扫描电镜经典总结
扫描电镜经典总结.

• 扫描电镜(SEM)• 透射电镜(TEM)• 原子力显微镜(AFM)• X射线衍射(XRD)• 元素分析(EA)显微分析技术——电子显微镜一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。
透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射电镜(TEM)的成像和衍射二次电子入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,成为真空中的自由电子,此即二次电子。
在电场的作用下它可呈曲线运动进入检测器,使表面凹凸的各个部分都能清晰成像。
二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜的分辨率。
二次电子的强度主要与样品表面形貌相关。
二次电子和背景散射电子共同用于扫描电镜(SEM)的成像。
当探针很细,分辨高时,基本收集的是二次电子而背景电子很少,称为二次电子成像(SEI)。
背景散射电子入射电子穿达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子,前者的份额远大于后者。
背散射电子反映样品表面的不同取向、不同平均原子量的区域差别,产额随原子序数的增加而增加;利用背散射电子为成像信号,可分析形貌特征,也可显示原子序数衬度而进行定性成分分析。
特征X射线入射电子和原子中的内层电子发生非弹性散射作用而损失一部分能量(几百个eV),激发内层电子发生电离,形成离子,该过程称为芯电子激发。
除了二次电子外,失去内层电子的原子处于不稳定的较高能量状态,将依一定的选择定则向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元素组成信息的特征X射线,可用于材料的成分分析。
俄歇(Auger)电子如果入射电子把外层电子打进内层,原子被激发了.为释放能量而电离出次外层电子,叫俄歇电子。
扫描电镜分析2篇

扫描电镜分析2篇第一篇:扫描电镜分析花粉形态结构特征扫描电镜是现代生物学和医学研究中一种重要的分析技术,可以对显微结构进行高清晰度的成像和观察。
在植物学中,花粉是非常重要的微观结构,它们的形态结构特征和尺寸大小对于花粉的传播、定位和分类具有重要意义。
因此,采用扫描电镜对花粉形态结构进行分析,可以深入了解花粉的形态学特征和花粉学的研究对象。
在本次扫描电镜分析中,我们选取了几种常见的植物花粉样本,包括罂粟花、向日葵、松树、紫罗兰等。
通过精细制备和扫描电镜成像,我们得到了以下结果。
罂粟花的花粉罂粟花的花粉呈球形或近球形,外表呈现有棱角的圆形,直径约为48微米。
在扫描电镜下观察,罂粟花的花粉表面呈现出一种微细的网状结构,而且表面布满了大小不一的刺状突起。
这些刺状突起有的长而细,有的短而粗,有的呈锯齿状。
整个花粉表面分布不均,有的地方突起密集,有的地方比较平整。
整体上看,罂粟花的花粉表面相当粗糙,具有明显的纹理和质感。
向日葵的花粉向日葵的花粉为椭圆形或肾形,直径大约为50微米左右,花粉壁厚度较薄。
扫描电镜下观察,向日葵的花粉表面呈现出一种平滑的纹理,花粉壁内部有大小不一的坑陷。
同时,向日葵的花粉壁上也分布着一些小的碎片状突起。
整体上看,向日葵的花粉表面比较光滑,不像罂粟花那样粗糙。
松树的花粉松树的花粉为卵圆形,长38-55微米,宽25-30微米,花粉壁较厚。
在扫描电镜下观察,松树的花粉表面呈现出一种分布均匀的刺状突起,形态呈现出有规律的菱形和六边形等几何形状。
这些刺状突起密集而均匀,大小相当,长度为0.1-0.5微米。
整个花粉表面呈现出一种精细而规则的网状结构,十分复杂,呈现出明显的纹理和层次感。
紫罗兰的花粉紫罗兰的花粉为卵形、扁平,长35-45微米,宽20-25微米,花粉壁厚度较薄。
在扫描电镜下观察,紫罗兰的花粉表面呈现出一种不规则的凹凸纹理,与其他花粉的凸起和刺状突起不同。
这些凹凸纹理大小相当,分布不均,有的地方密集,有的地方较为稀疏。
扫描电镜显微分析报告

扫描电镜显微分析报告一、引言扫描电镜(Scanning Electron Microscope, SEM)是一种利用电子束对样品表面进行扫描观察和显微分析的仪器。
其分辨率比光学显微镜要高很多,可以清晰显示样品表面的形态和结构。
本次实验使用SEM对样品进行了显微分析,并编写下述报告。
二、实验目的1.了解SEM的基本原理和工作方式;2.观察样品表面的形态和结构;3.通过SEM图像分析,获取样品的组成成分和晶体形貌信息。
三、实验步骤1.准备样品,将其放在SEM样品台上;2.调节SEM参数,包括加速电压、工作距离、扫描速度等;3.进行扫描观察,获取SEM图像;4.根据SEM图像进行显微分析,分析样品的形态、结构和成分。
四、实验结果经过扫描电镜观察,我们获得了样品表面的SEM图像。
该样品是一块金属材料,其表面呈现出颗粒状的结构。
颗粒大小不均匀,分布较为稀疏。
部分颗粒表面存在裂纹和凹凸不平的现象。
通过放大图像,我们可以看到颗粒呈现出不规则的形态和表面结构。
根据样品的形态和颗粒特征,我们推测该样品可能是一种金属合金。
颗粒的大小和分布情况表明,在合金制备过程中,可能存在着颗粒的生长过程或者晶体相变的情况。
我们还可以观察到部分颗粒表面存在裂纹和凹凸不平,这可能与金属材料在制备、处理或使用过程中的应力释放有关。
通过对SEM图像的分析,我们得到了样品的表面形貌和结构信息,但对于其具体的成分和晶体形貌仍需要进一步的分析。
五、实验结论本次实验使用扫描电镜对样品进行了显微分析,并获得了样品的SEM图像。
1.样品表面呈现颗粒状结构,颗粒大小分布不均匀;2.部分颗粒表面存在裂纹和凹凸不平的现象;3.样品可能是一种金属合金,颗粒的形态和分布情况可能与晶体相变和应力释放有关。
对于SEM图像中的颗粒成分和晶体形貌信息,我们需要进一步的分析才能得出准确的结论。
比如可以使用能谱仪对样品进行能谱分析,确定其具体的成分元素;还可以进行X射线衍射分析,获取样品的晶体结构参数。
扫描电镜实验报告

扫描电镜实验报告扫描电镜(Scanning Electron Microscope,SEM)是一种应用广泛的高分辨率显微镜,能够对样品进行表面形貌和微观结构的观测和分析。
本实验旨在通过扫描电镜对不同样品的表面形貌和微观结构进行观察和分析,从而加深对扫描电镜原理和应用的理解。
首先,我们准备了几种不同的样品,包括金属材料、植物组织和昆虫外骨骼等。
在实验过程中,我们首先对样品进行了表面处理,包括金属样品的金属镀膜处理、植物组织的冷冻干燥处理以及昆虫外骨骼的金属喷镀处理,以保证样品在扫描电镜下的观察效果。
接下来,我们将样品放置在扫描电镜的样品台上,并调整好合适的观察条件。
在观察过程中,我们发现扫描电镜能够清晰地显示样品的表面形貌和微观结构,包括金属样品的晶粒结构、植物组织的细胞结构以及昆虫外骨骼的纹理结构等。
通过对这些结构的观察和分析,我们不仅可以直观地了解样品的表面特征,还可以深入地研究样品的微观结构和性质。
在实验中,我们还发现扫描电镜具有较高的分辨率和深度信息,能够对样品进行三维观察和分析。
通过调整扫描电镜的工作参数,我们成功地获得了不同角度和深度的样品图像,进一步揭示了样品的微观结构和表面形貌。
这为我们深入理解样品的微观特征提供了重要的信息和依据。
总的来说,通过本次实验,我们深入了解了扫描电镜的原理和应用,掌握了样品的表面形貌和微观结构的观察方法,提高了对样品性质和特征的认识。
扫描电镜作为一种重要的分析工具,将在材料科学、生物学、医学等领域发挥重要作用,为科学研究和工程应用提供有力支持。
通过本次实验,我们不仅提高了对扫描电镜的认识,还对不同样品的表面形貌和微观结构有了更深入的理解。
扫描电镜的高分辨率和深度信息为我们提供了更多的观察和分析角度,有助于我们更全面地认识样品的特性和性能。
希望通过今后的实践和研究,能够更好地利用扫描电镜这一强大的工具,为科学研究和工程应用做出更多的贡献。
扫描电镜实验报告

扫描电镜实验报告扫描电镜实验报告引言:扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高分辨率显微镜,通过扫描样品表面并记录电子信号来观察样品的微观结构。
本实验旨在利用扫描电镜对不同样品进行观察和分析,以探索其微观特征和结构。
一、实验目的:本实验的主要目的是通过扫描电镜观察和分析样品的表面形貌和微观结构,了解扫描电镜的工作原理和应用。
二、实验步骤:1. 样品准备:选择不同类型的样品,如金属、生物组织等,并进行必要的前处理,如切片、抛光等。
2. 样品固定:将样品固定在扫描电镜样品台上,确保样品表面平整。
3. 调整参数:根据样品的性质和所需观察的特征,调整扫描电镜的加速电压、放大倍数等参数。
4. 开始观察:打开扫描电镜,将电子束聚焦在样品表面,并开始观察样品的微观结构。
5. 图像获取:通过扫描电镜的控制系统,获取样品表面的图像,并进行记录和保存。
三、实验结果:1. 金属样品观察:在扫描电镜下观察金属样品,可以清晰地看到金属表面的晶粒结构和纹理。
不同金属的晶粒形状和大小有所差异,通过观察晶粒边界和晶粒内部的细节,可以进一步分析金属的晶体结构和性质。
2. 生物样品观察:利用扫描电镜观察生物样品,可以展示生物细胞、细胞器和细胞结构的微观特征。
例如,观察植物叶片的表面细胞,可以看到细胞壁、气孔和细胞间隙的形态和排列方式。
同时,观察细菌样品可以揭示其形态、大小和表面特征,有助于对细菌种类和功能的鉴定。
3. 其他样品观察:扫描电镜还可用于观察其他类型的样品,如纤维材料、陶瓷、矿物等。
通过观察这些样品的表面形貌和微观结构,可以了解它们的组织结构、纤维排列方式以及晶体形态等特征。
四、实验分析:通过扫描电镜的观察和分析,我们可以更深入地了解样品的微观结构和表面形貌。
这些观察结果对于材料科学、生物学和医学等领域具有重要意义。
例如,在材料科学中,通过观察金属晶粒的形态和排列方式,可以优化材料的力学性能和耐腐蚀性能。
扫描电镜实验报告

扫描电镜实验报告扫描电镜是一种高分辨率的显微镜,能够对样品进行高分辨率成像。
在本次实验中,我们使用了扫描电镜对样品进行了观察和分析。
本报告将对实验的目的、方法、结果和结论进行详细的描述和分析。
实验目的。
本次实验的主要目的是利用扫描电镜对样品进行表面形貌和微观结构的观察和分析,了解扫描电镜在材料科学和生物科学领域的应用,掌握扫描电镜的操作技巧和注意事项。
实验方法。
1. 样品制备,首先,我们准备了需要观察的样品,如金属材料、生物组织等,并对样品进行表面处理和固定。
2. 扫描电镜操作,接下来,我们将样品放入扫描电镜的样品台上,并根据仪器操作手册进行电镜的开机、预热和调试,确保仪器处于正常工作状态。
3. 观察和记录,在样品放置好并仪器调试完成后,我们通过调整扫描电镜的参数,如放大倍数、对焦等,对样品进行观察,并记录观察到的表面形貌和微观结构。
实验结果。
经过扫描电镜的观察,我们得到了样品的高分辨率图像,并对样品的表面形貌和微观结构进行了分析。
我们观察到样品表面的微观结构非常复杂,有许多微小的颗粒和纹理,这些结构对样品的性能和功能具有重要影响。
通过扫描电镜的观察,我们能够更加深入地了解样品的微观特征,为进一步的研究和分析提供了重要的参考。
实验结论。
本次实验通过扫描电镜的观察和分析,我们对样品的表面形貌和微观结构有了更加深入的了解。
扫描电镜作为一种高分辨率的显微镜,能够为材料科学和生物科学领域的研究提供重要的技术支持。
通过本次实验,我们掌握了扫描电镜的操作技巧和注意事项,为今后的科研工作打下了良好的基础。
总结。
通过本次实验,我们不仅学习了扫描电镜的操作和应用,还对样品的表面形貌和微观结构有了更深入的了解。
扫描电镜在材料科学和生物科学领域具有重要的应用价值,能够为科研工作提供重要的技术支持。
希望通过本次实验,能够对大家对扫描电镜的应用有更深入的了解,为今后的科研工作提供帮助和指导。
在本次实验中,我们通过扫描电镜对样品进行了观察和分析,了解了扫描电镜在科研领域的重要应用价值。
扫描电镜图像的分析

100 150 200 250 300 350 400 颗粒个数N
个
数 均 D n 5.57 5.30 5.40 5.57 5.50 5.57 5.64
μ
m
体 均 D v 8.33 8.20 8.06 8.16 8.08 8.09 8.14
μ
m
D50 μm 8 . 11 8 . 1 0 7 . 8 0 7 . 9 2 7 . 9 1 7 . 9 2 7 . 9 5
图4.12 500X 解理和沿晶断裂
图4.13 钢管旳断口 500X
图4.14 钢材腐蚀表面 1000X
图4.15 750X 沿晶断裂
图4.16 550X 解理断裂
图4.17 1000X 解理+准解理
图4.18 500X 解理+沿晶断口(拉长韧窝)
图4.19 高岭土 3000X
图4.20 高岭土5000X
图4.22 Mg-Zn-Y合金二次电子照片
图4.23 合金旳背散射电子照片 500X
图4.24 Mg-Zn-Y合金旳背散射电子照片 图4.25 Mg-Zn-Y合金旳背散射和二次电子照片
图4.26 铝钴镍合金二次电子照片
图4.27 铝钴镍合金背散射电子照片
4 粒度分布测量
大规模集成电路板上旳沟槽深、线宽、圆直径、正方形、长方形边长等旳测量;粉体(尤其是纳米)颗粒 粒度测量、原则粒子微球旳粒度定值;复合材料(如固体推动剂)中某种颗粒组份粒度分布测量、样品表 面孔隙率测定等…,都能够使用图像处理、分析功能,有自动和手动。目前旳EDS中都有该软件包供选择, 用SEM测量测定粉体颗粒粒度是精确、以便和实用旳。测量旳粒度范围能够从几十纳米到几种毫米,是 任何专用粒度仪所无法胜任旳。尤其当分析样品旳粒度不大于3um(例如:超细银粉、碳粉、钴蓝、 Fe2O3、SiO2等)时,超细颗粒极易汇集、团聚(如下图)、在水中尤其难于分散旳特征,老式旳湿法 粒度分析(例如:Coulter计数法、激光散射法、动态光子有关法)就无法得到真实旳粒度成果。而扫描 电镜粒度分析法(简称SEM法)却不受这些限制,比较灵活,完全能适应这些特殊样品旳粒度分析,同 步它属于绝对粒度测量法。为克服SEM粒度分析法所存在旳测定样品量太少、成果缺乏代表性旳缺陷, 在实际操作时,要多制备些观察试样,多采集些照片,多测量些颗粒(300个以上)。超细粉体样品一般 制备在铜柱表面上,希望颗粒单层均匀分散、彼此不粘连。这么,在不同倍数下得到照片,便于图象处理 和分析功能自动完毕;不然,就要手工测量每个颗粒旳粒度,然后进行统计处理。
扫描电镜知识汇总

扫描电镜(SEM)超全知识汇总真空技术扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。
如图1所示,是扫描电子显微镜的外观图。
▲图1. 扫描电子显微镜特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。
通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。
扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
样品室内除放置样品外,还安置信号探测器。
2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。
所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。
3、真空系统真空系统主要包括真空泵和真空柱两部分。
真空柱是一个密封的柱形容器。
真空泵用来在真空柱内产生真空。
有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨灯丝枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧及六硼化铈枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 扫描电镜(SEM)• 透射电镜(TEM)• 原子力显微镜(AFM)• X射线衍射(XRD)• 元素分析(EA)显微分析技术——电子显微镜一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。
透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射电镜(TEM)的成像和衍射二次电子 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,成为真空中的自由电子,此即二次电子。
在电场的作用下它可呈曲线运动进入检测器,使表面凹凸的各个部分都能清晰成像。
二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜的分辨率。
二次电子的强度主要与样品表面形貌相关。
二次电子和背景散射电子共同用于扫描电镜(SEM)的成像。
当探针很细,分辨高时,基本收集的是二次电子而背景电子很少,称为二次电子成像(SEI)。
背景散射电子 入射电子穿达到离核很近的地方被反射,没有能量损失;既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子,前者的份额远大于后者。
背散射电子反映样品表面的不同取向、不同平均原子量的区域差别,产额随原子序数的增加而增加;利用背散射电子为成像信号,可分析形貌特征,也可显示原子序数衬度而进行定性成分分析。
特征X射线入射电子和原子中的层电子发生非弹性散射作用而损失一部分能量(几百个eV),激发层电子发生电离,形成离子,该过程称为芯电子激发。
除了二次电子外,失去层电子的原子处于不稳定的较高能量状态,将依一定的选择定则向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元素组成信息的特征X射线,可用于材料的成分分析。
俄歇(Auger)电子如果入射电子把外层电子打进层,原子被激发了.为释放能量而电离出次外层电子,叫俄歇电子。
主要用于轻元素和超轻元素(除H和He)的分析,称为俄歇电子能谱仪。
阴极荧光如果入射电子使试样的原于电子发生电离,高能级的电子向低能级跃迁时发出的光波长较长(在可见光或紫外区),称为阴极荧光,可用作光谱分析,但它通常非常微弱。
各种信号的深度与区域大小高能电子束受到物质原子的散射作用偏离入射方向,向外发散;随着深度的增加,分布围增大,动能不断降低、直至为0,形成一个作用区。
“梨形作用体积”:对轻元素样品,入射电子经多次小角散射,在未达到较大散射角之前已深入样品部;最后散射角增大,达到漫散射的程度。
“半球形作用体积”:对重元素样品,入射电子在样品表面不很深的位置就达到漫反射的程度。
电子在样品散射区域的形状主要取决于原子序数,改变电子能量只引起作用体积大小的改变而不会显著改变形状。
深度能逸出材料表面的俄歇电子距表面的深度:0.4~2nm,为表面信号;能逸出材料表面的二次电子距表面的深度:5~10nm;能逸出材料表面的X射线距表面的深度:500nm~5μm。
:分辨率:俄歇电子与二次电子的空间分辨率最高;背散射电子的空间分辨率次之;X射线信号的空间分辨率最低。
二次电子像的分辨率主要取决于电子探针束斑尺寸和电子枪的亮度。
二次电子的最高分辨率可达0.25nm。
扫描电镜的分辨率指的是二次电子的分辨率。
扫描电镜的特点★景深大,图像富有立体感,特别适合于表面形貌的研究.★放大倍数围广,从十几倍到2万倍,几乎覆盖了光学显微镜和TEM的围.★制样简单,样品的电子损伤小.这些方面优于TEM,所以SEM成为材料常用的重要剖析手段.扫描电镜(SEM)的几大要素(1)分辨率影响扫描电镜的分辨本领的主要因素有:(a) 入射电子束束斑直径:为扫描电镜分辨本领的极限。
一般,热阴极电子枪的最小束斑直径可缩小到6nm,场发射电子枪可使束斑直径小于3nm。
(b) 入射电子束在样品中的扩展效应:扩散程度取决于入射束电子能量和样品原子序数的高低。
入射束能量越高,样品原子序数越小,则电子束作用体积越大,产生信号的区域随电子束的扩散而增大,从而降低了分辨率(c) 成像方式及所用的调制信号:当以二次电子为调制信号时,由于其能量低(小于50 eV),平均自由程短(10~100 nm左右),只有在表层50~100 nm的深度围的二次电子才能逸出样品表面,发生散射次数很有限,基本未向侧向扩展,因此,二次电子像分辨率约等于束斑直径。
当以背散射电子为调制信号时,由于背散射电子能量比较高,穿透能力强,可从样品中较深的区域逸出(约为有效作用深度的30%左右)。
在此深度围,入射电子已有了相当宽的侧向扩展,所以背散射电子像分辨率要比二次电子像低,一般在500~2000nm左右。
如果以吸收电子、X射线、阴极荧光、束感生电导或电位等作为调制信号的其他操作方式,由于信号来自整个电子束散射区域,所得扫描像的分辨率都比较低,一般在l 000 nm或l0000nm以上不等。
(2)放大倍数扫描电镜的放大倍数可表示为M =Ac/As式中,Ac—荧光屏上图像的边长;As—电子束在样品上的扫描振幅。
一般地,Ac 是固定的(通常为100 mm),则可通过改变As 来改变放大倍数。
目前,大多数商品扫描电镜放大倍数为20~20,000倍,介于光学显微镜和透射电镜之间,即扫描电镜弥补了光学显微镜和透射电镜放大倍数的空挡。
(3)景深景深是指焦点前后的一个距离围,该围所有物点所成的图像符合分辨率要求,可以成清晰的图像;也即,景深是可以被看清的距离围。
扫描电子显微镜的景深比透射电子显微镜大10倍,比光学显微镜大几百倍。
由于图像景深大,所得扫描电子像富有立体感。
电子束的景深取决于临界分辨本领d0和电子束入射半角αc。
其中,临界分辨本领与放大倍数有关,因人眼的分辨本领约为0.2 mm, 放大后,要使人感觉物像清晰,必须使电子束的分辨率高于临界分辨率d0 :电子束的入射角可通过改变光阑尺寸和工作距离来调整,用小尺寸的光阑和大的工作距离可获得小的入射电子角。
(4) 衬度包括:表面形貌衬度和原子序数衬度表面形貌衬度由试样表面的不平整性引起。
原子序数衬度原子序数衬度指扫描电子束入射试祥时产生的背散射电子、吸收电子、X射线,对微区原子序数的差异相当敏感二次电子来自试样表面层5~10nm的深度围,表面形貌特征对二次电子的发射系数影响可由下式表示:δ=δ0/Cosαδ0——物质的二次电子发射系数,与具体物质有关的常数。
可见,二次电子的发射系数随α角的增大而增大。
事实上,α角大,入射电子束的作用体积较靠近试样表面,由于二次电子主要来自试样表层5~10nm深度,因此,作用体积产生的大量二次电子离开表面的机会增加;其次,α角大,入射电子束的总轨迹增长,引起电子电离的机会增多。
因此,在试样表面凸凹不平的部位,入射电子束作用产生的二次电子信号的强度要比在试样表面平坦的部位产生的信号强度大,从而形成表面形貌衬度。
原子序数越大,图像越亮。
二次电子受原子序数的影响较小。
高分子中各组分之间的平均原子序数差别不大;所以只有—些特殊的高分子多相体系才能利用这种衬度成像。
背散射电子像背散射电子也称为反射电子或初级背散射电子,其能量在50eV, 接近于入射电子能量。
利用背散射电子的成像,称为背散射电子像。
背散射电子像既可以用来显示形貌衬度,也可以用来显示成分衬度。
形貌衬度类似二次电子,样品表面的形貌也影响背散射电子的产率,在α角较大(尖角)处,背散射电子的产率高;在α角较小(平面)处,背散射电子的产率低。
由于背反射电子是来自一个较大的作用体积,用背反射信号进行形貌分析时,其分辨率远比二次电子低。
由试样微区的原子序数或化学成分的差异所形成的像。
成分衬度背散射电子是受原子反射回来的入射电子,受核效应的影响比较大。
由经验公式,对原子序数大于10的元素,背散射电子发射系数可表示为∴背散射电子发射系数随原子序数Z 的增大而增加。
η= ln Z/6 -1/4但是,二次电子大部分是由价电子激发出来的,所以原子序数的影响不大明显:当原子序数Z<20时,δ随着Z的增加而增大;当Z>20时,δ与Z几乎无关。
(如图3一15所示)。
若试样表面存在不均匀的元素分布,平均原子序数较大的区域产生较强的背散射电子信号,因而在背散射电子像上显示出较亮的衬度;反之,平均原子序数较小的区域在背散射电子图像上是暗区。
因此,可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。
扫描电子显微镜的样品制备(1)导电性好,以防止表面积累电荷而影响成像;(2)具有抗辐射损伤的能力,在高能电子轰击下不分解、不变形;(3)具有高的二次电子和背散射电子系数,以保证图像良好的信噪比。
扫描电镜试样一般要求具有以下特点:对不满足以上要求的试样(瓷、玻璃、塑料等绝缘材料,导电性差的半导体,热稳定性不好的有机材料,二次电子、背散射电子系数较低的材料等),需要表面涂层处理。
表面涂层处理的常用方法有真空蒸发和离子溅射镀膜法。
二次电子像的样品制备方法(1)导电样品。
将允许尺寸的样品放入样品室观察前先需用丙酮、酒精或甲苯这类溶剂清洗掉样品表面的油污,或在超声波清洁器中去除油污,也可用复型剥离及化学刻蚀等方法去除在高放大倍数下易分解的碳氢化物等的玷污,因为这些物质分解后会在样品表面沉积一层碳和其他产物,当放大倍数缩小时,图像中原视域就成为暗色的方块。
(2)绝缘体或导电性能较差的样品。
如瓷、半导体,高分子、不需固定脱水处理的生物样品及一些无机材料等,只需清洁样品之后,用离子喷镀仪在样品表面喷镀一层金产生导电层就可观察了。
(3)不论样品导不导电,块状样品都得借助于双面胶带将样品粘在铜或铝样品台上,并用银粉导电胶连通样品与样品台,或直接用石墨导电双面胶带粘贴样品,使吸收电子能流入接地的样品架,以尽量减少因表面充电效应或热损伤引起的起泡、龟裂、像漂移、像散不稳定等现象,尤其是生物样品、聚合物等。
(4)颗粒样品,如果是干燥的粉末,可直接撒在粘有双面胶带的样品台上,抖去或用洗耳球吹去松散的颗粒,并用导电胶涂在胶带四周再喷金。
(5)如果是含水或含有挥发性物质的样品,必须先去除水分或挥发性物质,再喷金观察。
去除水分的方法有很多种:烘箱干燥、湿度干燥、置换干燥、真空干燥、冷冻干燥、临界点干燥等,根据样品的不同特点和要求选择不同的方法。
温度干燥是将样品保持在一定的温度下干燥,真空干燥与冷冻干燥都是用真空喷镀仪抽真空,使水分挥发。
不同的是后者将样品投入液氮或其他骤冷剂然后再抽真空,水分从固态直接升华,使得通常的液相蒸发带来的表面力减小,减少样品损伤。
透射电镜(TEM)基本原理透射电镜基本构造与光学显微镜相似,主要由光源、物镜和投影镜三部分组成,只不过用电子束代替光束,用磁透镜代替玻璃透镜。