用坐标表示轴对称教案
22用坐标表示轴对称教案

一、教学目标:1. 让学生理解轴对称的概念,并能用坐标表示轴对称图形。
2. 培养学生运用坐标解决实际问题的能力。
3. 提高学生对数学美的感知,培养学生的创新意识和思维能力。
二、教学重点与难点:1. 重点:让学生掌握轴对称图形的坐标表示方法。
2. 难点:如何让学生理解并运用坐标解决实际问题。
三、教学准备:1. 教师准备PPT,包括轴对称图形的例子和实际问题。
2. 学生准备笔记本,用于记录学习内容和练习。
四、教学过程:1. 导入:教师通过PPT展示一些生活中的轴对称图形,如剪纸、建筑等,引导学生发现轴对称的美,激发学生的学习兴趣。
2. 新课导入:教师讲解轴对称的定义,让学生理解轴对称的概念。
3. 实例解析:教师通过PPT展示一些轴对称图形的例子,如正方形、矩形等,引导学生发现这些图形的坐标特点,并用坐标表示出来。
4. 学生练习:教师给出一些简单的轴对称图形,让学生用坐标表示出来,巩固所学知识。
5. 实际问题解决:教师给出一些实际问题,如在坐标系中找到两个点的轴对称点,让学生运用所学知识解决,提高学生的实际应用能力。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况:检查学生练习的准确性,了解学生对知识的掌握程度。
3. 实际问题解决:评价学生在解决实际问题时的思路和准确性,考察学生的应用能力。
4. 学生互评:鼓励学生互相评价,培养学生的团队意识和合作精神。
六、教学延伸:1. 教师引导学生思考:还有哪些图形可以表示轴对称?如何用坐标表示?2. 学生分组讨论,分享自己的思考和发现,教师给予评价和指导。
七、课堂小结:1. 教师带领学生回顾本节课所学内容,总结轴对称图形的坐标表示方法。
2. 学生分享自己的学习收获,教师给予评价和鼓励。
八、课后作业:1. 教师布置一些有关轴对称图形的坐标表示的练习题,让学生巩固所学知识。
2. 鼓励学生在生活中发现轴对称图形,并用坐标表示出来,培养学生的观察力和创新能力。
用坐标表示轴对称教案

用坐标表示轴对称教案
用坐标表示轴对称
教学内容:人教版初中数学八年级上册第十二章轴对称教材第43—45 页教学目标:
1.能用坐标表示轴对称,探究点或图形的轴对称变换引起的点的坐标的变化规律,学会如何利用这种坐标变化规律在平面直角坐标系中作出一个图形的轴对称图形.
2.经历探究用坐标表示轴对称的过程,感受其应用规律.培养学生的语言表达能力,观察能力、归纳能力.
3.通过主动探究,合作交流,培养学生的合作意识,体验成功的喜悦,获得数形结合的审美享受.
教学重难点:
重点:用坐标表示点关于坐标轴对称的点的坐标。
难点:找对称点的坐标之间的关系、规律。
教学准备:小黑板、北京地图
教学时间:1 课时
教学流程:
一、创设情境探究新知
引言:2008 奥运会,北京吸引了许多游客,一天小红在天安门广场玩,一位外国友人向小红问西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确的告诉了他。
你知道为什幺吗?
教师结合老北京的地图【教材图12.2-10】向学生介绍:老北京城关于中轴线成轴对称设计,东直门、西直门就关于中轴线对称。
13.2 第2课时用坐标表示轴对称人教版数学八年级上册同步课堂教案

第十三章轴对称13.2 画轴对称图形第2课时用坐标表示轴对称一、教学目标1.理解在平面直角坐标系中, 已知点关于x轴、y轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.3.能根据坐标系中轴对称点的坐标特点解决简单的问题.二、教学重难点重点:已知点关于x轴、y轴对称的点的坐标的变化规律;在平面直角坐标系中作出一个图形的轴对称图形的方法.难点:根据坐标系中轴对称点的坐标特点解决简单的问题.三、教学过程【新课导入】[复习导入]1.什么是轴对称变换?(由一个平面图形可以得到与它关于一条直线l对称的图形, 这个图形与原图形的大小、形状完全相同.)2.轴对称变换的性质是什么?(①新图形上的每一点都是原图形的某一点关于直线l的对称点;②连接任意一对对应点的线段被对称轴垂直平分.)3.画轴对称图形的步骤?(找:在原图形上找特殊点(如线段端点等);画:画出各个特殊点关于对称轴的对称点;连:依次连接各对称点.)4.如何画点A关于直线l的对称点A′.(作法:(1)过点A作直线l的垂线,垂足为O;(2)在垂线上截取OA′=OA.点A′就是点A关于直线l 的对称点.可简记为:作垂线;取等长)教师带领学生复习旧知,鼓励学生积极的投入到活动中,为本节课做准备.【新知探究】知识点1 关于坐标轴对称的点的坐标规律[引出课题]如图是一幅老北京城的示意图, 其中西直门和东直门是关于中轴线对称的,如果以天安门为原点, 分别以长安街和中轴线为x轴和y轴建立平面直角坐标系, 根据如图所示的东直门的坐标, 你能说出西直门的坐标吗?跟着老师学了今天的内容,你就能解答出来了.[提出问题]问题1 (1)根据“作已知点关于对称轴的对称点”的方法,你能在如图所示的平面直角坐标系中画出点A关于x轴的对称点,并求出它的坐标吗?[课件展示]教师利用多媒体展示如下过程:[提出问题](2)点B和点C关于x轴的对称点呢?[课件展示]教师利用多媒体展示如下过程:[提出问题](3)分别求出点D和点E关于x轴的对称点的坐标, 并把它们的坐标填入表格中.[动手操作]学生在已经画好的坐标系中描出点D和点E,作图,找出这两点关于x轴对称的点,之后举手回答,教师纠正,并将最终答案填到表格中,得到如下表格:[提出问题](4)看看每对对称点的坐标有怎样的规律, 再和同学讨论一下.[小组讨论]学生之间讨论.之后代表回答小组间讨论的结果.教师纠正.最后得到”横坐标相等,纵坐标互为相反数.”[提出问题]问题2 (1)根据“作已知点关于对称轴的对称点”的方法,你能在如图所示的平面直角坐标系中画出点A关于y轴的对称点,并求出它的坐标吗?[课件展示]教师利用多媒体展示如下过程:[提出问题](2)点B和点C关于y轴的对称点呢?[课件展示]教师利用多媒体展示如下过程:[提出问题](3)分别求出点D和点E关于y轴的对称点的坐标, 并把它们的坐标填入表格中.[动手操作]学生在已经画好的坐标系中描出点D和点E,作图,找出这两点关于y轴对称的点,之后举手回答,教师纠正,并将最终答案填到表格中,得到如下表格:[提出问题](4)看看每对对称点的坐标有怎样的规律, 再和同学讨论一下.[小组讨论]学生之间讨论.之后代表回答小组间讨论的结果.教师纠正.最后得到”纵坐标相等,横坐标互为相反数.”[归纳总结]关于坐标轴对称的点的坐标规律1.点(x,y)关于x轴对称的点的坐标是(x,-y).2.点(x,y)关于y轴对称的点的坐标是(-x,y).并强调:简记为“横轴横相同, 纵相反;纵轴纵相同, 横相反”.关于谁对称谁不变[提出问题]现在你能说出西直门的坐标了吗?学生集体回答.(-3.5,4)[课件展示]跟踪训练1.(2021•雅安)在平面直角坐标系中,点A(-3,-1)关于y轴的对称点的坐标是( C )A.(-3,1)B.(3,1)C.(3,-1 )D.(-1,-3)2.(2021•杭州萧山区二模)在平面直角坐标系中,点A(m,2)与点B(3,n)关于x轴对称,则( A )A.m=3,n=﹣2 B.m=﹣3,n=2C.m=3,n=2 D.m=﹣2,n=3知识点2 在坐标系中作已知图形的对称图形[课件展示]教师利用多媒体展示如下例题:例如图,四边形ABCD的四个顶点的坐标分别为A(-5,1), B(-2,1), C(-2,5), D(-5,4), 分别画出与四边形ABCD关于y轴和x轴对称的图形.解:点(x,y)关于y轴对称的点的坐标为(-x,y),因此四边形ABCD的顶点A,B,C,D关于y轴对称的点分别为A′( 5,1 ),B′( 2,1 ),C′( 2,5 ),D′( 5,4 ),依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于y轴对称的四边形A′B′C′D ′.四边形ABCD的顶点A,B,C,D关于x轴对称的点分别如下表格:依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于x轴对称的四边形A′′B′′C′′D′′.[归纳总结]在直角坐标系中画与已知图形关于某直线成轴对称的图形的方法:计算:求出已知图形中的一些特殊点的对称点的坐标;描点:根据对称点的坐标描点;连接:按原图对应点连接所描各点得到对称图形.并提醒学生:所找的特殊点一定要能确定原图形, 否则画出的图形与原图形不一定成轴对称.[课件展示]跟踪训练已知△ABC的三个顶点的坐标分别为分别为A (-5,-1),B(3,3),C(-2,3) ,作出△ABC关于x轴对称的图形.解:△A′B′C′即为所求.【课堂小结】【课堂训练】1.(2021•成都)在平面直角坐标系xOy中,点M(-4,2)关于x轴对称的点的坐标是( C )A. (-4,2)B. (4,2)C. (-4,-2)D. (4,-2)2.(2021•泸州)在平面直角坐标系中,将点A(-3,-2 )向右平移5个单位长度得到点B ,则点B关于y轴对称点B'的坐标为( C )A.(2,2)B.(-2,2)C.(-2,-2)D.(2,-2)3.已知点P关于x轴对称的点的坐标是(1,-2),则它关于y轴对称的点的坐标是( A )A.(-1,2)B.(-1,-2)C.(-2,1)D.(1,-2)【解析】∵点P关于x轴对称的点的坐标是(1,-2),∴点P的坐标是(1,2).∴点P关于y轴对称的点的坐标是(-1,2).4.( 2021•丽水)四盏灯笼的位置如图所示.已知A,B,C,D的坐标分别是(-1 ,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是( C )A.将B向左平移4.5个单位B.将C向左平移4个单位C.将D向左平移5.5个单位D.将C向左平移3.5个单位5.(2021•荆州)若点P(a+1,2-2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为( C )【解析】点P(a+1,2-2a)关于x轴的对称点的坐标为(a+1,2a-2).∵该点在第四象限,∴a+1>0,2a-2<0.解得-1<a<1.故选C.6.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于 x 轴对称.7.若|a-2|+(b-5)2=0,则点P (a,b)关于y轴对称的点的坐标为___(-2,5)_____.8.平面直角坐标系中,△ABC的三个顶点坐标分别为A(-5,4),B(-3,0),C(-2,2).(1)试在平面直角坐标系中,标出A、B、C三点;(2)若△ABC与△DEF关于y轴对称,画出△DEF,并写出D、E、F的坐标.解:(1)A、B、C三点如图所示.(2)△DEF如图所示,D、E、F的坐标分别为(5,4)、(3,0)、(2,2).9.已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求点C(a,b)在第几象限;(2)若点A、B关于y轴对称,求(4a+b)2022的值.解:(1)∵点A、B关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.∴点C(-8,-5)在第三象限;(2)∵点A、B关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3,∴(4a+b)2022=1.【教学反思】本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,强烈地吸引了学生的注意力,较好地激发学生的学习兴趣.由于学生已经系统学过平面直角坐标系的相关知识,并研究了用坐标表示平移,拥有了一定的在平面直角坐标系中研究图形的能力和方法,加上在本章之前的学习中,学生已经非常熟练地掌握了轴对称图形、图形的轴对称的概念、轴对称的基本性质、线段的垂直平分线的性质等内容,因此,本节课的教学采用教师组织引导,给学生留足空间和时间,以学生自主学习为主,付之以尝试学习、探究学习、合作交流学习,教师进行适当帮助、指导和适时的点拨、点评的教学方式.通过教学,基本达到了教育教学目标,但我觉得自己还存在以下几个不足:1.对于没有举手发言的同学的关注度不够;2.总结变化规律应该让学生尝试进行,而不是教师代劳;3.部分学生对规律的记忆还不是十分清晰,课堂上还是没有强调到位.。
13.2.2 用坐标表示轴对称 教案

课 题
13.2.2用月日
教学目标 (学习目标)
知识与技能
1.在平面直角坐标系中,确定轴对称变换前后两个图形中特殊点的位置关系,再利用轴对称的性质作出成轴对称的图形
2.能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。
过程与方法
经历探索点轴对称特点的过程,培养观察、操作、分析能力.
结合教材完成解答过程。
四、随堂练习
课本70页第1、2、3题
五、课堂小结
1、学习了在平面直角坐标系中,关于x轴和y轴对称的点的坐标的特点。
关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
2、学习了在平面直角坐标系中如何画一个图形关于x轴或y轴的对称图形
六、作业布置:P71第2,3,4,5,7题(书上)
三、(一):例1:已知△ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC关于y轴和x轴对称的图形。
(二):例2、四边形ABCD的四个顶点的坐标分别是A(-5,1),B(-2,1),C(-2,5),D(-5,4)分别画出与四边形ABCD关于y轴和x轴对称的图形.
备注 (补充)
板书设计
13.2 用坐标表示轴对称
1、特点:
点(x, y)关于x轴对称的点的坐标为______.
点(x, y)关于y轴对称的点的坐标为______.
教学反思
在平面直角坐标系中作一个图形关于坐标轴对称的图形,关键是求出已知图形中的一些特殊点的对称点的坐标。
二.归纳总结
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
点(x, y)关于x轴对称的点的坐标为______.
《用坐标表示轴对称》教案

第2课时用坐标表示轴对称【教学目标】1.知识与能力:(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.2.过程与方法:在探索问题的过程中体会知识间的关系,感受函数与生活的联系.3.情感、态度与价值观:培养学生的应用意识和探究精神.【教学重点】(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.【教学难点】用轴对称知识解决相应的数学问题.【教学过程】一、创设情境,激发学生兴趣,引出本节课要研究的内容活动1观察图片操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?学生活动设计:学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流.教师活动设计:教师组织活动,引导学生作以下归纳:(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;(2)新图形上一个点,都是原图形上的某一点关于直线l的对称点;(3)连接任意一对对应点的线段被对称轴垂直平分.活动2问题如图(1),已知△ABC和直线l,你能作出△ABC关于直线l对称的图形吗?ll图(1) 图(2)学生活动设计:学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A 、B 、C 关于直线l 的对称点再连接就可以了.教师活动设计:在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A 关于l 的对称点的方法是:(1)过A 作l 的垂线垂足为O ;(2)连接A O 并延长到A ′,使A ′O=A O ,则点A ′就是点A 关于直线l 的对称点.最后进行归纳.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.活动3二、观察操作,主动探索,研究坐标系内的轴对称 活动4 问题在平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你学生动手画图,观察各个对称点与原来的点之间坐标的关系,经过讨论得出规律.点(x ,y )关于x 轴对称的点的作标是(x ,-y ); 点(x ,y )关于y 轴对称的点的作标是(-x ,y ). 教师活动设计:组织学生进行探索,观察猜测,然后进行归纳总结. 活动5 问题如图,四边形ABCD 的四个顶点的坐标分别为A (-5,1),B (-2,1), C (-2,5),D (-5,4),分别作出四边形ABCD 关于y 轴和x 轴对称的图形.学生活动设计:学生根据活动4中发现的规律,首先求出点A 、B 、C 、D 关于x 轴、y 轴的对称点,然后再连接对称点即可.教师活动设计:本活动主要巩固加深学生对利用坐标表示轴对称的理解,所以要特别关注学生对对称点的坐标的求解过程.三、应用提高、拓展创新 问题如图所示:要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.教师和学生活动设计:分组讨论,让学生探索:在街道上找一点C ,使得AC +BC 为最小.通过学生活动,使他们懂得:只有A 、C 、B 在一直线上时,才能使AC +BC 最小,这时作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点.学生自主探索其中的原因(原因:在直线l 上取异于点C 的点D ,由于l 垂直平分AA′,所以得到DA=DA′,所以DA+DB=DA′+DB,根据两点之间线段最短得到DA′+DB>A′B,而A′B=A′C+BC=AC+BC,于是有AD+DB>AC+BC.)四、归纳小结、布置作业小结:1.作轴对称图形;2.用坐标表示轴对称.。
13.2.2用坐标表示轴对称教学设计

人教版数学八年级上册13.2.2用坐标表示轴对称 -----教学设计用坐标表示轴对称教材选择:人教版八(上)13.2画轴对称图形(2)一、内容和内容解析1.内容用坐标表示轴对称2.内容解析本节分为两课时,这是第二课时的新授课.是在学生学习了轴对称及轴对称变换的基础进行的,体现了轴对称在平面直角坐标系中的应用,体现了数形结合的数学思想.教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y 轴对称所引起的点的坐标的变化规律,并探讨了如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.为满足不同层次学生的学习需求,又进一步探究了关于直线x=m和直线y=n对称的点坐标之间的关系.本节课目的在于让学生感受图形轴对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来,为后面函数的知识的学习打下基础.通过这节课学生进一步掌握轴对称图形的知识技能,领悟数学在实际生活中的对称美.基于以上分析,确定本节课的教学重点是:探索点关于x轴或y轴对称点的坐标的变化规律,并会利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.二、目标和目标解析1.目标(1)探究点或图形的轴对称变换引起的点的坐标的变化规律,能利用这些变化规律作出一个图形关于对称轴的轴对称图形.(2)通过对用坐标表示轴对称的学习,体会对应的思想、数形结合的思想.(3)通过探究关于轴对称的点坐标之间的对应关系,培养学生的语言表达能力、观察能力、分析和归纳能力,养成良好的合作交流意识和科学研究习惯.2.目标解析(1)首先通过复习画轴对称图形,引导学生在平面直角坐标系中画出一些点关于坐标轴的对称点,然后通过观察、分析、归纳得出关于坐标轴对称的坐标规律.并探讨总结出如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形的方法.为了满足不同层次学生的学习需求,再通过一系列的变式训练,进一步引导学生探究出关于直线x=m和直线y=n对称的点坐标之间的关系.因此在平面直角坐标系中正确画出一些点的对称点是前提条件,学生上节课已经学过画一些图形的轴对称图形,有一定的经验,因此,学生能比较容易的达到本节课学习的重点目标.(2)通过在平面直角坐标系中画轴对称点和轴对称图形总结出对称点的坐标规律,体会对应思想和数形结合的思想.通过一系列的变式练习探究出关于直线x=m和直线y=n对称的点坐标之间的关系,同样体现从特殊到一般的数学思想.(3)在平面直角坐标系中探究对称点之间的坐标规律的过程中,教师利用一系列直观图象,通过动手操作、观察、分析、小组交流,利用数形结合的数学思想,归纳概括出规律,所以整个探究过程培养了学生的合作交流意识和科学研究习惯.三、教学问题诊断分析在平面直角坐标系中关于x轴对称、关于y轴对称的两点的坐标特征,这个知识内容在初一年级的时候就已学过,本课的学习看起来好像是重复,其实,深入研究,学生还是很可能遇到的问题有:1.学生在利用关于x轴、y轴对称点的坐标规律解决问题时,由于不擅长数形结合理解记忆,而只是死记硬背,因此两个坐标规律很容易记混淆.2.由于学生的学习主动性究意识不够,观察能力和空间想象能力比较薄弱。
人教版数学八年级上册13.2用坐标表示轴对称教案

举例:在讲解轴对称的定义时,可以通过折纸等实际操作,让学生直观感受轴对称图形的特点。在坐标表示方面,可以结合具体图形,如矩形、正方形等,让学生学会如何找到对称轴并给出其坐标方程。
2.教学难点
-对称轴的确定:对于一些复杂的轴对称图形,如何准确地找到对称轴是学生学习的难点。
6.引导学生感悟数学的对称美,培养审美情趣和创新义:轴对称图形的基本概念是本节课的核心,教师需通过生动的实例,使学生理解轴对称图形的特征,明确对称轴在图形中的关键作用。
-掌握坐标表示轴对称的方法:教会学生如何利用坐标表示轴对称图形,以及如何通过坐标关系找到对称轴,这是本节课的重点。
在实践活动中,学生分组讨论的环节比较活跃,他们能够提出一些很有见地的观点。不过,我也观察到有些小组在讨论时,个别成员参与度不高,我适时地给予了鼓励和指导,让他们都能融入到讨论中来。
小组讨论后,学生们的成果展示让我感到惊喜。他们不仅能够理解轴对称在实际生活中的应用,还能创造性地设计出一些具有轴对称特点的图案。这一点说明学生们已经能够将所学知识内化并运用到实际中。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对轴对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我发现学生们对轴对称的概念和坐标表示的理解程度参差不齐。我尝试通过引入日常生活中的实例来激发他们的兴趣,比如折纸和设计图案,这样做的效果还不错,大部分学生都能积极参与进来。
用坐标表示轴对称--教案

12.2.2用坐标表示轴对称教学目标(一)知识与技能1.能在平面直角坐标系中画点关于x轴、y轴对称的对称点2.能表示点关于x轴、y轴对称的点的坐标并探索其规律,能作出关于x轴、y•轴对称的图形。
(二)过程与方法在找关于坐标轴对称的点的坐标之间规律的过程中,培养学生的语言表达能力、观察能力、归纳能力,养成良好的科学研究方法。
(三)情感与价值观要求在找点、描点的过程中让学生体验数形结合的思想、检验学习数学的乐趣.教学重点1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系。
2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识。
3.用坐标表示点关于坐标轴对称的点的坐标。
教学难点找对称点的坐标之间的关系、规律。
教学过程:一、问题情境创设已知点A和一条直线MN,你能画出这个点关于已知直线的对称点吗?二、探究新知1.学生探索:问题:在平面直角坐标系中你能画出点A关于x轴的对称点吗?学生归纳:关于x轴对称的点的坐标具有怎样的关系?归纳:关于x轴对称的点的坐标的特点是:横坐标相等,纵坐标互为相反数.练习:1、点P(-4, 5)与点Q关于x轴对称,则点Q的坐标为__________.2、点M(a, -3)与点N(-2, b)关于x轴对称,则a=_____, b =_____.问题:你能在平面直角坐标系中画出点A关于y轴的对称点吗?学生归纳:关于x轴对称的点的坐标具有怎样的关系?归纳:关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标相等.练习:1、点P(-5, 4)与点Q关于y轴对称,则点Q的坐标为__________.2、点M(a, -2)与点N(-3, b)关于y轴对称,则a=_____, b =_____.2.分享成果巩固新知1、完成下表.2、已知点P(6, b+2)与点P’(a+b, -3a).若点p与点p’关于x轴对称,则a=_____ b=_______.若点p与点p’关于y轴对称,则a=_____ b=_______.3.范例讲评1、例:已知△ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC 关于y轴对称的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3用坐标表示轴对称
大河坝中学 李琴
教学目标:掌握在平面直角坐标系中,关于x 轴和y 轴对称点的坐标特点,并
能运用它解决简单的问题;能在平面直角坐标系中画出一些简单的关于x 轴和y 轴的对称图形。
在找点,绘图的过程中是学生体验数形结合思想,体验学习的乐趣。
教学重点:用坐标表示点关于坐标轴对称的点的坐标
教学难点:找对称点的坐标之间的关系、规律。
教学过程:
一、 复习引入,巩固加深。
创设情境承上启下
1.动手画一画:
已知点A 和一条直线EF ,你能画出这个点关于已知直线的对称点吗?
二、 合作探究,自主发现,共同学习。
(自主学习及小组讨论)
探究1:如图,在平面直角坐标系中你能画出点A ,B,C 关于x 轴的对称点吗?
A (2,3)
B (-4, 2) C(3, - 4)
仔细观察点的坐标思考:关于x 轴对称的点的坐标具有怎样的关系?
· A E
F
小组合作,归纳:关于x轴对称的点的坐标的特点是:横坐标相等,纵坐标互为相反数
练习:
1、点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为__________.
2、点M(a, -5)与点N(-2, b)关于x轴对称,则a=_____, b =_____.
探究2:请同学们再在直角坐标画出下列各点关于y轴对称的对称点.
A (2,3)
B (-4, 2) C(3, - 4)
思考:关于y轴对称的点的坐标具有怎样的关系?
小组合作,归纳:关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标相等
练习:
1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为__________.
2、点M(a, -5)与点N(-2, b)关于y轴对称,则a=_____, b =_____.
小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.
关于y轴对称的点横坐标互为相反数,纵坐标相等点(x, y)关于x轴对称的点的坐标为______.
点(x, y)关于y轴对称的点的坐标为______.
1、填空
2、已知点P(2a+b,-3a)与点P’(8,b+2).
若点p与点p’关于x轴对称,则a=_____ b=_______.
若点p与点p’关于y轴对称,则a=_____ b=_______.
设计意图:学生通过小组合作探究和自主探究的形式,在坐标系内找出对称点及其坐标,并找出规律。
三、随堂练习,学以致用。
⒈分别写出下列各点关于x轴和y轴对称的点的坐标.
(3,6)(-7,9)(6,-1)(-3.-5)(0,10)
2.根据下列点的坐标的变化,判断它们进行了怎样的变换:
⑴(-1,3)(-1,-3)
⑵(-5,-4)(-5,4)
⑶(3,4)(-3,4)
⑷(1,0)(-1,0)
设计意图:及时巩固,练习的题目有直接利用结论的,第二题是间接利用结论,知道坐标间的关系,找出对称轴。
四、学习阶段小结
点(x, y)关于x轴对称的点的坐标为______.
点(x, y)关于y轴对称的点的坐标为______.
五、当堂检测
设计意图:检验学生第一个学习目标掌握情况,做好反馈。
六、例题解析,探寻方法。
如图:利用关于坐标轴对称的点的坐标的特点,分别作出与四边形ABCD关于x轴和y轴对称的图形。
(1)学生先找出特殊点的对称点的坐标,然后描点,连线作出图形。
(2)学生自己总结做这类题目的规律。
(3)作出图形。
设计意图:培养学生的语言表达能力和归纳能力。
七、当堂检测
设计意图:对例题的进一步巩固,检验学生第二个学习目标掌握情况。
八、归纳总结回顾体会。
这节课你学习了什么?
1、学习了在平面直角坐标系中,关于x轴和y轴对称的点的坐标的特点。
关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
2、学习了在平面直角坐标系中如何画一个图形关于x轴或y轴的对称图形
先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.
九、作业布置。