电磁炉各单元电路原理详解

合集下载

电磁炉各级工作原理

电磁炉各级工作原理

电磁炉各级工作原理以ZH75505主板为厉,将整机电路图成几部分,分别讲述工作原理。

(1) 开关电源部分通电后,DB1 整流桥整流输出310V 左右的电压,通过线绕电阻R503(47 欧)电阻、二极管D500、电解电容c500整流滤波后送入高频变压器初级,通过Q502,在高频变压器初级产生20-35KHz左右高频高压脉冲,耦合到高频变器的次级,输出所需要的变压电压后,通过快速恢复二极管(D503\D504)整流电容滤波得到直流电压源:+18V,通过 Q500稳压输出直流电压源:+5V。

(2)电压检测 E3/E4220VAC 通过电阻R200、R201、R221、R222 整流降压后与R202(13K)接地分压,此电压通过电解电容CPU,CPU 通过判断此点电压来检测市电电压正常与否,及市电电压值。

注意:针对某些地方电压高或低的情况,可把电阻 R202 换成 20K 的可调电位器,调节适当的电阻值可解决E3/E4 的问题。

整机要正常加热,必须判断此点电压值是否正确,也就是说此点电压值必须正确,才能满足电磁炉正常加热的条件之一。

电流检测(不检锅或功率不足)康铜丝R100(0.015)串联在IGBT 发射极与整流桥负极之间,可将微弱电流信号转化为微弱负电压信号。

此电压信号如实反映电网电流波动情况。

通过R102、R103、R104、R105、R106、C100、C102、C103 和LM339脚所在的运放组成反相输入比例运算电路。

(3)电流检测(不检锅或功率不足)康铜丝R100(0.015)串联在IGBT 发射极与整流桥负极之间,可将微弱电流信号转化为微弱负电压信号。

此电压信号如实反映电网电流动情况。

通过R102、R103、R104、R105、R106、C100、C102、C103 和LM339第1、6、7脚所在的运放组成反相输入比例运算电路。

实际上是运放内部输入级差分对管的两个基极。

阻尽量一致。

反相输入比例运算电路将输入信号放大 42.55 倍 R106、D100 整流,C101 滤波送入可调电位器 VR1,与电阻 R107 分压后,分压值送入 CPU,CPU 通过判断此点电压来检测电磁炉电流变化情况,以达到调节实际功率,防止流过流保护作用。

电磁炉各功能块电路原理

电磁炉各功能块电路原理

为帮助大家有效掌握电磁炉维修相关技术,本文特地带来九阳三款电磁炉的电路图,并做出详细解释。

九阳电磁炉电路图(一)九阳JYC-21CS21型电磁炉电源电路如下图所示,由以下几个部分组成:1.IGBT管供电从下图中可以看到,AC220V电源通过接线螺钉Jl、J2,保险丝FUSEl/10A(大电流保护),压敏电阻CTRl/10D561(过压保护),再经过高频滤波电路(共模变压器L2、C1、C2)后分为两路,其中,主电路通过串联互感器T1(感应电压用于监测主电路电流),桥堆DB1整流,L1、C3(LC)滤波得到,约300V的直流电压加至电磁线圈和IGBT管上,C4和线圈构成谐振回路。

2.电网监测从共模变压器L2输出的AC220V电压经过D200、D201整流后,一路通过R200、R201、R202、C200组成的分压、滤波电路取得电网监测电压送给CPU,用于监测电网电压。

如果电网电压不正常,CPU将及时切断振荡电路。

需要说明的是,部分偏远地区或超负荷工业园区会因电网电压极不稳定而导致电磁炉不能正常工作。

此时,可将R202做成可调电阻,通过调整分压比来解决此类问题。

3.开关电源部分D200、D201整流后的另一路经过D500、R503、C500降压滤波后提供给本机开关电源,这一部分电路是本文要重点讨论的。

在实际使用中,由于开关电源处在高电压状态下,造成此部分电路损坏元件较多,故障率较高。

下面介绍此部分电路的工作原理。

D500、C500整流滤波后输出约300V的直流电压,加到开关变压器T500初级,通过开关模块IC500(ACT30B)控制开关管Q502(13002),起振后在开关变压器初级产生20kHz左右的高频高压脉冲,耦合到开关变压器次级,次级输出较高的脉冲电压,通过快速’恢复二极管D503整流、C504电容滤波后,得到直流电压VCC(+18V),给三路电路供电:一路送IGBT管驱动电路(Q300、Q301)。

电磁炉几大电路原理

电磁炉几大电路原理

电磁炉几大电路原理
电磁炉是利用电磁感应的原理来产生热能的一种厨房电器。

它通常由几个重要的电路原理组成。

1. 电源电路:电磁炉需要外部供电以产生磁场和加热。

电源电路主要包括电源输入端、开关、保险丝和连接线等部分。

通过开关控制电源的通断,保险丝用于保护电磁炉免受过电流的损害。

2. 控制电路:控制电路用于调节电磁炉的温度和功率输出。

它通常包括控制面板、电阻、电容和变压器等组件。

当用户在控制面板上设置所需的温度或功率时,控制电路将根据这些输入信号进行相应的调节。

3. 谐振电路:电磁炉的谐振电路是产生磁场的关键。

它由功率管、铁芯和电容器等元件组成。

当电流通过功率管时,会在铁芯周围产生一个强磁场。

同时,电容器通过频率调整使谐振电路的电流和磁场保持稳定。

4. 感应电路:感应电路是将电磁炉的磁场转化为热能的部分。

它由线圈、感应器和耦合器等组件构成。

当电流通过线圈时,会产生一个变化的磁场,感应器则在此磁场中感应出涡流。

这些涡流会产生热量,将锅具加热。

这些电路原理的协同作用使得电磁炉能够高效、快速地加热食物,成为现代厨房中常用的烹饪工具。

电磁炉工作原理分析与讲解(多图教程)

电磁炉工作原理分析与讲解(多图教程)

电磁炉工作原理分析与讲解(多图教程)电磁炉基本原理介绍1.电磁炉加热和工作原理简介;2.电磁炉主要元件介绍;3.电磁炉电路各模块原理讲解;1.电磁炉加热和工作原理简介1.1电磁炉加热和工作原理简介;1.2 电磁炉原理方框图;1.3 LC振荡电路;1.1电磁炉加热和工作原理简介1.2 电磁炉原理方框图1.3 LC振荡电路示意图2.电磁炉主要元件介绍2.1 QF808单片机简介;2.2 RS2007M整流桥介绍;2.3 LM339集成电路介绍;2.4 IGBT简介;2.5 74HC164移位寄存器介绍;2.1 QF808单片机简介QF808为前锋和台湾中颖共同研发的一款单片机,存储器大小为64K bits ROM,里面集成5个比较器,6通道8位ADC转换,2个8位定时计数器,8位高速PWM脉冲输出,内部频率复合放大器,在线振荡时钟电路,在线看门狗定时器,采用低电压复位;2.2 RS2007M整流桥介绍;电压输入范围为50到1000V,承受电流最大为20A;特点为输出电流大,抗大电流冲击能力强,能承受较高的峰值反向电压;2.3 LM339集成电路介绍LM339内置四个翻转电压为6mV的电压比较器,当电压比较器输入端电压正向时(+输入端电压高于-入输端电压), 置于LM339内部控制输出端的三极管截止, 此时输出端相当于开路; 当电压比较器输入端电压反向时(-输入端电压高于+输入端电压), 置于LM339内部控制输出端的三极管导通, 将比较器外部接入输出端的电压拉低,此时输出端为0V。

2.4 IBGT简介绝缘栅双极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压高速大功率器件;IGBT有三个电极,分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极)及发射极E(也称源极),将场效应管作为推动管,大功率达林顿管作为输出级就构成了IGBT开关管;2.5 74HC164移位寄存器介绍74HC164为8位移位寄存器,现有电磁炉的面板显示项目较多,对单片机端口要求叫多,而现有单片机端口有限,为了达到显示电路的控制,现需要采用移位寄存器来扩展控制口;74HC164是8为串行输入并行输出单向移位寄存器;A,B为串行码输入端,MR为清零输入端,CLJ为时钟脉冲的输入端,IC随着时钟脉冲上升沿的到来,A,B相与后状态依次由Q0移向Q7;如下图:3.电磁炉电路各模块原理讲解3.1 EMC防护电路和整流电路3.2 高频谐振电路3.3 驱动电路3.4 同步电路及反压保护电路3.5 温度检测电路3.6 高低电压监测电路3.7 电压浪涌保护电路3.8 电流浪涌保护电路3.9 电流检测电路3.10 风扇电路蜂鸣器电路3.11 电源电路3.12 按键电路3.13 显示电路3.1 EMC防护电路和整流电路FUSE1为保险管,其规格为15A/250V,此款电磁的最高功率为2100W,AC220V其工作的最大电流为9.6A,正常状态下,不会超过保险管的正常值。

电磁炉各单元电路原理详解

电磁炉各单元电路原理详解

电磁炉各单元电路原理详解电磁炉各单元电路原理详解任何一种设备,只要理解、掌握了它的工作原理,那么使用、维修起来就会觉得比较容易。

本章中作者主要对所收集的30多种品牌的电磁炉的各种单元电路进行原理讲解、比较,找出它们之间的差异和相同之处,以帮助读者更好地理解电磁炉各功能电路的工作原理。

通过本章所讲内容,读者不仅能够对电磁炉各功能电路有比较透彻的理解,同时也可以增强识图能力。

3.1直流300V整流电路(即主电源电路)电磁炉的直流300V整流电路是电磁炉整机功率输出电路,它与彩电等家用电器的一般开关电源中的直流电源部分电路形式相同,都是将交流220V通过桥式整流电路整流、滤波后获得的。

但因电磁炉功率普遍较大,一般为1500~2600W,加之其工作频率较高,目前家用电磁炉工作频率一般为15~30kHz,因此,该部分电路元器件参数存在较大差异,并且这部分电路元器件性能上的要求也比较高。

同时,由于这部分电路是整机的功率输出电路,故电路元器件的焊点粗大,铜箔也比较宽大;为了增大铜箔的承载流量及利于散热,这部分电路的铜箔上一般均涂敷有大面积焊锡条,有的电磁炉还在铜箔上加焊多股导线,以提高承载电流量。

图3-1-1所示是九阳JYC-21电磁炉的主电源电路。

220V市电经接插件接入电路,为了防止因电网故障、人为因素等造成电源电压异常升高而损坏电磁炉,在电磁炉主电路中一般均接有压敏电阻ZNR,把它作为电磁炉整机过压保护的第一道屏障。

图3-1-1九阳JYC-21主电源电路在电磁炉中,压敏电阻常用的规格型号有10D471K、10D431、10D561、TVR14471、14N471K、14D471、14D391K等;压敏电阻的耐压一般为390~470V。

一旦电网电压出现异常,达到压敏电阻的承压极限,压敏电阻立即会被击穿,将220V交流电源短路,保险丝快速熔断,切断电磁炉整机电源,从而达到保护其他元器件的目的,以避免损失进一步扩大。

电磁炉各功能块电路原理

电磁炉各功能块电路原理

电磁炉各功能块电路原理为帮助大家有效掌握电磁炉维修相关技术,本文特地带来九阳三款电磁炉的电路图,并做出详细解释。

九阳电磁炉电路图(一) 九阳JYC-21CS21型电磁炉电源电路如下图所示,由以下几个部分组成:1.IGBT管供电从下图中可以看到,AC220V电源通过接线螺钉Jl、J2,保险丝FUSEl/10A(大电流保护),压敏电阻CTRl/10D561(过压保护),再经过高频滤波电路(共模变压器L2、C1、C2)后分为两路,其中,主电路通过串联互感器T1(感应电压用于监测主电路电流),桥堆DB1整流,L1、C3(LC)滤波得到,约300V的直流电压加至电磁线圈和IGBT管上,C4和线圈构成谐振回路。

2.电网监测从共模变压器L2输出的AC220V电压经过D200、D201整流后,一路通过R200、R201、R202、C200组成的分压、滤波电路取得电网监测电压送给CPU,用于监测电网电压。

如果电网电压不正常,CPU将及时切断振荡电路。

需要说明的是,部分偏远地区或超负荷工业园区会因电网电压极不稳定而导致电磁炉不能正常工作。

此时,可将R202做成可调电阻,通过调整分压比来解决此类问题。

3.开关电源部分D200、D201整流后的另一路经过D500、R503、C500降压滤波后提供给本机开关电源,这一部分电路是本文要重点讨论的。

在实际使用中,由于开关电源处在高电压状态下,造成此部分电路损坏元件较多,故障率较高。

下面介绍此部分电路的工作原理。

D500、C500整流滤波后输出约300V的直流电压,加到开关变压器T500初级,通过开关模块IC500(ACT30B)控制开关管Q502(13002),起振后在开关变压器初级产生20kHz左右的高频高压脉冲,耦合到开关变压器次级,次级输出较高的脉冲电压,通过快速’恢复二极管D503整流、C504电容滤波后,得到直流电压VCC(+18V),给三路电路供电:一路送IGBT管驱动电路(Q300、Q301)。

电磁炉的电路原理讲解

电磁炉的电路原理讲解

电磁炉的电路原理讲解
电磁炉是一种利用电磁感应原理进行加热的厨房电器。

它的工作原理是利用交流电通过线圈产生高频电磁场,使炉面上的磁性材料产生涡流,从而产生热量,加热锅底。

下面是电磁炉的电路原理讲解:
1. 电源模块
电磁炉的电路以电源模块为基础。

电源模块主要由变压器、整流器、滤波电容器和控制电路组成。

交流电源通过变压器降压后,经过整流器和滤波电容器将电压转换成稳定的直流电源。

2. 高频发生器
高频发生器是电磁炉的核心部件,主要由开关管、电感和电容组成。

当电源通电时,开关管将直流电源转换成高频交流电源,电感和电容形成谐振回路,使高频电能得到存储和传递,从而产生强烈的电磁场。

3. 热传感器
热传感器是电磁炉的安全保护装置,主要用于检测炉面的温度。

当炉面温度过高时,热传感器会自动切断电源,以避免发生火灾或其他危险事件。

4. 控制模块
控制模块是电磁炉的操作和控制中心,主要由微处理器、显示屏和按键组成。

用户可以通过按键设置加热功率、温度、时间等参数,微处理器根据用户的设定调节电磁场的强度和频率,从而实现加热的控制。

总的来说,电磁炉的电路原理比较复杂,需要多个模块的协同作用才能实现加热的功能。

但是,由于其高效、节能、环保等优点,电磁炉已经成为了现代厨房中必备的电器之一。

电磁炉各主要单元电路名称及功能学习

电磁炉各主要单元电路名称及功能学习

电磁炉各主要单元电路名称及功能学习1、高压整流变换电路通俗的说,该电路将市电经电容,电感滤除电网中杂质,而后经整流变成310左右的直流电,提提供给线圈盘和IGBT管作为正常工作电压主要元件:电容,电感,压敏电阻,保险管,桥堆。

2、低压电源稳压电路该电路就是把前面单元电路输出300V左右的直流电压,再经开关电路降压和稳压后输出电磁炉所需要的低压电源。

18V和5V就是从这里来的,这个电路涉及的东西多。

3、LC振荡逆变电路LC振荡逆变电路是电磁炉的工作电路,通过IGBT的导通与截止,让电流在线圈盘与高频电容(0.2uF电容)间形成振荡,在铁质锅底形成涡流加热。

元件主要是功率管(IGBT),励磁线圈,高频电容等。

4、同步检测电路同步检测电路是从线圈盘与高谐振电容并联电路两端检到同步信号,经整形放大后控制IGBT的G极的驱动电压,使加到IGBT的G极开关脉冲电压的前沿与C极峰值电压的后沿保持同步。

形象的说:就是取样,送样,对比执行。

5、振荡锯齿波形成电路振荡锯齿波形成电路的主要功能是根据同步检测电压与CPU生成的驱动控制电压形成一定的锯齿波电压来驱动后级电路6、IGBT高压保护电路通俗的说法,就是保护IGBT电路,文绉绉的说法就是:检测IGBT 的反峰逆程脉冲电压,保护lGBT不受损坏。

7、浪涌保护电路浪涌保护电路是在220v交流输入电压突然出现浪涌电压时,也就是说有时候市电像波浪一样涌过来,这个时候浪涌保护电路将检测到的电压信号送到集成电路,然后由集成电路输出信号使IGBT截止,电磁炉停止工作。

8、锅具温度检测电路就是通过线圈盘中央的热敏电阻阻值的变化从而保护电磁炉不受高温损坏。

有过热保护和干烧保护两部分9、lGBT温度检测电路锅具温度检测电路一样,也是利用热敏电阻温度变化保护IGBT,一般IGBT热敏电阻都放在IGBT下面,拆开散热片才能看得到。

还有风机驱动电路,蜂鸣器驱动电路等等,这些电路相对来说,没有这么重要,也不怎么复杂就略过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁炉各单元电路原理详解 任何一种设备,只要理解、掌握了它的工作原理,那么使用、维修起来就会觉得比较容易。

本章中作者主要对所收集的30多种品牌的电磁炉的各种单元电路进行原理讲解、比较,找出它们之间的差异和相同之处,以帮助读者更好地理解电磁炉各功能电路的工作原理。

通过本章所讲内容,读者不仅能够对电磁炉各功能电路有比较透彻的理解,同时也可以增强识图能力。

3.1 直流300V整流电路(即主电源电路) 电磁炉的直流300V整流电路是电磁炉整机功率输出电路,它与彩电等家用电器的一般开关电源中的直流电源部分电路形式相同,都是将交流220V通过桥式整流电路整流、滤波后获得的。

但因电磁炉功率普遍较大,一般为1500~2600W,加之其工作频率较高,目前家用电磁炉工作频率一般为15~30kHz,因此,该部分电路元器件参数存在较大差异,并且这部分电路元器件性能上的要求也比较高。

同时,由于这部分电路是整机的功率输出电路,故电路元器件的焊点粗大,铜箔也比较宽大;为了增大铜箔的承载流量及利于散热,这部分电路的铜箔上一般均涂敷有大面积焊锡条,有的电磁炉还在铜箔上加焊多股导线,以提高承载电流量。

图3-1-1所示是九阳JYC-21电磁炉的主电源电路。

220V市电经接插件接入电路,为了防止因电网故障、人为因素等造成电源电压异常升高而损坏电磁炉,在电磁炉主电路中一般均接有压敏电阻ZNR,把它作为电磁炉整机过压保护的第一道屏障。

图3-1-1九阳JYC-21主电源电路 在电磁炉中,压敏电阻常用的规格型号有10D471K、10D431、10D561、TVR14471、14N471K、14D471、14D391K等;压敏电阻的耐压一般为390~470V。

一旦电网电压出现异常,达到压敏电阻的承压极限,压敏电阻立即会被击穿,将220V交流电源短路,保险丝快速熔断,切断电磁炉整机电源,从而达到保护其他元器件的目的,以避免损失进一步扩大。

压敏电阻损坏时一般呈现碎裂状,用肉眼很容易看出。

图3-1-1中L2、C1为电源初级抗干扰元件,它们能抑制电网中的高次谐波对电磁炉后级电路的干扰,也可防止因电磁炉后级高频成分窜入电网而对电网供电质量产生影响。

C1的容量一般选择为2uF,耐压为交流275V。

在有些电磁炉,如尚朋堂电磁炉中,常在C1两端并联一只100~510KΩ(也有的用几只小阻值的电阻串联而成)的电阻,该电阻的作用是给C1提供放电回路,以防止电磁炉使用后,拔下电源插头时,C1残存电量加在插头两端,人体误接触造成触电伤害。

为了降低成本,有些杂牌机在这部分电路中省略了L2,甚至是ZNR。

交流市电经L2、C1滤波后送入桥式整流器BD,根据电磁炉输出功率的不同,该桥式整流器选择的额定电流一般为15A、25A两种,常见的型号有D15XB60、D25SB80等。

经桥式整流器输出的纹波直流电压再经扼流线圈L1、电容C2组成的典型的LC滤波电路后,输出静态约310V的直流电压(用数字表测量,显示该电压一般为310~330V),该电压直接加在加热线圈盘和高频振荡电容C3上作为能量转换的主电压。

直流滤波电容C2的容量一般为4~7uF,如九阳JYCP-19T、苏泊尔C21A01/C21S07、富士宝P260、华尔顿WP1808等均为4uF,得昕TS-588为7uF,但大多数为5uF,耐压为AC275V/DC400V。

特别要说明的是,滤波电容C2不仅起电源滤波作用,同时还是加热线圈盘自感电势的放电回路。

当IGBT处于截止状态时,主电路在振荡期间,高频振荡电容C3上的电荷经C2、IGBT内部附带的快恢复阻尼二极管至电源负极形成放电的回路。

当滤波电容C2失容时,相当于切断了加热线圈盘的放电回路,电磁炉就会出现过高电压保护等不能正常工作的现象;同时,因该滤波电容失容,交流市电经桥式整流器整流后的电压无法滤波。

由桥式全波整流理论可知,振荡主电源电压约为输入电压的0.9倍,即0.9x220V=198V,经实际测量大约为200V,此时电磁炉会出现电源电压低的故障代码。

3.2低压直流电源电路 低压直流电源电路是电磁炉中比较重要的电路,此部分电路主要产生专供单片机工作的电源,部分保护电路取样用的+5V电源,供电压比较器LM339、散热风扇电机和功率管驱动电压输出级等的+18V电源。

也有的电磁炉中还把电压比较器部分的电源用12V专门供电。

在驱动部分还有的采用20V,甚至23V供电。

该部分电源的产生,在早期电磁炉中均采用先变压器降压,再经二极管整流、电容滤波的形式。

图3-2-1为澳洲袋鼠UC18电磁炉低压直流电路原理图。

T2为带中间抽头的变压器,交流220V电压经T2降压,经D10~D13进行桥式整流、电容C11滤波后,输出约+18V直流电压给功率IGBT驱动部分及风扇电机提供电源。

另外,+18V电源经电阻R31限流、稳压二极管ZD2稳压后,产生+12V电压作电压比较器和过压保护的电源。

从中间抽头获得的直流电压经C9、C10滤波,IC6稳压,C45、C46滤波后产生较为平直的+5V直流电压,供单片机、温控电路、开关机控制等电路。

图3-2-2为得昕TS-588电磁炉低压直流电源原理图。

该变压器为双绕组形式,其中一个绕组经二极管D26半波整流、电容C7滤波,再经稳压集成电路Q6稳压后产生+5V直流电压,提供单片机电路工作的电源;另一绕组经二极管D22~D25组成的桥式整流器整流、电容C21滤波后,产生约+20V的直流电压。

该电压在接通电源时并不工作,只有当按下开机键,单片机得到开机指令后,从13脚送出一高电平,经电阻R28、R78及电容C33加至三极管Q2的基极,使Q2因正向偏置而导通,其集电极经电阻R77接至电源调整三极管Q13的基极,从而使Q3导通,再经电阻R74、稳压二极管D5、电源调整三极管Q4及电容C10和C11组成的稳压滤波电路产生+18V直流电压,供给驱动、同步电路等。

图3-2-1 澳洲袋鼠UC18电磁炉低压直流电路原理图图3-2-2得昕TS-588电磁炉低压直流电源原理图 一般而言,变压器式电源工作较为稳定,故障率很低。

较为常见的故障是,由于有的用户习惯将电磁炉一直接通市电,而电磁炉的开关只控制整机是否工作,并不控制电源变压器,即只控制直流的通断,而不是控制交流的通断,当电磁炉接上电源时,变压器即一直处于通电工作状态,从而造成变压器因长期通电过热而使初级开路。

因此不少品牌电磁炉的电源变压器均在初级串联一只温度保险丝。

对这类变压器,如出现初级开路现象,可将变压器的初级封装撕开,找出温度保险丝,将其两根引线短接起来,一般变压器仍可继续使用,只是减少了过热保护功能而已。

随着技术的发展,加之近几年铜材价格上涨幅度过大,为了降低生产成本,也为了减小电路板体积,不少品牌电磁炉生产厂家开始采用开关电源电路。

开关电源电路的结构形式大致可以分为单管振荡式和集成电路式两大类。

图3-2-3为万家乐MC18AC电磁炉低压直流电路原理图,该电源为典型的单管振荡式开关电源,具体工作原理如下。

主电源由二极管D1、D8和桥式整流器BD1中的半桥组成桥式整流电路(见本书附录E相应机型电路原理图),经电阻R101限流、电容C101滤波后,产生约+310V直流电压,该电压经开关变压器T1的初级加到开关三极管Q101的集电极。

图3-2-3万家乐MC18AC电磁炉低压直流电路原理图 电磁炉接通电源后,在启动电阻R108的作用下,开关三极管Q101进入振荡状态,于是开关变压器T1的次级产生低压交流电,该低压交流电经二极管D101整流、电容C6滤波、稳压二极管z1稳压后,产生+18V直流电压供IGBT驱动电压信号输出电路等部分电路工作。

同时,+18V直流电压经电阻R106限流、稳压集成电路IC3稳压,再经电容EC9、C24平滑滤波后,产生+5V平滑的直流电压,供单片机及各基准电压信号等电路工作。

图3-2-4为好太太C16-A电磁炉低压直流电路原理图。

该电路中的开关电源采用ST公司生产的VIPer12A新型中小功率单片机智能电源集成电路,内含脉宽调制控制器电路和过流、过压、过热保护电路,以及耐高电压的MOSFET。

用智能电源集成电路组成的开关电源具有市电输入电压范围宽、转换效率高,以及外围元器件少等优点,因此在很多主流品牌电磁炉,如尚朋堂、美的、苏泊尔、TCL等中得到广泛应用。

图3-2-4好太太C16-A电磁炉低压直流电路原理图 参见本书附录E相应机型电路原理图,220V交流市电经二极管D13、D14及整流桥堆BD中负极两只二极管组成的桥式整流电路整流后,获得脉动的直流电压。

该脉动的直流电压分为两路,一路经电阻R2、R52、R18以及电容EC2分压滤波后,经线路插排CN4-11送入单片机作为电磁炉的浪涌保护取样电压;另一路经二极管D11、电阻R1限流、电容EC10滤波后,再经开关变压器T1初级送入集成电路U1(VIPer12A)的⑤、⑥、⑦、⑧脚,该处的焊点和铜箔也是该集成电路的散热体。

U1④脚为电源端,③脚为反馈端。

变压器T1次级带有中间抽头,一组经二极管D20整流、电容EC13滤波后,再经100Ω电阻限流产生+18V直流电压,作IGBT驱动电压信号输出电路等电源;另一组从中间抽头的交流低压经二极管D17整流、电容EC12滤波后,一路作散热风扇电机的电源,另一路经电阻R36限流、稳压集成电路N1稳压及电容EC6、C10滤波后,产生+5V直流电压供单片机等电路。

需要特别说明的是,采用这种集成电路的电源相对变压器式的电源和单管振荡式电源故障率要高,而且通常为集成电路击穿损坏。

判断方法是,只要整机无电源指示,在检查市电电压正常的情况下,先检测限流电阻R1,如果电阻R1出现开路现象,则基本可以断定U1已经损坏。

图3-2-5为苏泊尔C21S07电磁炉低压直流电路原理图,该电路的电源采用南京通华芯微电子公司生产的THX202H集成电源芯片。

和VIPer12A相似的是该电路外围元器件也很少,且电路中的工作电压范围较宽。

图3-2-5苏泊尔C21S07电磁炉低压直流电路原理图 交流220V市电经二极管D101、D102及桥式整流器BR001中的两只负极的二极管(参见本书附录E中相应机型的电路原理图)组成桥式整流电路获得脉动直流电压。

该脉动直流电压分为两路:一路经电阻R101、R102、C101、C102分压滤波后产生一电压信号,经线排插头CNA6送入单片机作为电磁炉整机的电网电压监测信号;另一路经二极管D103、电阻R901限流、电容C901滤波后,再经开关变压器T901的初级线圈加到开关电源集成电路IC901的⑦、⑧脚。

IC901①脚所接的电阻R910为启动电阻;④、⑥脚为空脚,未采用;②脚为反馈端;⑤脚为芯片电源正端。

相关文档
最新文档