成立.所以“[][]x y ”是“x y ”的必要不充分条件.故答案为必要不充分.例3.已知()f x 是定义域为R 的函数,(2)f x -为奇函数,(21)f x -为偶函数,则16()i f i ==∑__________.【答案】0【解析】法一:因为(21)f x -是偶函数,所以(21)(21)f x f x --=-,所以(1)(1)f x f x --=-,即(2)()f x f x --=,则()f x 的图象关于直线1x =-对称;因为(2)f x -是奇函数,所以(2)(2)f x f x -=---,所以()f x 的图象关于点(2,0)-对称,易知(2)(2)()f x f x f x -=---=-,所以()f x 是周期函数,且4是()f x 的一个周期;由(2)(2)(42)(2)f x f x f x f x -=---=---=--,得()()f x f x =--,所以()f x 为奇函数;在(2)()f x f x -=-中,令1x =-,得(3)(1)(3)f f f -==-,所以(1)(3)0;f f +=在(2)()f x f x -=-中,令2x =-,得(4)(2)(4)f f f -==-,所以(2)(4)0f f +=,从而(1)(2)(3)(4)0f f f f +++=,所以16()(0)4[(1)(2)(3)(4)]0.i f i f f f f f ==++++=∑法二:取()sin 2f x x π=,定义域为R ,则(2)sin (2)sin 22f x x x ππ-=-=-为奇函数,(21)sin(21)cos 2f x x x ππ-=-=-为偶函数.()f x 符合所有条件,且是以4为周期的周期函数,(0)0f =,(1)(2)(3)(4)10(1)00f f f f +++=++-+=,所以16()(0)4[(1)(2)(3)(4)]0.i f i f f f f f ==++++=∑核心考点二:转化法巧解填空题【典型例题】例4.已知函数()ln(1)f x x x =+-,()ln g x x x =,若1()12ln f x t =+,22()g x t =,则122ln tx x x -的最大值为___.【答案】12e【解析】由题意,111()ln(1)12ln f x x x t =+-=+,得2111ln(1)ln x x t -+-=,所以1121ln[(1)]ln x x e t --=,即1121(1)0x t x e -=->,又2222()ln g x x x t ==,得2ln 22ln 0x t e x =⋅>,因为xy x e =⋅在[0,)+∞上单调递增,所以21ln 1x x =-,则12ln 1x x -=,所以212222ln ln ln ln t t tx x x x x t==-⋅,令2ln ()(0)t h t t t =>,则312ln ()t h t t -'=,当12(0,)t e ∈时,()0;h t '>当12(,)t e ∈+∞时,()0;h t '<所以()h t 在12(0,)e 上单调递增,在12(,)e +∞上单调递减,所以12max 1()().2h t h e e==故答案为1.2e例5.若曲线有两条过坐标原点的切线,则实数a 的取值范围为__________.【答案】(,0)(8,)-∞⋃+∞【解析】设切点坐标为:,(22)e xy x a '=+-,所以切线斜率为,即切线方程为,又切线过坐标原点,所以整理得20020x ax a -+=,又曲线有两条过坐标原点的切线,所以该方程有两个解,所以280a a ∆=->,解得(,0)(8,).a ∈-∞⋃+∞故答案为:(,0)(8,).-∞⋃+∞例6.已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ︒∠=,以1D 为半径的球面与侧面11BCC B 的交线长为__________.【答案】2【解析】直四棱柱棱长为2,底面是边长为2的菱形,侧面是边长为2的正方形,又60BAD ︒∠=,可得111D C B =60∠︒,点1D 到面11BB C C 的距离即为点1D 到11B C ,则根据勾股定理可得截面的圆半径为r ==,11112B C >=2<,则球与侧面11BB C C 所形成的交线为一段圆弧,其圆心角为2π,故形成的交线长为222l π=⨯=.故答案为.2核心考点三:数形结合巧解填空题【典型例题】例7.若过点(,0)a ,(0,)b 分别只可以作曲线xe y x=的一条切线,则a b +的取值范围为__________.【答案】[0,)+∞【解析】函数x e y x =的定义域为(,0)(0,)-∞⋃+∞,22(1)x x x xe e e x y x x --'==,设过点(,0)a 的切线且与曲线x e y x =相切于点111(,x e x x ,则切线方程为1111211(1)()x x e x e y x x x x --=-,代入点(,0)a 可得1111211(1)()x x e x e a x x x --=-,整理得,211(2)0x a x a -++=,则22(2)440a a a ∆=+-=+>,则方程必有两根,要使切线只有一条,必有一根为0,则0a =,12x =;设过点(0,)b 的切线且与曲线x e y x =相切于点222(,x e x x ,则切线方程为为2222222(1)()x x e x e y x x x x --=-,代入点(0,)b 可得2222222(2)(0)x x e x e b x x x --=-,整理得,222(2)x x e b x -=,令(2)()x x e g x x -=,则22(22)()xx x e g x x-+-'=,又2222(1)10x x x -+-=---<,则()0g x '<,∴函数()g x 在(,0)-∞,(0,)+∞上单调递减,且0x <时,()0g x <,02x <<时,()0g x >,2x >时,()0g x <,作出函数()g x的大致图象如下,要使切线只有一条,则y b =与()y g x =的图象只有一个交点,由图象可知,0b ;[0,).a b b ∴+=∈+∞故答案为[0,).+∞例8.已知抛物线2:2(0)y px p Γ=>,过焦点F且斜率为的直线l 交Γ于A ,B 两点(其中点A 在x 轴下方),再过A ,B 分别作抛物线准线的垂线,垂足分别为D ,C ,设1S ,2S 分别为ADF ,BCF 的面积,则12S S =__________.【答案】49【解析】如图,设直线AB 的倾斜角为θ,则tan 26θ=由抛物线的定义,||||||cos BF BC p BF θ==+,故5||11cos 415p p pBF θ===--,同理可得5||1cos 6p pAF θ==+,2212221||||sin ||251642.1||36259||||sin 2AF AD DAF S AF p S BF p BF BC CBF ∠===⨯=∠故答案为4.9例9.已知函数若方程(())20f f x -=恰有三个实数根,则实数k 的取值范围是__________.【答案】1(1,3--【解析】令得1t =-或,因为(())20f f x -=,所以(())2f f x =,所以或,(1)当0k =时,做出()f x 的图象如图所示:由图象可知无解,即(())20f f x -=无解,不符合题意;(2)当0k >时,做出()f x 的图象如图所示:由图象可知无解,无解,即(())20f f x -=无解,不符合题意;(3)当0k <时,做出()f x 的图象如图所示:由图象可知有1解,因为(())20f f x -=有3解,所以有2解,所以113k<- ,解得113k -<- ,综上,k 的取值范围是1(1,3--故答案为1(1,].3--核心考点四:换元法巧解填空题【典型例题】例10.若2(21)44f x x x +=+,则()f x 的解析式为__________.【答案】2()1f x x =-【解析】令21x t +=,12t x -∴=,代入2(21)44f x x x +=+,,故答案为:2() 1.f x x =-例11.已知函数20.3()log ()f x x ax a =--,若对任意两个不相等的实数121,(,)2x x ∈-∞-,()f x 都满足不等式2121()()0f x f x x x ->-,则实数a 的取值范围是__________.【答案】1[1,]2-【解析】由对任意两个不相等的实数1x ,21(,2x ∈-∞-,()f x 都满足不等式2121()()0f x f x x x ->-,可得()f x 在1(,)2-∞-上单调递增,令2t x ax a =--,因为0.3y log t =是定义域内的减函数,所以2t x ax a =--在1(,)2-∞-上单调递减,且恒大于0,则212211(022a a a ⎧-⎪⎪⎨⎪-+-⎪⎩ ,解得112a - ,故实数a 的取值范围是1[1,2-故答案为:1[1,].2-例12.若函数ln ()1x xf x ae x=--只有一个零点,则实数a 的取值范围是________.【答案】1(,0]{}e-∞⋃【解析】由ln ()e 10x xf x a x=--=,得ln x axe x x =+,所以ln ln .x x ae x x +=+令ln x x t +=,得e t t a =,即直线y a =与函数et ty =的图象只有一个交点.因为1e t t y -'=,当1t <时,0y '>,e t ty =单调递增;当1t >时,0y '<,et ty =单调递减.当t 趋近于-∞时,y 趋近于-∞;当t 趋近于+∞时,y 趋近于0,所以当1t =时,y 取得最大值为1.e因为函数()f x 只有一个零点,所以实数a 的取值范围为1(,0]{}.e-∞⋃故答案为1(,0]{}.e-∞⋃核心考点五:整体代换法巧解填空题【典型例题】例13.若[0,2]x ∃∈,使不等式1(1)ln (1)xe a ae e x x --+-- 成立,其中e 为自然对数的底数,则实数a 的取值范围是__________.【答案】21[,]e e【解析】依题意,不等式可化为ln 1ln ln a xe a a e ex e x +--+-- ,即ln 1ln (ln 1)1a xe a ex e ea x +--+++-- ,即ln 1(ln 1)(ln 1)1a xe a x ea x +--+++-- ,令ln 1t a x =-+,则问题等价于[1ln ,ln 1]t a a ∃∈-++,使得10tet e t --+ 成立.令()1x g x ex e x =--+,则()1x g x e e '=--,令()()h x g x =',则()0xh x e '=-<,所以()g x '单调递减,又当ln(1)x e =-时,()0g x '=,所以当(,ln(1)]x e ∈-∞-时,()0g x ' ,函数()g x 单调递增;当(ln(1),)x e ∈-+∞时,()0g x '<,函数()g x 单调递减.又(0)(1)0g g ==,因此[1ln ,ln 1]t a a ∃∈-++,使得10let e t --+ 成立时,只需ln 10a + 或ln 11a - 即可,解得21[,].a e e∈故答案为:21[,].e e例14.已知平面向量a ,b ,c 满足||1a = ,||2b = ,(2)b c a a c ⋅=- ,(2)c c b ⊥+ ,则__________.【答案】6【解析】因为||1a = ,||2b = ,所以21a = ,24b = ,由(2)b c a a c ⋅=- 得22b c a a c ⋅=-⋅ ,即21b c a c ⋅+⋅= ①,由(2)c c b ⊥+ 得220c b c +⋅= ②,①+②得22()1c a c b c +⋅+⋅= ,所以22||||c a c b +++ 222222c a c a c b c b=+⋅+++⋅+ 6.=故答案为:6.例15.设0x >,0y >,且2116()y x y x -=,则当1x y+取最小值时,221x y+=__________.【答案】12【解析】0x > ,0y >,∴当1x y+取最小值时,21()x y +取最小值,222112()x x x y y y +=++ ,22211612()y x x x y x y y -==+-,,221216x y x y y x∴+=+,21416(16x y x y y x ∴+=+ ,14x y ∴+ ,当且仅当416x y y x =即2x y =时取等号,当1x y +取最小值时,即14x y +=,2x y =时,则221216x x y y ++=,2212216y x y y ⋅∴++=,221221612.y x y y⋅∴+=-=故答案为12.。

2012年高考数学 冲刺60天解题策略 选择填空题解题策略

2012年高考数学 冲刺60天解题策略  选择填空题解题策略

选择填空题解题策略高考数学试题中,选择题注重多个知识点的小型综合,渗透各种思想方法,体现以考查“三基”为重点的导向,题量一般为10到12个,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.选择题主要考查基础知识的理解、接本技能的熟练、基本运算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面.解答选择题的基本策略是:要充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简单解法等.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.解数学选择题的常用方法,主要分为直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.填空题是将一个数学真命题,写成其中缺少一些语句的不完整形式,要求学生在指定空位上将缺少的语句填写清楚、准确. 它是一个不完整的陈述句形式,填写的可以是一个词语、数字、符号、数学语句等. 填空题大多能在课本中找到原型和背景,故可以化归为我们熟知的题目或基本题型. 填空题不需过程,不设中间分值,更易失分,因而在解答过程中应力求准确无误.根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求考生填写数值、数集或数量关系,如:方程的解、不等式解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等. 由于填空题和选择题相比,缺少选择的信息,所以高考题多数是以定量型问题出现.二是定性型,要求填写的是具有某种性质的对象或者填写给定数学对象的某种性质,如:给定二次曲线的焦点坐标、离心率等等. 近几年出现了定性型的具有多重选择性的填空题.填空题缺少选择的信息,故解答题的求解思路可以原封不动地移植到填空题上. 但填空题既不用说明理由,又无需书写过程,因而解选择题的有关策略、方法有时也适合于填空题.填空题虽题小,但跨度大,覆盖面广,形式灵活,可以有目的、和谐地结合一些问题,突出训练学生准确、严谨、全面、灵活地运用知识的能力和基本运算能力,突出以图助算、列表分析、精算与估算相结合等计算能力. 想要又快又准地答好填空题,除直接推理计算外,还要讲究一些解题策略,尽量避开常规解法.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格. 《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”. 为此在解填空题时要做到:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意.第一节选择题的解题策略(1)【解法一】直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出选项“对号入座”,作出相应的选择. 涉及概念、性质的辨析或运算较简单的题目常用直接法.例1 双曲线方程为22-=,则它的右焦点坐标为()21x yA .0)2B.0)2C. 0)2D. 0)点拨:此题是有关圆锥曲线的基础题,将双曲线方程化为标准形式,再根据,,a b c 的关系求出c ,继而求出右焦点的坐标.解:22213122c a b =+=+=,所以右焦点坐标为(0)2,答案选C.易错点:(1)忽视双曲线标准方程的形式,错误认为22b =;(2)混淆椭圆和双曲线标准方程中,,a b c 的关系,在双曲线标准方程中222c a b =+.例 2阅读右图所示的程序框图,运行相应的程序,输出的i 值等于( )A .2 B.3 C.4 D.5点拨:此题是程序框图与数列求和的简单综合题.解:由程序框图可知,该框图的功能是输出使和123122233211iS i =⋅+⋅+⋅++⋅> 时的i 的值加1,因为1212221011⋅+⋅=<,12312223311⋅+⋅+⋅>,所以当11S >时,计算到3i =故输出的i 是4,答案选C.易错点:没有注意到1i i =+的位置,错解3i =.实际上 i 使得11S >后加1再 输出,所以输出的i 是4.变式与引申: 根据所示的程序框图(其中[]x 表示不大于x 的最大整数),输出r =( ).A .73B.74C.2D.32例3正方体ABCD -1111A B C D 中,1B B 与平面1AC D 所成角的余弦值为( )A 33C.233点拨:此题考查立体几何线面角的求解.通过平行直线与同一平面所成角相等的性质及sin h lθ=转化后,只需求点到面的距离.解:因为1B B ∥1D D ,所以1B B 与平面1AC D 所成角和1D D 与平面1AC D 所 成角相等,设DO ⊥平面1AC D ,由等体积法得11D AC D DAC DV V --=,即111133AC D AC D S D O S D D ∆∆⋅=⋅.设1D D =a ,则122211111sin 60),22222AC D AC D S AC AD S AC C D a =⋅=⨯⨯=⋅=,.所以131,3AC D AC D S D D D O a S ⋅===记1D D 与平面1AC D 所成角为θ,则1sin 3D O D D θ==,所以cos 3θ=,故答案选D.易错点:考虑直接找1B B 与平面1AC D 所成角,没有注意到角的转化,导致思路受阻. 点评:直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高直接法解选择题的能力.准确把握题目的特点,用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错.【解法二】 特例法:用特殊值代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. 例4:在平面直角坐标系xoy 中,已知△ABC 的顶点A(-4,0) 和C(4,0),且顶点B 在椭圆221259x y +=上,则sin sin sin A C B +=( )A.54B. 35C.1D.45点拨:此题是椭圆性质与三角形的简单综合题,可根据性质直接求解,但正弦定理的使用不易想到,可根据性质用取特殊值的方法求解.解:根据B 在椭圆221259x y +=上,令B 在短轴顶点处,即可得答案选A.例5已知函数()f x =lg ,01016,102x x x x ⎧<≤⎪⎨-+>⎪⎩ 若,,a b c 均不相等,且()()()f a f b f c ==,则abc 的取值范围是 ( )A .(1,10) B.(5,6) C.(10,12) D.(20,24)点拨:此题是函数综合题,涉及分段函数,对数函数,函数图像变换,可结合图像,利用方程与函数的思想直接求解,但变量多,关系复杂,直接求解较繁,采用特例法却可以很快得出答案.解:不妨设a b c <<,取特例,如取1()()()2f a f b f c ===,则易得112210,10,11a b c -===,从而11abc =,故答案选C .另解:不妨设a b c <<,则由()()1f a f b ab =⇒=,再根据图像易得1012c <<.实际上,,a b c 中较小的两个数互为倒数.例6记实数12,,x x …n x 中的最大数为12m ax{,,}n x x x ⋅⋅⋅,最小数为12min{,,}n x x x ⋅⋅⋅.已知ABC ∆的三边边长为a 、b 、c (a b c ≤≤),定义它的倾斜度为m ax{,,}m in{,,}a b c a b ct b c a b c a=⋅,则“1t =”是“ABC ∆为等边三角形”的( )A . 充分布不必要的条件 B.必要而不充分的条件C. 充要条件D.既不充分也不必要的条件点拨:此题引入新定义,需根据新信息进行解题,必要性容易判断. 解:若△ABC 为等边三角形时、即a b c ==,则m a x {,,}1m i n {,,}a b ca b c b c ab c a==则t=1;若△ABC 为等腰三角形,如2,2,3a b c ===时,则32m ax ,,,m in ,,23a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎨⎬⎪⎭⎩⎭⎩,此时t=1仍成立但△ABC 不为等边三角形, 所以答案选B.点评:当正确的选择对象在题设条件都成立的情况下,用特殊值(取的越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略. 【解法三】 排除法:充分运用选择题中单选的特征(即有且只有一个正确选项),通过分析、推理、计算、判断,逐一排除,最终达到目的.例7 下列函数中,周期为π,且在[,]42ππ上为减函数的是( )A .sin(2)2y x π=+ B.cos(2)2y x π=+C.sin()2y x π=+D.cos()2y x π=+点拨:此题考查三角函数的周期和单调性. 解:C 、D 中函数周期为2π,所以错误.当[,]42x ππ∈时,32,22x πππ⎡⎤+∈⎢⎥⎣⎦,函数sin(2)2y x π=+为减函数,而函数cos(2)2y x π=+为增函数,所以答案选A.例8函数22x y x =-的图像大致是( )点拨:此题考查函数图像,需要结合函数特点进行分析,考虑观察零点. 解:因为当x =2或4时,220xx -=,所以排除B 、C ;当x =-2时,22xx -=14<04-,故排除D ,所以答案选A.易错点:易利用导数分析单调性不清导致错误.例9 设函数()212log 0log ()0xx f x x x >⎧⎪=⎨-<⎪⎩ , 若()()f a f a >-, 则实数a 的取值范围是( )A . (1,0)(0,1)-⋃ B. (,1)(1,)-∞-⋃+∞ C. (1,0)(1,)-⋃+∞ D.(,1)(0,1)-∞-⋃点拨:此题是分段函数,对数函数,解不等式的综合题,需要结合函数单调性,对数运算性质进行分析,分类讨论,解对数不等式,运算较复杂,运用排除法较易得出答案.解:取2a =验证满足题意,排除A 、D. 取2a =-验证不满足题意, 排除B.所以答案选C. 易错点:直接求解利用函数解析时,若忽略自变量应符合相应的范围,易解错点评:排除法适用于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选项范围内找出矛盾,这样逐步排除,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题, 尤其是选项为范围的选择题的常用方法.【解法四】 验证法:将选项中给出的答案代入题干逐一检验,从而确定正确答案.例10 将函数()sin()f x x ωϕ=+的图像向左平移2π个单位.若所得图像与原图像重合,则ω的值不可能...等于( ) A .4 B.6 C.8 D.12点拨:此题考查三角函数图像变换及诱导公式,ω的值有很多可能,用验证较易得出答案. 解:逐项代入验证即可得答案选B.实际上,函数()sin()f x x ωϕ=+的图像向左平移2π个单位所得函数为()sin[()]2f x x πωϕ=++=sin[()]2x πωϕω++⋅,此函数图像与原函数图像重合,即sin[()]2x πωϕω++⋅sin()x ωϕ=+,于是ω为4的倍数.易错点:()sin()f x x ωϕ=+的图像向左平移2π个单位所得函数解析式,应将原解析式中的x 变为2x π+,图像左右平移或x 轴的伸缩变换均只对x 产生影响,其中平移符合左加右减原则,这一点需要对图像变换有深刻的理解.例11设数列{}n a 中, 32,211+==+n n a a a , 则通项n a 是( )A .n 35-B .1231-⋅-n C .235n -D .3251-⋅-n点拨:此题考查数列的通项公式,直接求n a ,不好求,宜用验证法. 解:把1a 代入递推公式得:27a =,再把各项逐一代入验证可知,答案选D. 易错点:利用递推公式直接推导,运算量大,不容易求解.例12 下列双曲线中离心率为2的是( )A .22124xy-= B.22142xy-= C .22146xy-= D.221410xy-=点拨:此题考查双曲线的性质,没有确定形式,只能根据选项验证得出答案. 解:依据双曲线22221x y ab-=的离心率c e a=,逐一验证可知选B.易错点:双曲线中222c a b =+,与椭圆中222c a b =-混淆,错选D.变式与引申:下列曲线中离心率为2的是( )A .22124xy+= B.22142xy-= C .22146xy-= D.221410xy-=答案:选B 点评:验证法适用于题设复杂,但结论简单的选择题. 若能根据题意确定代入顺序则能较大提高解题速度.习题 7-1 1. 已知:p 直线1:10l x y --=与直线2:20l x ay +-=平行,:1q a =-,则p 是q 的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人能( )A .不能作出这样的三角形 B.作出一个锐角三角形 C.作出一个直角三角形 D.作出一个钝角三角形3.设{}n a 是任意等比数列,它的前n 项、前2n 项、与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是( )A .2X Z Y += B.()()Y Y X Z Z X -=- C.2Y XZ =D.()()Y Y X X Z X -=-4.定义在R 上的奇函数()f x 为减函数,设0a b +≤,给出下列不等式:①()()0f a f a ⋅-≤;②()()0f b f b ⋅-≥;③()()()()f a f b f a f b +≤-+-④()()()()f a f b f a f b +≥-+-,其中正确的不等序号是( )A .①②④ B.①④ C.②③ D.①③5.如图,在棱柱的侧棱1A A 和1B B 上各有一动点P Q、满足1A P B Q =,过三点P Q C、、的截面把棱柱分成两部分,则其体积之比为( )A .3:1 B.2:1 C.4:16.已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为( )A .22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D. 22(1)(1)2x y +++= 7. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( )A .向右平移π6个单位B .向右平移π3个单位C .向左平移π3个单位D .向左平移π6个单位【答案】 习题 7-13. D.提示:法一:(直接法)设等比数列公比为q 则 2,n n n Y X X q Z X X q X q =+⋅=+⋅+⋅2,nnnnY X X qX X Z XX q X qX X qY-⋅===-⋅+⋅+⋅即()()Y Y X X Z X -=-.法二:(特例法)取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算、只有选项D 满足. 4. B .提示:法一:(直接法)根据()f x 为奇函数知()=(),()=()f a f a f b f b ----, 由0a b +≤知a b ≤-,b a ≤-,再根据()f x 为减函数可得()(),()()f a f b f b f a ≤-≤-,故①④正确.法二:(特例法)取()f x x =-,逐项检验可得. 5.B .。

高考数学备考经验交流选择填空知识点分布及训练策略

高考数学备考经验交流选择填空知识点分布及训练策略
应要求学生完整地保留做过的限时训练题目,以
便回顾对比之用,还应要求学生准备自己的错题 本,以便纠错改过之用。 教师在对学生进行了 3-4 次限时训练后,就应参 照学生做题的实际情况,分析学生做题过程中出 现的问题,针对解法不当的题目和学生知识薄弱 易 错 的地方,再次自编题目进行考查,以此来强 化学生的知识。
2011年
2012年
2013年
二、考点分布
2011年—2013年高考选择、填空题
2011年
2012年
2013年
二、考点分布
2011年—2013年高考选择、填空题
2011年
2012年
2013年
二、考点分布
2011年—2013年高考选择、填空题
2011年
2012年
2013年
二、考点分布
2011年—2013年高考选择、填空题
2011年—2013年高考选择、填空题
2011年
二、考点分布
2011年
2011年—2013年高考选择、填空题
2013年
2011年—2013年高考选择、填空题
2011年
二、考点分布
2012年
2013年
二、考点分布
2011年—2013年高考选择、填空题
2012年
1.侧重于主干内容的考查
二、考点分布 高频考点
2011年Βιβλιοθήκη 2012年2013年
二、考点分布
2011年—2013年高考选择、填空题
2011年
2012年
2013年
二、考点分布
2011年—2013年高考选择、填空题
2011年
二、考点分布
2011年—2013年高考选择、填空题

备考高考数学最好用的策略与方法精选3篇

备考高考数学最好用的策略与方法精选3篇

备考高考数学最好用的策略与方法精选3篇【篇1】备考高考数学最好用的策略与方法1、课后一分钟回忆及时复习上完课的当天,必须做好当天的复习。

复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题;分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。

然后打开笔记与书本,对照一下还有哪些没记清的,赶紧补完,这样不仅能把当天上课内容巩固下来,而且也能检查当天课堂听课的效果如何,同时也可改进听课方法及提高听课效果。

我们可以简记为“一分钟的回忆法”。

2、避免“会而不对”的错误习惯解题时应仔细阅读题目,看清数字,规范解题格式,养成良好解题习惯。

部分同学(尤其是脑子比较好的同学)自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范。

但在正规考试中即使答案对了,由于过程不完整而扣分较多。

还有一部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。

这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,费时费力,影响整体得分。

这些问题很难在短时间得以解决,必须在平时养成良好解题习惯。

“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。

可结合平时解题中存在的具体问题,逐题找出原因,看其到底是行为习惯方面的原因,还是知识方面的缺陷,再有针对性地加以解决。

必要时要作些记录,也就是“错题笔记”。

每过一段时间,就把“错题笔记”或标记错题的试卷复习一遍。

在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。

3、重视“一题多解”“多题同解”学好数学要做大量的习题,但做了大量的题,数学都未必好,为何会出现这种反差呢?究其原因,是片面追求做题数量,而没有发挥做题的效果。

高考数学填空题的常见题型及解题策略

高考数学填空题的常见题型及解题策略

所以双曲线 的方程是
解: 根据不等式解集 的几
() 2 特例求解法 : 包括特殊值法 、 特殊函数法、 特殊 位置 法 、 殊点 法 、 特 特殊数 列法 、 特殊模 型法 等 ;
当填空题的题 目提供 的信息暗示答案唯一或其值为 定值 时 , 可选 取符 合 条件 的特殊情 形进 行处理 , 到 得 结论. 例 3 已知等差数列 { 的公差 d , a , a} ≠0 a ,,
题、 多选填 空题 、 件 与结 论 开 放 的填 空 题. 条 填空 题
大多是定量的, 近几年才出现定性型的具有多重选 择性 的填空题 和 开放 性 填 空题 . 这说 明 了填空 题 是
数学 高考命题 改 革 的试 验 田 , 创新 型 的填 空题 将 会 不断 出现. 因此 , 们 在 备 应试 的技 能准备. 又要
本 技能 和基本思 想方法 的考察.
() 2 能测试 出考生 对概 念 、 原理 、 质 、 则 、 性 法 定 理 和公式 的理解 和掌握程 度.
( ) 一定 程 度 上 能 有效 考 察 逻 辑 思 维 能 力 、 3在
运算能力、 空间想象能力 , 以及灵活和综合 的运用数
学知识 解决 问题 的能力.
导向, 使作为中低档题 的填空题成为具备较佳区分 度的基本题型. 因此能否在填空题上获取高分, 对高
考数 学成绩 影响 重大. 于 以上 原 因 , 空题 受到越 基 填
来越多的重视. 教师应在教学 中强调了填空题的重
要性并加强 了对填空题 的解题方法和技巧的指导.
lS<, s >, fa0 。a0 tt0 i 0 a < f n n CO , 。 , O I <
6 ・ 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学能力备考之填空题解题策略一、考情分析填空题是高考数学的三种基本题型之一,高考题的命制对于填空题来说,涉及的知识点较多,几乎可以渗透到高中数学的每个章节,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题. 这说明了填空题是数学高考命题创新改革的“试验田”,将各类新定义题、开放题、探索题等来命制题目,出题灵活,注重对能力的考查。

近年高考对填空题的题量及分值有增无减的趋势。

预测2009年创新型的填空题将会出现情境创新题,因此,我们在备考时,既要把关注这一新动向,又要做好应试的技能准备。

填空题是高考题中客观性题型之一,具有小巧灵活,结构简单,概念性强,运算不大,不需要写出求解过程而只需直接写出结论等特点。

虽然量少(目前只有64-题),但考生的得分率较低,不很理想。

究其原因,考生还不能达到《考试说明》中对解答填空题提出的基本要求:“正确、合理、迅速”。

那么,怎样才能做到“正确、合理、迅速”地解答填空题,为做后面的题赢得宝贵的时间呢?要做到:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意二、高考数学填空题的特点1.与选择题相比填空题缺少选择项的信息,更像一道解答题,故解答题的求解思路可以原封不动地移植到填空题上,如解答填空题的直接运算推理法.2.与解答题相比,填空题又不用说明理由,又无需书写过程,在这一方面,填空题更接近于选择题,因而解选择题的有关策略、方法有时也适合于填空题.3.由于填空题常用来考查基本概念、基本运算、大多是一些能在课本中找到原型或背景的题目,故可以通过观察、分析、转化、变为已知的题目或非常熟悉的基本题型,这是填空题区别于某些高档综合题的重要所在.4. 填空题无需解答过程,因而解答过程的每一步必须百分之百地准确,一步失误,全题零分,从考试的角度看,填空题相比选择题和解答题更容易失分.三、解答策略同选择题一样,填空题也属于“小灵通”题,其解题“不讲道理”,所以解答填空题的基本原则是“不择手段”、“小题不能大做”,小题需小做、繁题会简做、难题要巧做,解答大部分填空题的基本方法是“直接运算推理法”,部分填空题也可用等价转化法、特例求解法(特殊值法、特殊函数法、特殊角法、特殊数列法、特殊位置法、特殊模型法等)、数形互助法、合理构造法、以题攻题法、规律发现法、逐一判断法、验证法。

解题应突出转化的思想(转化为图象、转化为特殊图形、转化为易于解决的问题等),力争小题小做或小题巧做。

1.直接运算推理法对所给问题比较简单或比较熟悉时,可直接利用课本中的定义,性质,定理,公式等,进行推理演算而得到正确答案.【例1】(2008年,辽宁卷)设),2,0(π∈x 则函数x x y 2sin 1sin 22+=的最小值为 . 【分析及解】由二倍角公式及同角三角函数的基本关系得:x x x x x x x x x x x y tan 21tan 3cos sin 2cos sin 3cos sin 21sin 22sin 1sin 222222+=+=+=+= =xx tan 21tan 23+, ∵),2,0(π∈x ∴0tan >x ,利用均值定理,3tan 21tan 232=⋅≥xx y ,当且仅当31tan 2=x 时取“=”,∴3m in =y ,所以应填3. 【评述】运用直接法,必须根据题设条件联想相应的知识进行求解,本题的关键是明确化简变形的方向,即将式子化为只含一个变量,利用齐次式化为正切进行统一变量,然后根据特点运用均值定理进行求解。

2.等价转化法对所给的问题较为复杂或较为陌生时,可通过等价转化为另一种容易理解的语言,或通过适当的变形转化为容易求解的形式,再求解【例2】(2006年,全国I 卷)过点(1,2)的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k = 。

【分析及解】由已知点)2,1(P 在圆4)2(22=+-y x 的内部,圆心为)0,2(C ,要使得劣弧所对的圆心角最小,等价于过点P 的弦最短,显然只能是直线CP l ⊥,由斜率关系,得22211=--=-=CP k k ,所以应填22. 【评述】本题初看很难,运用等价转化,即过点P 的弦最短,可迅速解决问题.3.特例求解法当填空题的结论唯一或其值为定值时,我们只须把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。

一般用于所给的问题比较抽象,或具有一般性时,可通过具体化和特殊化而获得解决。

【例3】(2007年,江西卷)已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=91,则a 36= .【分析及解】取特殊数列kn a n =)0(≠k ,又a 1=91,得91=k ,即n a n 91=,∴436=a ,故应填4【评述】运用常规方法费时费力,取特殊值数列即可轻松解决。

4.数形互助法借助图形的直观形,通过数形结合的方法,迅速作出判断的方法称为图像法。

文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

数形互助法是以数形结合的数学思想为指导的一个解题方法.由于填空题不必写出论证过程,因而画出辅助图像、方程的曲线或借助表格等进行分析并解答。

【例4】(2008年,湖北卷)方程322=+-x x 的实数解的个数为 .【分析及解】∵322=+-x x ,∴3)21(2+-=x x , 令x y )21(=和32+-=x y ,其两函数的图象如图所示, 由图可得方程322=+-x x 的实数解的个数为2.【评述】求方程解的个数,可以画出方程两边的函数的图象, 通过观察图象的交点的个数来研究方程解的个数.5.合理构造法是指根据题意合理构造函数、方程、数列、复数及图形和有关命题,使问题转化,特别适合解决开放性的填空题。

【例5】(2008年,,则其外接球的表面积是 .【分析及解】如图所示,以侧棱为棱长补成正方体,则正方体的对角线l 恰为外接球的直径R 2, 所以332==a R (a 为正方体棱长).即23=R , 所以ππ942==R S【评述】对于共点三条棱两两垂直的三棱锥,可以此三条棱为边补成正方体,从而使线面关系纳入正方体中解决。

6.以题攻题法由于填空题不需要过程,故可挖掘课本例题、习题潜在的功能及常用结论,可以达到以题攻题,直接得出结果。

【例6】(2006年,广东卷)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为 .【分析及解】由正方体的对角线l 恰为球的直径R 2,R l 233=⨯=,所以233=R , 则球的表面积为ππ2742==R S 【评述】本题利用长方体、正方体、直四棱柱的外接球直径R 2恰为其对角线l 的长(即R l 2=)直接解答,简洁明快。

7.规律发现法对所给问题有的比较熟悉,但直接求解又比较费时,费力;而有的问题比较新颖,如情境创新题中定义新概念、定义新图形、定义新数表等问题可通过观察,分析题目特征,探索规律,发现关系进而再求解。

【例7】(2008年,江苏卷)将全体正整数排成一个三角形数阵:12 34 5 67 8 9 1011 12 13 14 15。

按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为 .【分析及解】该数阵的第1行有1个数,第二行有2个数,。

第n 行有n 个数,故第)3(1≥-n n 行的最后一个数为222)11)(1(2n n n n -=-+-,故第n 行的第3个数为S A B C)3(3222≥+-n n n 【点评】数表是对数列的一种拆分,不同的分拆方式就会产生不同的数表,本题中的数阵是 对正整数的一种重排,只要找出其规律便不难求得答案。

近年来“数表问题”频频出现在高 考试卷上,它与组合数知识、数列知识强强联手,奏出一曲曲优美的“乐章”,而杨辉三角 的规律很多,内容丰富,设问较多且题型灵活,解法巧妙。

希望读者试着总结。

【例8】(2002年,全国卷)已知函数221)(x x x f += 那么=++++++)41()4()31()3()21()2()1(f f f f f f f . 【分析及解】因为1)1()(=+x f x f ,21)1(=f ,于是所求27321=+=,应填.27 【评述】容易发现1)1()(=+x f x f ,这就是我们找出的有用的规律。

而不是把每个值都代入函数解析式算一算,然后在加一加而得.8.开放题的解法填空题中的开放题有结论开放(含组合型多选题)、条件开放、综合开放,答案往往不唯一,解题时注意数学思想的应用.【例9】(2008年,全国II 卷)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行.类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件; 充要条件① ;充要条件② .(写出你认为正确的两个充要条件)【分析及解】本题给出四边形为平行四边形的充要条件,,类比空间中的一个四棱柱为平行六面体的两个充要条件,这类结论开放性题目,往往结论是不唯一的,如: 两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形等等均是其充要条件。

【点评】本题是归纳类比型问题 ,这种题目的特点是给出一个数学情景或一个数学命题,要求解题者用发散思维去联想、类比、推广、转化,在解题中发现属性、发现关系、发现相似性,从而找出类似的命题,推广的命题、深入的命题或根据一些特殊的数据,特殊的情况去归纳出一般的规律.四.教学建议数学填空题的特点是只注重结果,不考虑过程,虽然省去过程给解题带来了速度,但是一旦结果有误就“全军覆没”,结果有误通常都是“会而不对,对而不全”所致,教学中应引导学生注意以下几点。

1.审题要仔细这是解答好填空题的前提,要从看清题目中的每一个字、词、数据、符号到理解题意、分析隐含条件,寻求简洁的解题方法,以及推理运算做到准确无误。

2.明确要求,看清题意要作答的要求要看清楚,如:“正确的是”、“不正确的是”、“精确到”、“用数字作答”、 “填上你认为正确的一种条件即可”、“把你认为正确的命题的序号都填上”、“结果保留π”等等,由于填空题没有解答过程,没有步骤分,一笔失误,则徒劳无功,前功尽弃。

3.书写要规范是指以下几个方面:①对于计算填空题,结果往往要化为最简形式,特殊角的三角函数要写出函数值,近似计算要达到精确度要求,如:21不能写成42或030sin 等;②所填结果要完整,如:条件型填空题,不能漏填,有条件限制的求反函数,不能缺少定义域;求三角函数的定义域、单调区间等,不能缺少Z k ∈,如集合},2|{Z k x x ∈=π不能写为}2|{π=x x ③要符合现行数学习惯书写格式,如分数书写常用分数线,而不用斜线形式;求不等式的解集、求函数的定义域、值域,结果写成集合或区间形式。

相关文档
最新文档