直角三角形的判定典型练习题汇编

合集下载

专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编

专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编

专题28解直角三角形(58题)一、单选题1.(2024·吉林长春·中考真题)2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为()A .sin a θ千米B .sin aθ千米C .cos a θ千米D .cos aθ千米2.(2024·天津·2cos451- 的值等于()A .0B .1C .212-D 213.(2024·甘肃临夏·中考真题)如图,在ABC 中,5AB AC ==,4sin 5B =,则BC 的长是()A .3B .6C .8D .94.(2024·四川自贡·中考真题)如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢()A .(243m-B .(243m-C .(2463m-D .(243m-5.(2024·四川德阳·中考真题)某校学生开展综合实践活动,测量一建筑物CD 的高度,在建筑物旁边有一高度为10米的小楼房AB ,小李同学在小楼房楼底B 处测得C 处的仰角为60︒,在小楼房楼顶A 处测得C 处的仰角为30︒.(AB CD 、在同一平面内,B D 、在同一水平面上),则建筑物CD 的高为()米A .20B .15C .12D .10+6.(2024·广东深圳·中考真题)如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m7.(2024·内蒙古包头·中考真题)如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为()A .10B .10C .13D .238.(2024·黑龙江大兴安岭地·中考真题)如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为()A 5B 455C 355D 259.(2024·四川乐山·中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为()A .36B 33C 32D 310.(2024·山东泰安·中考真题)如图,菱形ABCD 中,=60B ∠︒,点E 是AB 边上的点,4AE =,8BE =,点F 是BC 上的一点,EGF △是以点G 为直角顶点,EFG ∠为30︒角的直角三角形,连结AG .当点F 在直线BC 上运动时,线段AG 的最小值是()A .2B .432-C .23D .411.(2024·四川泸州·512-的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B '处,AB '交CD 于点E ,则sin DAE ∠的值为()A 55B .12C .35D 25512.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sinNBC ∠BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是()A .①②③④B .①③⑤C .①②④⑤D .①②③④⑤二、填空题13.(2024·黑龙江绥化·中考真题)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为m (结果保留根号).14.(2024·内蒙古赤峰·中考真题)综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos 650.423︒≈,tan 65 2.145︒≈).15.(2024·湖北武汉·中考真题)黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)16.(2024·四川内江·中考真题)如图,在矩形ABCD 中,3AB =,5AD =,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么tan ∠=EFC .17.(2024·江苏盐城·中考真题)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)18.(2024·北京·中考真题)如图,在正方形ABCD 中,点E 在AB 上,AF D E ⊥于点F ,CG DE ⊥于点G .若5AD =,CG 4=,则AEF △的面积为.19.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片ABCD ,OM 为折痕,以点O 为圆心,OM 为半径作弧,分别交AD ,BC 于E ,F 两点,则 EF的长度为(结果保留π).20.(2024·黑龙江齐齐哈尔·中考真题)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC 置于平面直角坐标系中,点O 的坐标为(00),,点B 的坐标为(1)0,,点C 在第一象限,120OBC ∠=︒.将OBC △沿x 轴正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后,点O 的对应点为O ',点C 的对应点为C ',OC 与O C ''的交点为1A ,称点1A 为第一个“花朵”的花心,点2A 为第二个“花朵”的花心;……;按此规律,OBC △滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为.21.(2024·黑龙江大兴安岭地·中考真题)矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为.22.(2024·山东泰安·中考真题)在综合实践课上,数学兴趣小组用所学数学知识测量大汶河某河段的宽度,他们在河岸一侧的瞭望台上放飞一只无人机,如图,无人机在河上方距水面高60米的点P 处测得瞭望台正对岸A 处的俯角为50︒,测得瞭望台顶端C 处的俯角为63.6︒,已知瞭望台BC 高12米(图中点A ,B ,C ,P 在同一平面内),那么大汶河此河段的宽AB 为米.(参考数据:3sin 405︒≈,9sin 63.610︒≈,6tan 505︒≈,tan 63.62︒≈)23.(2024·四川达州·中考真题)如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是.24.(2024·贵州·中考真题)如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为.25.(2024·广东深圳·中考真题)如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是cm .三、解答题27.(2024·内蒙古通辽·0322sin60(π)-+︒--.28.(2024·四川甘孜·中考真题)如图,一艘海轮位于灯塔P 的北偏东37︒方向,距离灯塔100海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.这时,B 处距离A 处有多远?(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)29.(2024·北京·中考真题)计算:()0582sin 302π-︒+-30.(2024·湖南长沙·中考真题)计算:()011(32cos 30π 6.84-+-︒-.31.(2024·广东深圳·中考真题)计算:()112cos 45 3.14124π-⎛⎫-⋅︒+-++ ⎪⎝⎭.32.(2024·黑龙江大兴安岭地·中考真题)先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos60m =︒.33.(2024·吉林·中考真题)图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)34.(2024·青海·018tan 452π︒+--.35.(2024·内蒙古呼伦贝尔·中考真题)计算:301tan6032(π2024)2-⎛⎫--+︒-+- ⎪⎝⎭.36.(2024·内蒙古呼伦贝尔·中考真题)综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的D 处,测得操控者A 的俯角为30︒,测得楼BC 楼顶C 处的俯角为45︒,又经过人工测量得到操控者A 和大楼BC 之间的水平距离是80米,则楼BC 的高度是多少米?(点A B C D ,,,都3 1.7≈)37.(2024·内蒙古通辽·中考真题)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C 点测得杨树底端B 点的仰角是30︒,BC 长6米,在距离C 点4米处的D 点测得杨树顶端A 点的仰角为45︒,求杨树AB 的高度(精确到0.1米,AB ,BC ,CD 在同一平面内,点C ,D 在同一水平线上.参考数据:3 1.73)≈.38.(2024·湖南·中考真题)某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等活动过程模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF 的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.39.(2024·贵州·中考真题)综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)40.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 3 1.73≈).41.(2024·天津·中考真题)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.42.(2024·四川乐山·中考真题)我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA 的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.43.(2024·山东·中考真题)【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据湖岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.44.(2024·北京·中考真题)如图,在四边形ABCD 中,E 是AB 的中点,DB ,CE 交于点F ,DF FB =,AF DC .(1)求证:四边形AFCD 为平行四边形;(2)若90EFB ∠=︒,tan 3FEB ∠=,1EF =,求BC 的长.45.(2024·甘肃临夏·中考真题)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB 的实践活动.A 为乾元塔的顶端,AB BC ⊥,点C ,D 在点B 的正东方向,在C 点用高度为1.6米的测角仪(即 1.6CE =米)测得A 点仰角为37︒,向西平移14.5米至点D ,测得A 点仰角为45︒,请根据测量数据,求乾元塔的高度AB .(结果保留整数,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)46.(2024·安徽·中考真题)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).47.(2024·浙江·中考真题)如图,在ABC 中,AD BC ⊥,AE 是BC 边上的中线,10,6,tan 1AB AD ACB ==∠=.(1)求BC 的长;(2)求sin DAE ∠的值.48.(2024·甘肃·中考真题)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)49.(2024·河北·中考真题)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.50.(2024·四川广元·中考真题)计算:()2012024π32tan 602-⎛⎫-++︒- ⎪⎝⎭.51.(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值sin sin αβ叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4α=30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.52.(2024·内蒙古包头·中考真题)如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).53.(2024·甘肃·中考真题)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .54.(2024·黑龙江牡丹江·中考真题)如图,某数学活动小组用高度为1.5米的测角仪BC ,对垂直于地面CD 的建筑物AD 的高度进行测量,BC CD ⊥于点C .在B 处测得A 的仰角=45ABE ∠︒,然后将测角仪向建筑物方向水平移动6米至FG 处,FG CD ⊥于点G ,测得A 的仰角58AFE ∠=︒,BF 的延长线交AD 于点E ,求建筑物AD 的高度(结果保留小数点后一位).(参考数据:sin580.85,cos580.53,tan58 1.60︒≈︒≈︒≈)55.(2024·广东·中考真题)中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 3 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.56.(2024·广东广州·中考真题)2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)57.(2024·青海·中考真题)如图,某种摄像头识别到最远点A 的俯角α是17︒,识别到最近点B 的俯角β是45︒,该摄像头安装在距地面5m 的点C 处,求最远点与最近点之间的距离AB (结果取整数,参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈).58.(2024·陕西·中考真题)问题提出(1)如图1,在ABC 中,15AB =,30C ∠=︒,作ABC 的外接圆O .则 ACB 的长为________;(结果保留π)问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点D ,E ,C ,线段AD AC ,和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E 在AC 上,且AE EC =,60DAB ∠=︒,120ABC ∠=︒,1200m AB =,900m AD BC ==,现要在湿地上修建一个新观测点P ,使60DPC ∠=︒.再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道PF PD PC ,,,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分.请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点A ,B ,C ,P ,D 在同一平面内,道路AB 与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)。

《直角三角形的判定》综合练习

《直角三角形的判定》综合练习

直角三角形的判定1.假设△ABC的三边长a,b,c满足a2+b2=c2,则△ABC是______三角形,_____=90°,这个定理叫做_______.2.一个命题成立,那么它的逆命题_______成立.◆课堂测控1.已知△ABC的三边长a,b,c分别为6,8,10,则△ABC______(•填“是”或“不是”)直角三角形.2.△ABC中,AB=7,AC=24,BC=25,则∠A=______.3.△ABC的三边分别为以下各组值,其中不是直角三角形三边的是()A.a=41,b=40,c=9 B.a=1.2,b=1.6,c=2C.a=12,b=13,c=14D.a=35,b=45,c=14.(分析判断题)在解答“判断由长为65,2,85的线段组成的三角形是不是直角三角形”一题中,小明是这样做的:解:设a=65,b=2,c=85.因为a2+b2=(65)2+22=136642525=c2.所以由a,b,c组成的三角形不是直角三角形,你认为小明的解答准确吗?•请说明理由.测试点二逆命题与逆定理5.以下各命题都成立,写出它们的逆命题,这些逆命题成立吗?(1)内错角相等,两直线平行;(2)对顶角相等;(3)全等三角形的对应角相等;(4)假设两个实数相等,那么它们的绝对值相等.◆课后测控1.以以下数组为三角形的边长:(1)5,12,13;(2)10,12,13;(3)7,24,25;(4)6,8,10,其中能构成直角三角形的有()A.4组B.3组C.2组D.1组2.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中准确的是()3.以下命题中,真命题是()A.假设三角形三个角的度数比是3:4:5,那么这个三角形是直角三角形B.假设直角三角形两直角边的长分别为a和b,那么斜边的长为a2+b2 C.若三角形三边长的比为1:2:3,则这个三角形是直角三角形D.假设直角三角形两直角边分别为a和b,斜边为c,那斜边上的高h的长为ab c4.以下命题的逆命题是真命题的是()A.若a=b,则a2=b2B.全等三角形的周长相等C.若a=0,则ab=0 D.有两边相等的三角形是等腰三角形5.△ABC中,BC=n2-1,AC=2n,AB=n2+1(n>1),则这个三角形是______.6.假设三角形的三边长为1.5,2,2.5,那么这个三角形最短边上的高为______.7.A,B,C三地的位置及两两之间的距离如下列图,则点C•在点B•的方位是_____.8.如下列图,四边形ABCD中,BA⊥DA,AB=2,AD=23,CD=3,BC=5,求∠ADC的度数.9.写出以下命题的逆命题,并判断真假.(1)假设a=0,那么ab=0;(2)假设x=4,那么x2=16;(3)面积相等的三角形是全等三角形;(4)假设三角形有一个内角是钝角,则其余两个角是锐角;(5)在一个三角形中,等角对等边.10.如下列图,在△ABC中,AB:BC:CA=3:4:5,且周长为36,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,假设同时出发,问过3秒时,△BPQ的面积为多少?◆拓展创新11.能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,•观察以下表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论.(2)写出当a=17时,b,c的值.参考答案回顾归纳3,4,5 32+42=52 5,12,13 52+122=132 7,24,25 72+242=252 9,40,41 92+402=412……17,b,c 172+b2=c21.直角,∠C,勾股定理的逆定理2.不一定课堂测控1.是2.90°点拨:BC2=AB2+AC23.C 点拨:计算两短边的平方和与最长边的平方比较.4.不准确.因为65<2,85<2,且(65)2+(85)2=22,即a2+c2=b2,所以此三角形为直角三角形.5.(1)两直线平行,内错角相等.成立.(2)假设两个角相等,那么它们是对顶角,不成立.(3)假设两个三角形的对应角相等,则它们全等.不成立.(4)假设两个实数的绝对值相等,那么它们相等,不成立.课后测控1.B 点拨:有(1)(3)(4)三组.2.C 3.D 4.D5.直角三角形点拨:BC2+AC2=AB2.6.6 57.正南方向8.∵AB⊥AD,AB=2,∴,∴AB=12BD,∠ADB=30°,∵BD2+DC2=42+32=52,∴BD2+DC2=BC2.∴∠BDC=90°,∴∠ADC=120°.9.(1)的逆命题是:假设ab=0,那么a=0,它是一个假命题.(2)的逆命题是:假设x2=16,那么x=4,它是一个假命题.(3)的逆命题是:全等三角形的面积相等.它是一个真命题.(4)的逆命题是:假设三角形有两个内角是锐角,那么另一个内角是钝角,它是一个假命题.(5)的逆命题是:在一个三角形中,等边对等角,它是一个真命题.10.先求AB=9,BC=12,AC=15,由AB 2+BC 2=AC 2可得△ABC 是直角三角形.所以S △PBQ =12BP·BQ=12×(9-3)×6=18cm 2. 拓展创新11.(1)以上各组数的共同点能够从以下方面分析:①以上各组数均满足a 2+b 2=c 2;②最小的数(a )是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m 为大于1的奇数,将m 2拆分为两个连续的整数之和,即m 2=n+(n+1), 则m ,n ,n+1就构成一组简单的勾股数.证明:∵m 2=n+(n+1)(m 为大于1的奇数),∴m 2+n 2=2n+1+n 2=(n+1)2,∴m ,n ,(n+1)是一组勾股数.(2)使用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.。

直角三角形性质练习题

直角三角形性质练习题

直角三角形性质练习题一、选择题1. 在直角三角形中,斜边的长度总是()A. 等于两直角边长度之和B. 大于两直角边长度之和C. 小于两直角边长度之和D. 等于两直角边长度之差2. 直角三角形的勾股定理表述为:直角三角形的斜边的平方等于()A. 两直角边的平方和B. 两直角边的平方差C. 两直角边的和的平方D. 两直角边的差的平方3. 如果直角三角形的两条直角边分别为3和4,那么斜边的长度是()A. 5B. 6C. 7D. 84. 直角三角形的内角和为()A. 120°B. 150°C. 180°D. 360°5. 直角三角形的高是指()A. 从直角顶点向斜边作垂线段B. 从直角顶点向对边作垂线段C. 从斜边顶点向直角边作垂线段D. 从对边顶点向斜边作垂线段二、填空题6. 直角三角形的两条直角边分别为a和b,斜边为c,根据勾股定理,c²=________。

7. 若直角三角形的一条直角边为5,斜边为13,则另一条直角边的长度为________。

8. 在直角三角形中,若一个角为30°,则另一个非直角的锐角为________。

9. 直角三角形的面积公式为________。

10. 如果直角三角形的斜边长度为10,一条直角边为6,那么另一条直角边的长度为________。

三、计算题11. 已知直角三角形的两条直角边分别为6cm和8cm,求斜边的长度。

12. 一个直角三角形的斜边长度为17cm,若已知其中一条直角边为15cm,求另一条直角边的长度。

13. 一个直角三角形的高为4cm,底边为6cm,求这个三角形的面积。

14. 一个直角三角形的斜边长度为20cm,其中一条直角边为xcm,另一条直角边为(20-x)cm,求x的值。

15. 已知一个直角三角形的斜边长度为25cm,其中一条直角边的长度为15cm,求这个三角形的周长。

四、解答题16. 证明直角三角形的内角和为180°。

初三解直角三角形知识点和练习题汇编

初三解直角三角形知识点和练习题汇编

中考解直角三角形考点一、直角三角形的性质1直角三角形的两个锐角互余:可表示如下:/C=90 = / A+Z B=90°2、 在直角三角形中,30°角所对的直角边等于斜边的一半。

3、 直角三角形斜边上的中线等于斜边的一半4、 勾股定理: 如果直角三角形的两直角边长分别为 a , b ,斜边长为c ,那么a 2+ b 2二c 2.即直角三角 形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a , b , c 有下面关系:a 2+ b 2= c 2,那么这个三角形是直角三角 形。

考点二、直角三角形的判定1有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形 2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理: 如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。

(经 典直角三角形:勾三、股四、弦五) 用它判断三角形是否为直角三角形的一般步骤是:(1) 确定最大边(不妨设为c );(2) 若c 2= a 2 + /,则厶ABC 是以Z C 为直角的三角形;若a 2 + b 2v c 2,则此三角形为钝角三角形(其中 若a 2 + b 2>c 2,则此三角形为锐角三角形(其中4. 勾股定理的作用:(1) 已知直角三角形的两边求第三边。

(2) 已知直角三角形的一边,求另两边的关系。

(3) 用于证明线段平方关系的问题。

(4) 利用勾股定理,作出长为n 的线段 考点三、锐角三角函数的概念1 如图,在△ ABC 中, Z C=90学习-----好资料c 为最大边); c 为最大边)①锐角A 的对边与斜边的比叫做Z A 的正弦,记为sinA , 即 sin A =.A 的对边 斜边②锐角A 的邻边与斜边的比叫做Z A 的余弦,记为cosA ,cos A 二斜边/砒对边 二B 的邻边/A 的邻边的对边③锐角A 的对边与邻边的比叫做/ A 的正切,记为tanA ,即tanA 二/A 的邻边 b④锐角A 的邻边与对边的比叫做,A 的余切,记为cotA ,即co 心匚丽边=夕 2、 锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做/ A 的锐角三角函数 3、 一些特殊角的三角函数值(1)互余关系:sinA=cos(90 ° — A), cosA=sin(90 ° — A);(2)平方关系:sin 2 A cos 2 A =15、锐角三角函数的增减性 当角度在0° ~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小);(2)余弦值随着角度的增大(或减小)而减 小(或增大);(3)正切值随着角度的增大(或减小)而增大(或减小);(4)余切值随着角度的增大(或 减小)而减小(或增大) 考点四、解直角三角形 1、 解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知 元素求出所有未知元素的过程叫做解直角三角形。

2022年《直角三角形全等的判定》专题练习(附答案)

2022年《直角三角形全等的判定》专题练习(附答案)

1.3 直角三角形全等的判定一、选择题(本大题共8小题)1. 在以下条件中,不能判定两个直角三角形全等的是( )2. 如下图,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,那么图中全等的三角形有( )第2题图第5题图第6题图3.以下说法中正确的选项是〔〕A.a,b,c是三角形的三边长,那么a2+b2=c2B.在直角三角形中,两边长和的平方等于第三边长的平方C.在Rt△ABC中,假设∠C=90°,那么三角形对应的三边满足a2+b2=c2D.在Rt△ABC中,假设∠A=90°,那么三角形对应的三边满足a2+b2=c24. 在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A,那么以下结论中正确的选项是〔〕A. AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′5. 如下图,△ABC中,AB=AC,AD⊥BC交D点,E、F分别是DB、DC的中点,那么图中全等三角形的对数是〔〕6. 如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,那么△BCE的面积等于〔〕A.10 B.7 C.5 D. 47. 在△ABC和△DEF中,∠A=∠D=90°,那么以下条件中不能判定△ABC和△DEF全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF8. 如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,那么有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD第8题图第9题图二、填空题(本大题共4小题)9. :如图,AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,AB=DC,那么△ABE≌△__________.10. 如图,BD⊥AE于点B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是∠A=∠D或__________或__________或__________.第10题图第11题图11. 如图,△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,假设根据“HL〞判定,还需要加一个条件__________.12. :如图,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF,∠D=60°,那么∠A=__________.三、计算题(本大题共4小题)13. :如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE求证:OB=OC.14. :Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE15. 如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:〔1〕CF=EB.〔2〕AB=AF+2EB.16. 如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)假设CD=2,求AD的长.参考答案:一、选择题(本大题共8小题)1.A2. D3. C4. C5. D6. B7. B8. C二、填空题(本大题共6小题)9.分析:根据直角三角形全等的条件HL判定即可。

完整版直角三角形的性质判定习题

完整版直角三角形的性质判定习题

直角三角形习题 1、 为 2、 3、4、 、填空题 直角三角形中一个锐角为30° ,斜边和最小的边的和为12cm,则斜边长 等腰直角三角形的斜边长为3,则它的面积为 . 等腰三角形一腰上的高等于该三角形一条边长度的一半 ,则其顶角为.已知在△ ABC 中,/ ACB=90 , CD 是高,/ A=30° , AB=4cm 则 BC=BCD= ______ BD= _______ cm AD= ________ cm cnn/ 5、 已知三角形的的三个内角的度数之比为 1: 2: 3,且最短边是3厘米,则最长边 上的中线等于 ____________ ;6、 ____________________________________________________________________ 在^ABC 中,/ C=90° ,Z A 、/ B 的平分线相交于 Q 则/ AOB= ____________________ 7、 等边三角形的高为2,则它的面积是 ______________ 。

&直角三角形两直角边分别为 6cm 和8 cmi,则斜边上的中线长为 _______________ 。

9、如图,有一块直角三角形纸片,两直角边 AC=6cmBC=8cm 现将直角边AC 沿直线AD 折迭, BA使E 它落在斜边AB 上,且与AE 重合,则CD 等于 二、选择题10、 在^ ABC 中 , / A: / B: / C=1:2:3,CD 丄 AB 于 D,AB=a ,贝J DB 等于()a A. 2 B. 11、 a a3 C.4 D.以上结果都不对F 列各组数为边长的三角形中,能构成直角三角形的有3 5牙’2,亍32,42,52 (3) (5)10,15,20)有两个角互余的三角形一定是直角三角形;三角形中,若一边等于另一边一半,则较小边对角为 30°直角三角形斜边上的中线等于斜边的一半;△ ABC 中,若/ A : / B :/ C=1: 4: 5,则这个三角形为直角三角形。

九年级解直角三角形经典习题汇编附答案(120分)

九年级解直角三角形经典习题汇编附答案(120分)

解直角三角形自测题命题人:罗成1、已知:如图,在ΔABC中,∠ACB=90°,CD⊥AB,垂足为D,若∠B=30°,CD=6,求AB的长.2、我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).3、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为,路基高度为5.8米,求路基下底宽(精确到0.1米).4、为申办2010年冬奥会,须改变哈尔滨市的交通状况。

在大直街拓宽工程中,要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在某工人站在离B点3米远的D处,从C点测得树的顶端A点的仰角为60°,树的底部B点的俯角为30°. 问:距离B点8米远的保护物是否在危险区内?5、如图,某一水库大坝的横断面是梯形ABCD,坝顶宽CD=5米,斜坡AD=16米,坝高 6米,斜坡BC的坡度.求斜坡AD的坡角∠A(精确到1分)和坝底宽AB.(精确到0.1米)6. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h。

根据上述测量数据,即可求出旗杆的高度MN。

如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图2)1)在图2中,画出你测量小山高度MN的示意图2)写出你的设计方案。

8、如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)9、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?10、某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30o,又航行了半小时到D处,望灯塔C恰在西北方向,若船速为每小时20海里,求A、D两点间的距离。

直角三角形的判定及性质(测试)(原卷版)

直角三角形的判定及性质(测试)(原卷版)

专题06 直角三角形的判定及性质专题测试学校:___________姓名:___________班级:___________考号:___________一、选择题1.(2019秋•吴兴区期中)直角三角形的两条边长为5和12,它的斜边长为()A.13 B.C.13或D.13或122.(2019秋•萧山区期中)如图所示,在4×4的方格纸中有一个格点△ABC(每个小正方形的边长为1),下列关于它的描述中,正确的是()A.三边长都是有理数B.是等腰三角形C.是直角三角形3.(2019秋•慈溪市期中)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比是2:3:5 B.三条边a,b,c满足关系a2=c2﹣b2C.三条边的比是2:4:5 D.三边长为1,2,4.(2018•淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.85.(2018秋•奉化区期末)有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边分别是1,,3的三角形是直角三角形;③直角三角形斜边上的中线等于斜边的一半;④三个角之比为3:4:5的三角形是直角三角形,其中正确的有()A.1个B.2个C.3个D.4个6.(2019春•萧山区月考)如图,OP=1,过点P作PP1⊥OP,得OP1=;再过点P1作P1P2⊥OP1,且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2,且P2P3=1,得OP3=2,依此法继续做下去,得OP2018=()A.B.2018 C.D.17.(2019秋•永嘉县期中)如图,△ABC中,AB=AC=8,BC=6,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.7+B.10 C.4+2D.118.(2018秋•慈溪市期末)下列各组数据作为三角形的三边长,能构成直角三角形的是()A.2,3,4 B.5,6,8 C.2,,3 D.1.5,2,39.(2019秋•永嘉县期中)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD =AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是()C.D.310.(2019•柯桥区模拟)如图,已知在Rt△ABC中,E,F分别是边AB,AC上的点,AE=AB,AF=AC,分别以BE、EF、FC为直径作半圆,面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S3=2S2 B.S1+S3=4S2C.S1=S3=S2 D.S2=(S1+S3)二、填空题11.(2019秋•龙湾区期中)直角三角形中,其中一个锐角为40°,则另一个锐角的度数为.12.(2018秋•吴兴区期末)已知直角三角形两边直角边长为1和,则此直角三角形斜边上的中线长是.13.(2018秋•湖州期中)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为.14.(2018秋•西湖区校级月考)小华是一位善于思考的学生,在一次数学活动课上,他将一幅直角三角板如图位置摆放,A,B,D在同一直线上,EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=2,则BD=.15.(2018秋•萧山区期中)如图,已知AO=10,P是射线ON上一动点(即P点可在射线ON上运动),∠AON=60°.(1)OP=时,△AOP为直角三角形.(2)设OP=x,则x满足时,△AOP为钝角三角形.16.(2019•龙湾区模拟)如图,把一副三角板按如图放置,∠ACB=∠ADB=90°,∠CAB=30°,∠DAB =45°,点E是AB的中点,连结CE,DE,DC.若AB=8,则△DEC的面积为.三、解答题17.(2018秋•临安区期末)如图,平面直角坐标系中有三条线段a,b,c.(1)请你平移其中两条线段,使得平移后的线段和第三条线段首位顺次相接,构成一个三角形(在网格内部完成构图)(2)判断你构成的三角形的形状,并给出证明.18.(2018秋•江干区期末)已知:如图,BD⊥AC,垂足为E,△ABE的中线EF的延长线交CD于点G,∠B=∠C.(1)求证:EG是△CDE的高线(即EG⊥CD).(2)若EG是△CDE的中线,探索△ABE的形状(请写出完整过程)19.(2018秋•长兴县期末)如图,在△ABC中,∠C=2∠B,点D为BC上一点且AD⊥AB,点E是BD的中点,连结AE(1)求证:∠AEC=∠C;(2)求证:BD=2AC;(3)若AE=8.5,AD=8,求△ABE的周长.20.(2019春•西湖区校级月考)直线EF、GH之间有一个直角三角形ABC,其中∠BAC=90°,∠ABC=α.(1)如图1,点A在直线EF上,B、C在直线GH上,若∠α=60°,∠F AC=30°.试说明:EF∥GH;(2)将三角形ABC如图2放置,直线EF∥GH,点C、B分别在直线EF、GH上,且BC平分∠ABH.求∠ECA的度数;(用α的代数式表示)(3)在(2)的前提下,直线CD平分∠FCA交直线GH于D,如图3.在α取不同数值时,∠BCD的大小是否发生变化?若不变求其值,若变化请求出变化的范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第5题
【题型4】用HL 证明直角三角形全等
如图,∠A=90°,∠D=90°,且AB=CD.求证:∠ACB=∠DBC .
【变式训练】
1.下列条件不可以判定两个直角三角形全等的是( )
A.两条直角边对应相等
B.一条直角边和它所对的锐角对应相等
C.两个锐角对应相等
D.一个锐角和锐角所对的直角边对应相等
2.下列命题:①两直角边分别相等的两个直角三角形全等;②两锐角分别相等的两个直角三角形全等;③斜边和一直角边分别相等的两个直角三角形全等;④一锐角和一直角边分别相等的两个直角三角形全等;⑤一锐角和斜边分别相等的两个直角三角形全等.其中,正确的命题有 .(填写正确的序号)
3.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,滑梯BC 与地面夹角∠ABC=35°,则滑梯EF 与地面夹角∠DFE 是 .
4.如图,在Rt △ABC 中,∠BAC =90°,DE ⊥BC ,AC =6,EC =6,∠ACB =60°,则∠ACD 的度数为 .
5.如图,在Rt △ABC 中,∠C =90°,一条线段PQ =AB ,点P ,Q 两点分别在AC 和AC 的垂线AX 上移动,当AP = 时,才能使△ABC ≌△QPA.
6.如图,△ABC 中,AB =AC ,AD 是高.求证:⑴BD =CD ;⑵∠BAD =∠CAD ;(3)你发现了什
么规律?
D C
B A 第4题
第3题
7.如图,AE=DE,AB⊥BC,DC⊥BC,且AB=EC.求证:BC=AB+DC.
8.如图,∠ACB=∠CFE=90°,AB=DE,BC=EF.求证:AD=CF.
2。

相关文档
最新文档