浙教版九年级数学中考试题
浙江省中考数学一轮复习 专题练习8 三角形(2) 浙教版-浙教版初中九年级全册数学试题

三角形(2)班级某某学号一、选择题1.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.102.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或114.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF5.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对6.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.7.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE8.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠AC D.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABE D.则BE的长是()A.4 B. C.3 D.29.如图,一X三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A 落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P 的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小 B.一直不变 C.先减小后增大 D.先增大后减小二、填空题11.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.12.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是.13.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为_______.14.如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是.15.如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是.(填写所有正确结论的序号)三、解答题16.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=,FG=.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.18.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B 处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?19.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)20.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)21.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.22.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.23.如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥C A.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图③,若FE的延长线与BC的延长线交于点N,=1,CE=,求的值.24.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.答案详解一、选择题2.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或11【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.【分析】把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为x2﹣7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选:D.4.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【考点】矩形的性质;全等三角形的判定.【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DE C.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选(B)5.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.6.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.【考点】角平分线的性质;特殊角的三角函数值.【分析】由条件可知BO、CO平分∠ABC和∠ACB,利用三角形内角和可求得∠A,再由特殊角的三角函数的定义求得结论.【解答】解:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×=180°﹣2×=60°,∴tanA=tan60°=,故选A.7.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE【考点】相似三角形的判定与性质;勾股定理;矩形的判定与性质.【分析】过点D作DH⊥BC,利用勾股定理可得AB的长,利用相似三角形的判定定理可得△ADE∽△BEC,设BE=x,由相似三角形的性质可解得x,易得CE,DE的关系.【解答】解:过点D作DH⊥BC,∵AD=1,BC=2,∴CH=1,DH=AB===2,∵AD∥BC,∠ABC=90°,∴∠A=90°,∵DE⊥CE,∴∠AED+∠BEC=90°,∵∠AED+∠ADE=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC,∴,设BE=x,则AE=2,即,解得x=,∴,∴CE=,故选B.8.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠AC D.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABE D.则BE的长是()A.4 B. C.3 D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.9.如图,一X三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A 落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a【考点】翻折变换(折叠问题).【分析】(1)图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知:DE是△ABC 的中位线,得出DE的长,即a的长;(2)图2,同理可得:MN是△ABC的中位线,得出MN的长,即b的长;(3)图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【解答】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB∴△ACB∽△AGH∴=∴=∴GH=,即c=∵2>>∴b>c>a故选(D)10.如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P 的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小 B.一直不变 C.先减小后增大 D.先增大后减小【考点】动点问题的函数图象.【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【解答】解:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴AD=2x,AP=x,∴S1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选C.二、填空题11.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46 度.【考点】旋转的性质.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.12.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 5 .【考点】作图—基本作图;直角三角形斜边上的中线;勾股定理.【分析】首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解答】解:由题意EF是线段AB的垂直平分线,∴AD=DB,Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,∴AB===10,∵AD=DB,∠ACB=90°,∴CD=AB=5.故答案为5.13.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为_______.【考点】相似三角形,勾股定理【答案】241【解析】连接AC,过点D作BC边上的高,交BC延长线于点H.在Rt△ABC中,AB=3,BC=4,∴AC =5,又CD=10,DA=55,可知△ACD为直角三角形,且∠ACD=90°,易证△ABC∽△CHD,则CH =6,DH=8,∴BD=228241(4+6).+=14.如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是①②③④.【考点】勾股定理;四点共圆.【分析】①正确.由ADO≌△CEO,推出DO=OE,∠AOD=∠COE,由此即可判断.②正确.由D、C、E、O四点共圆,即可证明.③正确.由S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC即可解决问题.④正确.由D、C、E、O四点共圆,得OP•PC=DP•PE,所以2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,由△OPE∽△OEC,得到=,即可得到2OP2+2DP•PE=2OE2=DE2=CD2+CE2,由此即可证明.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.15.如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是①②③④.(填写所有正确结论的序号)【考点】全等三角形的判定与性质;等边三角形的性质.【分析】①正确.根据两角夹边对应相等的两个三角形全等即可判断.②正确.只要证明四边形ABDF是平行四边形即可.③正确.只要证明△BCE≌△FD C.④正确.只要证明△BDE∽△FGE,得=,由此即可证明.【解答】解:①正确.∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ACB=60°,∵DE=DC,∴△DEC是等边三角形,∴ED=EC=DC,∠DEC=∠AEF=60°,∵EF=AE,∴△AEF是等边三角形,∴AF=AE,∠EAF=60°,在△ABE和△ACF中,,∴△ABE≌△ACF,故①正确.②正确.∵∠ABC=∠FDC,∴AB∥DF,∵∠EAF=∠ACB=60°,∴AB∥AF,∴四边形ABDF是平行四边形,∴DF=AB=BC,故②正确.③正确.∵△ABE≌△ACF,∴BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,,∴△BCE≌△FDC,∴S△BCE=S△FDC,∴S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正确.④正确.∵△BCE≌△FDC,∴∠DBE=∠EFG,∵∠BED=∠FEG,∴△BDE∽△FGE,∴=,∴=,∵BD=2DC,DC=DE,∴=2,∴FG=2EG.故④正确.三、解答题16.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.17.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=,FG=.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=, =,即=, =,解得:AB=99,答:“望月阁”的高AB的长度为99m.18.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B 处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?【考点】解直角三角形的应用-坡度坡角问题.【分析】过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.【解答】解:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x.在Rt△BCD中,∵∠B=30°,∴BC===2x,∵小军的行走速度为米/秒.若小明与小军同时到达山顶C处,∴=,解得a=1米/秒.答:小明的行走速度是1米/秒.19.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.【解答】解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF==2,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,答:电线杆的高度为(2+4)米.20.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)【考点】解直角三角形.【分析】(1)要求BC的长,只要求出BE和CE的长即可,由题意可以得到BE和CE的长,本题得以解决;(2)要求AD的长,只要求出AE和DE的长即可,根据题意可以得到AE、DE的长,本题得以解决.【解答】解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE﹣CE=6﹣8;(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x,则AE=5x,得AB=3x,∴3x=6,得x=2,∴BE=8,AE=10,∴tanE====,解得,DE=,∴AD=AE﹣DE=10﹣=,即AD的长是.21.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.22.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.【考点】相似三角形的判定与性质.【分析】(1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可证明.(2)先证明AD=BD,由△ACD∽△BFD,得==1,即可解决问题.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BF D.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴==1,∴BF=AC=3.23.如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥C A.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图③,若FE的延长线与BC的延长线交于点N,=1,CE=,求的值.【考点】三角形综合题.【分析】(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF≌S△DEF,则易得S△ABC=4S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到=()2,再利用勾股定理求出AB即可得到AE的长;(2)①通过证明四条边相等判断四边形AEMF为菱形;②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,先证明△CME∽△CBA得到==,解出x后计算出CM=,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF;(3)如图③,作FH⊥BC于H,先证明△NCE∽△NFH,利用相似比得到FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,再证明△BFH∽△BAC,利用相似比可计算出x=,则可计算出FH和BH,接着利用勾股定理计算出BF,从而得到AF的长,于是可计算出的值.【解答】解:(1)如图①,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF≌S△DEF,∵S四边形ECBF=3S△EDF,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴=()2,即()2=,∴AE=;(2)①四边形AEMF为菱形.理由如下:如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形;②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴==,即==,解得x=,CM=,在Rt△ACM中,AM===,∵S菱形AEMF=EF•AM=AE•CM,∴EF=2×=;(3)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴:NH=CE:FH,即1:NH=:FH,∴FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,∴FH=4x=,BH=4﹣7x=,在Rt△BFH中,BF==2,∴AF=AB﹣BF=5﹣2=3,∴=.24.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【考点】三角形综合题.【分析】(1)解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;(2)由A、B、C三点坐标可知OA2=OC•OB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;(4)A、B、P三点为顶点的三角形是等腰三角形,可分为以下三种情况:①AB=AP;②AB=BP;③AP=BP;然后分别求出P的坐标即可.【解答】(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,(2)∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐标为(﹣2,1),(4)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(﹣2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:y=x+3,令y=0代入y=x+3,∴x=﹣3,∴E(﹣3,0),∴OE=3,∴tan∠BEC==,∴∠BEO=30°,同理可求得:∠ABO=30°,∴∠ABE=30°,当PA=AB时,如图1,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(﹣3,0),当PA=PB时,如图2,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为﹣,令x=﹣代入y=x+3,∴y=2,∴P(﹣,2),当PB=AB时,如图3,∴由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6﹣2,∴sin∠BEO=,∴FP1=3﹣,令y=3﹣代入y=x+3,∴x=﹣3,∴P1(﹣3,3﹣),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴sin∠BEO=,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).。
浙教版初三数学中考试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-4D. √252. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. -a > -bD. ab > 03. 已知函数f(x) = 2x + 3,则f(-1)的值为()A. 1B. 2C. 3D. 44. 下列各组数中,成等差数列的是()A. 1, 3, 5, 7B. 2, 4, 6, 8C. 3, 6, 9, 12D. 1, 4, 7, 105. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标是()A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)6. 若sinA = 1/2,cosB = 1/2,则sin(A + B)的值为()A. √3/2B. 1/2C. -√3/2D. -1/27. 已知等腰三角形ABC中,AB = AC,AD是底边BC上的高,若∠BAC = 30°,则∠BAD的度数是()A. 30°B. 45°C. 60°D. 90°8. 下列关于圆的性质中,正确的是()A. 相切圆的半径之和等于两圆半径之和B. 相切圆的半径之差等于两圆半径之差C. 相切圆的半径之和等于两圆半径之积D. 相切圆的半径之差等于两圆半径之积9. 已知一元二次方程x^2 - 5x + 6 = 0的两个根分别为x1和x2,则x1 + x2的值为()A. 2B. 3C. 5D. 610. 若a、b、c是等差数列,且a + b + c = 15,则b的值为()A. 3B. 5C. 7D. 9二、填空题(每题3分,共30分)11. 已知函数f(x) = 3x - 2,则f(-1)的值为______。
12. 在直角三角形ABC中,∠A = 90°,∠B = 30°,则BC的长度是AB的______。
2024年浙江九年级中考数学最后一卷答案

2024年浙江中考最后一卷数学解析及参考答案一、单选题1.D【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵510−<−<<故选:D .2.D【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【详解】解:∵3a ﹣2a =a ,故选项A 错误;∵2a 2+4a 2=6a 2,故选项B 错误;∵(x 3)2=x 6,故选项C 错误;∵x 8÷x 2=x 6,故选项D 正确;故选D .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.3.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:80.16亿98.01610×,故选:B .4.B【分析】本题考查立体几何的三视图.根据题意,逐项判断即可.【详解】解:A.主视图为长方形,此项不符合题意;B.主视图为三角形,此项符合题意;C.主视图为圆,此项不符合题意;D.主视图为长方形,此项不符合题意.故选:B .5.C【分析】先解不等式,求出解集,然后在数轴上表示出来.【详解】解:不等式x ﹣2≤0,得:2x ≤ ,把不等式的解集在数轴上表示出来为:.故选:C【点睛】本题主要考查了解不等式,并在数轴上表示解集,解题的关键是熟练掌握解不等式的步骤,不等式的解集在数轴表示时空心圈不包含该点,实心圈包含该点.6.D【分析】本题为统计题,考查众数与中位数的意义,根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】有45辆自动驾驶汽车参与了这次测试,45个分数,按大小顺序排列最中间的数据是第23个数:85,故得分的中位数是85(分),得80分的人数最多,有16人,故众数为80,故选D .7.A【分析】本题考查了垂径定理和勾股定理的应用,根据垂径定理求出AE 的长是解此题的关键.连接OA ,根据垂径定理求出AE ,再根据勾股定理求出OA ,最后根据线段的和差求解即可.【详解】解:如图,连接OA ,线段CD 是O 的直径,CD AB ⊥于点E ,∴12AE AB =,8AB =, ∴4AE =,3OE =,∴5OA ,∴5OC OA ==,∴8CE OC OE =+=,故选:A .8.A【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是设每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】解:设每头牛值金x 两,每只羊值金y 两,则可列方程组为5210258x y x y += +=, 故选A .9.B【分析】本题考查了菱形的性质、二次函数图象上点的坐标特征,根据二次函数图象上点的坐标性质得出BD 的长是解题关键.连接BC 交OA 于D ,如图,根据菱形的性质得BC OA ⊥,60OBD ∠=°,利用含30度的直角三角形三边的关系得OD =,设BD t =,则OD =,()B t ,利用二次函数图象上点的坐标特征得2=,得出14BD =,OD =C 点坐标. 【详解】解:连接BC 交OA 于D ,如图,四边形OBAC 为菱形,BC OA ,120ABO ∠=° ,60OBD ∴∠=°,OD ∴,设BD t =,则OD =,()B t ∴,把()B t 代入2y =,得2=,解得10t =(舍去), 214t =,14BD ∴=,OD =故C 点坐标为:14 − .故答案为:B .10.C【分析】本题考查的是矩形的性质、翻折的性质及相似多边形性质,熟练应用矩形和相似多边形性质是解题关键,设CD x =,则()1,1EC x CG x x =-=--,根据两矩形相似求出即可.【详解】解:在矩形ABCD 中,设CD x =,则ABCD x ==,1AD BC ==, 由翻折得,90AB AF x AFE B BAF ==∠=∠=∠=︒,∴四边形ABEF 是正方形,同理,四边形DFHG 是正方形,,1BE AB x DF DG x ∴====-,()1,121CE x CG x x x ∴=-=--=-,矩形HECG ∽矩形ABCD ,EC CG BC CD∴=,即1211x x x --=,解得:x =,经检验,xCD ∴ 故选:C .二、填空题11.()()22t t t +−【分析】本题考查了因式分解,先提取公因式,再利用公式法即可求解,熟练掌握提公因式法及公式法分解因式是解题的关键.【详解】解:()()()324422t t t t t t t −=−=+−,故答案为:()()22t t t +−.12.14/0.25 【分析】本题考查了概率公式的应用,用到的知识点为:概率所求情况数与总情况数之比.全部情况的总数是四种,符合条件的情况的是一种,二者的比值就是其发生的概率.【详解】由于概率为所求情况数与总情况数之比,而抽取卡片为“特区精神”的情况数只有一种,从暗箱随机抽取一张的情况数为四种,故抽取卡片为“特区精神”的概率为14, 故答案为14. 13.0(答案不唯一)【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件,根据二次根式有意义的条件的条件是被开方数大于等于0,分式有意义的条件是分母不为0进行求解即可.∴10x −>,解得1x <.∴x 的值可以是0,故答案为:0(答案不唯一).14.100°/100度【分析】本题考查的是已知弧长与半径求解弧所对的圆心角,熟记弧长公式是解本题的关键.直接利用弧长公式计算即可.【详解】解: 设“弓”所在的圆的弧长圆心角度数是n °, 则1.2π2π1803n =, 解得:100n =,故答案为:100°.15.0.5−【分析】本题考查了反比例函数k 值的几何意义,熟练掌握k 值的几何意义是解答本题的关键.根据反比例函数k 值的几何意义进行解答即可.【详解】AB x ⊥ 轴于点B ,CD x ⊥轴,∴AB CD ,又 AD BC ,∴四边形ABCD 是平行四边形,过点作AM y ⊥轴,则四边形ABOM 是矩形, ∴0.5,ABOMABCD S S k ===矩形平行四边形∵反比例函数图象在第二象限,0.5k ∴=−,故答案为:0.5−.16.23、54【分析】本题考查了折叠的性质,正方形的性质,勾股定理,圆的定义;分三种情况讨论,设O 的半径为r ,分别根据勾股定理,即可求解.【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =,当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−, 在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23、54 三、解答题17.(1)5(2)222m mn −+【分析】此题考查了实数的运算以及整式的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、绝对值的代数意义以及负整数指数幂法则计算即可求出值;(2)根据平方差公式和完全平方公式化简,再合并同类项即可.【详解】(1)解:原式159=-+5=;(2)原式()22222n m m mn n =−−−+22222n m m mn n =−−+−222m mn =−+18.(1)图见解析(2)【分析】本题考查作图-轴对称变换,旋转变换,以及求弧长,熟练掌握相关作图方法是解题关键; (1)根据点关于y 轴对称的性质分别找到对应的点1A ,1B ,1C ,然后进一步连接即可;(2)利用旋转变换的性质分别作出A ,B ,C 的对应点2A ,2B ,2C ,再顺次连接即可,利用弧长公式求得点C 经过的路径长.【详解】(1)解:如图,111A B C △即为所求;(2)如图,222A B C △即为所求,由题意可知,OC∴点C 旋转到点2C =. 19.(1)6,40(2)1120 (3)全校学生一周内平均读书时间23t ≤<(答案不唯一)【分析】本题考查了扇形统计图,样本估计总体等知识.(1)由等级得到学生总数,即可得出a ,再求C 等级的占比即可;(2)用样本估计总体即可得出结果;(3)根据表格可题建议合理即可.【详解】(1)解:由等级D 得到学生总数1530%50÷=人, ∴504201556a −−−−,()%2050100%40%m =÷×=,40m =,故答案为:6,40.(2)1552800112050+×=人, 故该校2800名学生每周读书时间至少3小时的人数为1120人.故答案为:1120.(3)根据表格可建议:全校学生一周内平均读书时间23t ≤<.20.(1)是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2).【分析】本题考查的勾股定理的逆定理的应用,解直角三角形的应用,理解题意是解本题的关键. (1)利用勾股定理的逆定理判断即可;(2)先画图,利用三角函数再计算BE=BF =,从而可得答案. 【详解】(1)解:是, 理由:由测量结果可知得 1.5m BD =, 2.5m AD =,而2m AB =,∴2226.25AB BD AD +==,∴90ABD ,∴AB BC ⊥.故答案是:是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2)如图,由题意可得:90ABC ∠=°,2AB =,30AFB ∠=°,60AEB ∠=°,∴tan tan 60AB AEB BE∠=°=,∴BE =, 同理:tan tan 30AB AFBBF ∠=°=,∴BF =,∴FE BF BE =−==. 21.(1)证明见解析(2)6【分析】(1)依据平行线的性质以及矩形的性质,即可得到∠AFE =∠AEF ,进而得出AE =AF .(2)设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得方程,即可得到BE 的长,再根据三角形面积计算公式求解.【详解】(1)证明:∵四边形ABCD 矩形,∴AD ∥BC ,∴∠AFE =∠FEC ,由折叠的性质得:∠AEF =∠FEC ,∴∠AFE =∠AEF ,∴AE =AF .(2)解:根据折叠的性质可得AE =EC ,设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得:222AB BE AE +=,即()22248x x +=−,解得:x =3,∴BE =3,∴ABE S = 12AB •BE =12×4×3=6. 【点睛】本题主要考查了折叠问题以及矩形的性质的运用,解题的方法是设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.22.(1)220y x =−+ (2)5种(3)当转运A 种脐橙的车4辆,转运B 种脐橙的车12辆,转运C 种脐橙的车4辆时,利润最大为140800元【分析】(1)根据题意列式:()20651040x x y y −−=++,整理后即可得到220y x =−+; (2)根据装运每种水果的车辆数都不少于4辆,4x ≥,2204x −+≥,解不等式组即可;(3)设利润为W 元,则()480016000048W x x =−+≤≤,根据一次函数的增减性求解即可. 【详解】(1)根据题意,装运A 种水果的车辆数为x ,装运B 种水果的车辆数为y ,∴装运C 种水果的车辆数为()20x y −−,∴()20651040x x y y −−=++, 整理得220y x =−+. (2)由(1)知,装运A ,B ,C 三种水果的车辆数分别为x ,220x −+,x ,由题意得2204x −+≥,解得8x ≤,∵4x ≥,∴48x ≤≤.∵x 为整数,∴x 的值为4,5,6,7,8,∴安排方案共有5种.(3)设利润为W 元,∴()612005220160041000W x x x =×+−+×+× 4800160000x =−+,因为48000−<,且x 的值为4,5,6,7,8,∴W 的值随x 的增大而减小,∴当4x =时,销售利润最大.当装运A 种水果4车,B 种水果12车,C 种水果4车,销售获利最大.最大利润48004160000140800W =−×+=(元).【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.23.(1)2(0,0)P ,3(1,1)P ,4(2,2)P(2)①AC =BC =AB =ABC 是直角三角形,理由见解析【分析】本题考查了二次函数的图象与性质、勾股定理以及勾股定理逆定理:(1)根据“梦之点”的定义判断这几个点是否在矩形的内部或者边上即可得到答案;(2)①根据“梦之点”的定义求出A ,B 的坐标,再求出顶点的坐标,计算出AC ,AB ,BC 的长; ②根据勾股定理逆定理,即可求解.【详解】(1)解:∵矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,∴矩形ABCD 的“梦之点”(),x y 满足2,131x y −−≤≤≤≤,∴点2(0,0)P ,3(1,1)P ,4(2,2)P 是矩形ABCD 的“梦之点”,1(2,2)P −−不是矩形的“梦之点”.故答案为:2(0,0)P ,3(1,1)P ,4(2,2)P(2)解:①A 、B 是抛物线21922y x x =−++上的“梦之点”, ∴21922x x x =−++, 解得:123,3x x ==−,当3x =时,3y =,当3x =−时,=3y −,∴()()3,3,3,3A B −−, ∵()2219115222y x x x =−++=−−+, ∴顶点坐标为()1,5C ,∴AC =BC =AB =; ②ABC 是直角三角形,理由如下:∵AC =BC =AB =∴((2222280AB AC BC +=+==, ∴ABC 是直角三角形.24.(1)证明见解析(2)证明见解析(3)①EF =253CF =【分析】本题考查了圆的性质,等腰三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,掌握相关知识是解题的关键.(1)利用勾股和锐角三角函数求得AC BC =即可证明;(2)连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,先证明CO 是ACB ∠的角平分线,再证明ANM CDM ∽即可得出结论;(3)①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,先证明CHO CFB ∽,设EF x =3x =即可求解,②要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,当E 点与O 点重合时,EF 最大,CE OE OC −=最大,先求得EF =即可求出CF . 【详解】(1)证明:∵AD 是∴90ADC ADB ∠=∠=°, ∵9AD =,12CD =,∴15AC ===,∵tan 3ABD ∠=, ∴tan 3AD ABD BD∠==, ∴3BD =, ∴31215BC BD CD =+=+=, ∴AC BC =,∴ABC 是等腰三角形.(2)证明:连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,如图:∵AC BC =,∴CAB CBA ∠=∠, ∵OA OB =,∴OAB OBA ∠=∠, ∴CAO CBO ∠=∠, ∵OA OC =,∴CAO ACO ∠=∠, ∵OB OC =,∴BCO CBO ∠=∠, ∴ACO BCO ∠=∠, ∴CO 是ACB ∠的角平分线, 又∵ AC BC =,∴CN AB ⊥,∴90ANC BNC ∠=∠=°, ∴90MDC ANE ∠=∠=°, 又∵AMN CMD ∠=∠, ∴ANM CDM ∽,∴DCM NAM ∠=∠, ∴BCO BAD ∠=∠. (3)解:①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,如图:∵,,15OB OC OH BC BC =⊥=, ∴17.52CH BC ==,90CHO CFB ∠=∠=°, ∴CHO CFB ∽,∴COH CBF ∠=∠, ∵tan 3ABD ∠=, ∴tan tan 3CH COH CBF OH∠=∠==, ∴ 2.5OH =,∴OC =, ∵EF AB ∥,90BNC ∠=°, ∴CEF CNB ∽,∴90CEF CNB ∠=∠=°, 设EF x =,∴tan tan 3CE CE CFE CBN EF x∠=∠===, ∴3CE x =,∵OEF ADB ∽,∴OE EF AD BD=, ∵OEOC CE =−,3x =, 解得:x =∴EF ②∵90CEF ∠=°,即EF OC ⊥, ∴12CEF S CE EF =⋅ ,12OEF S OE EF =⋅ , ∴()111222CEF OEF S S CE EF OE EF EF CE OE −=⋅−⋅=⋅− , 由题知,要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,∴当E 点与O 点重合时,EF 最大,CE OE OC −=最大,如图:∵EF AB ∥,∴CEF CNB ∽,∴CFE CBN ∠=∠,CE OC ==,∴tan tan 3CE CFE CBN EF ∠=∠==,∴EF∴253CF =.。
2020春浙教版九年级中考数学复习测试:6.20圆与相似三角形的结合

第20讲圆与相似三角形的结合[学生用书P129]月球有多大?我们用三角函数可以测定月球的大小,当我们已知月球离地球的距离是三十八万四千千米,就可以用相似测定月球直径的大小.如图①,把一枚硬币(直径2.4 cm)放在离眼睛2.6 m的地方,大致能够把整个月面遮住.(试一试!)①②如图②,由△OAB∽△OCD,可得CDAB=OFOE(相似三角形对应高的比等于相似比).把AB=0.024 m,OF=384 000 000 m,OE=2.6 m代入,得CD=0.024×384 000 0002.6≈3 500 000(m).就是说,月球的直径约是3 500 km.类型之一圆的基本性质与相似三角形例1[2018·南京中考]如图,在正方形ABCD中,E是AB上一点,连结DE.过点A作AF⊥DE,垂足为F.⊙O经过点C,D,F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.【思路生成】(1)欲证明△AFG∽△DFC,只要证明∠F AG=∠FDC,∠AGF =∠FCD;(2)首先证明CG是直径,再求CG长度即可解决问题;解:(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,又∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC;(2)如答图,连结CG.答图∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF.∴EAAF=DADF,即EADA=AFDF.∵△AFG∽△DFC,∴AGDC=AF DF.∴AGDC=EADA.在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA-AG=4-1=3. ∴CG=DG2+DC2=32+42=5.∵∠CDG=90°,∴CG是⊙O的直径.∴⊙O的半径为5 2.圆与相似三角形的综合运用主要体现在以下几个方面:(1)证明圆中的比例式或等积式;(2)运用相似的性质进行圆的有关计算;(3)运用相似证明圆的切线.判定圆中的相似三角形(1)圆中的角主要有圆心角和圆周角,特别是直径所对的圆周角都是直角,利用圆心角、圆周角等寻找或构造相似三角形是基本思路;(2)利用圆的切线的判定或性质,或切线长定理寻找或构造相似三角形也是重要的方法.1.[太原竞赛]如图,已知△ABC中,∠C=90°,AC=11,BC=5,以C为圆心,BC为半径作圆交BA的延长线于D,则AD的长为__73__.答图【解析】如答图,延长AC与圆相交于E,F,则AF=5-11,AE=5+11,又AB=6,由相交弦定理AD·AB=AE·AF得AD=AE·AFAB=(5-11)(5+11)6=73.2.[第19届江苏竞赛]如图,AB为圆的直径,若AB=AC=5,BD=4,则AE BE=__724__.【解析】如答图,连结AD,答图∵AB为圆的直径,∴∠E=90°,AD⊥BC,而AB=AC=5,BD=4,则AD=3,BD=DC,∴BC=2BD=8,∵∠ACD=∠BCE,∴Rt△CDA∽Rt△CEB,∴ADBE=CDCE=CABC,即3BE=4CE=58,所以BE=245,CE=325,则AE=CE-AC=325-5=75,所以AEBE=724.3.[苏州中考]如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E ,连结CD 交OE 于点F .(1)求证:△DOE ∽△ABC ; (2)求证:∠ODF =∠BDE ;(3)连结OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若S 1S 2=27,求OEOD 的值.解:(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. ∵DE ⊥AB ,∴∠DEO =90°.∴∠DEO =∠ACB . ∵OD ∥BC ,∴∠DOE =∠ABC ,∴△DOE ∽△ABC ;(2)证明:∵△DOE ∽△ABC ,∴∠ODE =∠A .∵∠A 和∠BDC 是BC ︵所对的圆周角,∴∠A =∠BDC ,∴∠ODE =∠BDC .∴∠ODF =∠BDE ;(3)∵△DOE ∽△ABC ,∴S △DOE S △ABC =⎝ ⎛⎭⎪⎫OD AB 2=14,即S △ABC =4S △DOE =4S 1, ∵OA =OB ,∴S △BOC =12S △ABC , 即S △BOC =2S 1.∵S 1S 2=27,S 2=S △BOC +S △DOE +S △DBE =2S 1+S 1+S △DBE ,∴S △DBE =12S 1,∴BE =12OE , 即OE =23OB =23OD ,∴OE OD =23.4.[2018·宁波中考]如图1,直线l :y =-34x +b 与x 轴交于点A (4,0),与y 轴交于点B ,点C 是线段OA 上一动点⎝ ⎛⎭⎪⎫0<AC <165,以点A 为圆心,AC 长为半径作⊙A 交x 轴于另一点D ,交线段AB 于点E .连结OE 并延长交⊙A 于点F .(1)求直线l 的函数表达式和tan ∠BAO 的值. (2)如图2,连结CE ,当CE =EF 时. ①求证:△OCE ∽△OEA ; ②求点E 的坐标.(3)当点C 在线段OA 上运动时,求OE ·EF 的最大值.解:(1)∵直线l :y =-34x +b 与x 轴交于点A (4,0), ∴-34×4+b =0,∴b =3,∴直线l 的函数表达式为y =-34x +3, ∴B (0,3),∴OA =4,OB =3,在Rt△AOB中,tan∠BAO=OBOA=3 4.(2)①证明:如答图①,连结DE,DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA;②如答图①,过点E作EM⊥OA于M,由①知,tan∠OAB=3 4,设EM=3m,则AM=4m,∴OM=4-4m,AE=5m,∴E(4-4m,3m),AC=5m,∴OC=4-5m,由①知,△COE∽△EOA,∴OCOE=OEOA,∴OE2=OA·OC=4(4-5m)=16-20m,∵E(4-4m,3m),∴(4-4m)2+9m2=16-20m,解得m =0(舍)或m =1225,∴4-4m =5225,3m =3625, ∴E ⎝ ⎛⎭⎪⎫5225,3625.(3)如答图②,设⊙A 的半径为r ,设射线EA 与⊙A 相交于H ,过点O 作OG ⊥AB 于G ,连结FH ,答图①答图②∵A (4,0),B (0,3),∴OA =4,OB =3, ∴AB =5,∴12AB ×OG =12OA ×OB ,∴OG =125, ∴AG =OG tan ∠OAB=125×43=165, ∴EG =AG -AE =165-r ,∵EH 是⊙A 直径, ∴EH =2r ,∠EFH =90°=∠EGO , ∵∠OEG =∠HEF ,∴△OEG ∽△HEF , ∴OE HE =EG EF ,∴OE ·EF =HE ·EG =2r ⎝ ⎛⎭⎪⎫165-r =-2⎝ ⎛⎭⎪⎫r -852+12825,∴r =85时,OE ·EF 取最大值为12825.类型之二 圆的切线与相似三角形例2 [2018·成都]如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连结OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.【思路生成】(1)连结OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连结DF ,由(1)得到BC 为⊙O 的切线,由弦切角等于夹弧所对的圆周角,进而得到△ABD 与△ADF 相似,由相似得比例,即可表示出AD ;(3)连结EF ,设圆的半径为r ,由sin B 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF =sin B ,进而求出DG 的长即可.解:(1)证明:如答图,连结OD ,答图∵AD为∠BAC的平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,又⊙O过点D,∴BC为⊙O的切线;(2)如答图,连结DF,由(1)知BC为⊙O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴ABAD=ADAF,即AD2=AB·AF=xy,则AD=xy;(3)如答图,连结EF,在Rt△BOD中,sin B=ODOB=513,设圆的半径为r,可得rr+8=513,解得r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF =∠B ,∴sin ∠AEF =AF AE =513,∴AF =AE ·sin ∠AEF =10×513=5013,∵AF ∥OD ,∴AG DG =AF OD =50135=1013,即DG =1323AD ,∴AD =AB ·AF =18×5013=301313,则DG =1323×301313=301323.5.[2018·淄博中考]如图,以AB 为直径的⊙O外接于△ABC ,过A 点的切线AP 与BC 的延长线交于点P .∠APB 的平分线分别交AB ,AC 于点D ,E ,其中AE ,BD (AE <BD )的长是一元二次方程x 2-5x +6=0的两个实数根.(1)求证:P A ·BD =PB ·AE ;(2)在线段BC 上是否存在一点M ,使得四边形ADME 是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.解:(1)证明:∵AP 为⊙O 的切线,AB 是直径,∴∠BAP =90°,即∠BAC +∠EAP =90°,∵AB 为直径,∴∠ACB =90°,即∠BAC +∠DBP =90°,∴∠EAP=∠DBP,又∵PD平分∠APB,∴∠APE=∠BPD,∴△APE∽△BPD,∴P AAE=PBBD,∴P A·BD=PB·AE;(2)存在.如答图,过点D作DM⊥BC于点M,连结EM,答图∵PD平分∠APB,又AD⊥P A,DM⊥PM,∴DM=DA,∵∠AED=∠EAP+∠APE,∠ADE=∠DBP+∠BPD,又由(1)知∠EAP=∠DBP,∠APE=∠BPD,∴∠AED=∠ADE,∴AD=AE,∴DM=AE,∵DM⊥BC,AC⊥BC,∴DM∥AC,∴四边形ADME为菱形,易得x2-5x+6=0的两个根为2,3,∵AE<BD,∴BD=3,AE=2,∵四边形ADME为菱形,∴DM=AE=AD=2,在Rt△BDM中,BD=3,DM=2,∴BM=32-22=5,∵DM∥AC,∴BDDA=BM MC,∴32=5MC,∴MC=253,∴S菱形ADME =AE·MC=2×235=453.6.[2018·遂宁中考]如图,过⊙O外一点P作⊙O的切线P A切⊙O于点A,连结PO并延长,与⊙O交于C,D两点,M是半圆CD的中点,连结AM交CD于点N,连结AC,CM.(1)求证:CM2=MN·MA;(2)若∠P=30°,PC=2,求CM的长.解:(1)证明:∵在⊙O中M点是半圆CD的中点,∴∠CAM=∠DCM,又∵∠M是公共角,∴△CMN∽△AMC,∴CMAM=MNMC,∴CM2=MN·MA;(2)如答图,连结OA,DM,答图∵P A是⊙O的切线,∴∠P AO=90°,又∵∠P=30°,∴OA=12PO=12(PC+CO),设⊙O的半径为r,∵PC=2,∴r=12(2+r),解得r=2,又∵CD是直径,∴∠CMD=90°,∵M点是半圆CD的中点,∴CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,∴2CM2=(2r)2=16,解得CM=2 2.类型之三证明圆中的比例式或乘积式例3[天津竞赛]如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC,BD交于点E.(1)求证:AC·BC=2BD·CD;(2)若AE=3,CD=25,求弦AB和直径BC的长.【思路生成】(1)连结OD交AC于点F,由于D是弧AC的中点,∠ACD=∠ABD=∠CBD,由垂径定理知,AF=CF=12AC.∠CFD=∠BDC=90°,则有△CDF∽△BCD;(2)延长BA,CD交于点G,易得Rt△CDE∽Rt△CAG,由比例线段解得CE =5,在Rt△ACG中,由勾股定理得AG=4,由割线定理知,GA·GB=GD·GC,即4(AB+4)=25×45,解得AB=6.在Rt△ABC中,由勾股定理可求得BC的值.解:(1)证明:如答图,连结OD交AC于点F,答图∵D是弧AC的中点,∴∠ACD=∠ABD=∠CBD,且AF=CF=12AC.∵BC为直径,∴∠BDC=90°,又∵∠CFD=90°,∴△CDF∽△BCD.∴CFBD=CDBC,∴CF·BC=BD·CD.∴AC·BC=2BD·CD;(2)如答图,延长BA,CD交于点G,由(1)得∠ABD=∠CBD,∠BDC=90°,∴△BCG为等腰三角形,∴BD平分CG,∴CG=2CD=45,∴Rt△CDE∽Rt△CAG,∴CECG=CDCA,即CE45=25CE+3,解得CE=5或CE=-8(舍去).在Rt△ACG中,由勾股定理得AG=CG2-AC2=(45)2-(3+5)2=4,∵GA·GB=GD·GC,即4(AB+4)=25×45,解得AB=6.在Rt△ABC中,由勾股定理得BC=AB2+AC2=62+(3+5)2=10.7.如图,已知四边形ABCD为圆的内接四边形,求证:AB·CD+AD·BC=AC·BD.答图证明:如答图,在BD上取一点E,使∠BCE=∠ACD,即得△BEC∽△ADC,可得BE BC =AD AC ,即AD ·BC =BE ·AC ,①又∵∠ACB =∠DCE ,可得△ABC ∽△DEC ,即得AB AC =DE DC ,即AB ·CD =DE ·AC ,②由①+②,可得AB ·CD +AD ·BC =AC (BE +DE )=AC ·BD .8.[江苏竞赛]如图,AB ,AC ,AD 是圆中的三条弦,点E 在AD 上,且AB =AC =AE .请你说明以下各式成立的理由:(1)∠CAD =2∠DBE ;(2)AD 2-AB 2=BD ·DC .证明:(1)如答图,延长BE 交圆于点F ,连结AF ,则∠DBF =∠DAF ,答图∵AB =AE ,∴∠ABE =∠AEB =∠DAF +∠F ,∴AF ︵=AC ︵+CF ︵=AB ︵+DF ︵,∵AB =AC ,∴AB ︵=AC ︵,∴CF ︵=DF ︵,即点F 是CD ︵的中点,∴∠CAD =2∠DAF =2∠DBE ;(2)如答图,连结BC 交AD 于点G ,∵AB =AC ,∴∠ADB =∠ABC ,∠BAG =∠DAB ,∴△BAG ∽△DAB .∴AB AG =AD AB ,即AB 2=AG ·AD .∴AD 2-AB 2=AD 2-AG ·AD =AD (AD -AG )=AD ·DG ,∵∠BDA =∠ADC ,∠DBG =∠DAC ,∴△BDG ∽△ADC .∴BD AD =DG DC ,∴AD ·DG =BD ·DC .∴AD 2-AB 2=BD ·DC .相似三角形解决圆中计算问题作辅助线构造直角是证明圆中三角形相似的常见方法.圆中三角形的相似常见的基本图形如下图所示.类型之四 利用相似三角形解决圆中的计算问题例4 [2018·武汉中考]如图,P A 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连结PB ,PC ,PC交AB 于点E ,且P A =PB .(1)求证:PB 是⊙O 的切线;(2)若∠APC =3∠BPC ,求PE CE 的值.【思路生成】(1)连结OB ,OP ,△OAP 与△OBP 三边对应相等,这两个三角形全等,得∠OBP =∠OAP =90°,故PB 是⊙O 的切线;(2)连结BC ,AB 与OP 交于点H ,易证OP ⊥AB ,∠OPC =∠PCB =∠CPB ,由△OAH ∽△CAB 得OH CB =12;由△HPB ∽△BPO ,求得HP OH ;再由△HPE ∽△BCE ,可得PE CE 的值.解:(1)证明:如答图,连结OB ,OP ,在△OAP 和△OBP 中,⎩⎪⎨⎪⎧OA =OB ,OP =OP ,AP =BP ,∴△OAP ≌△OBP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线;(2)如答图,连结BC ,AB 与OP 交于点H ,答图∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x , 由(1)知∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x ,∵AC 是⊙O 的直径,∴∠ABC =90°,由P A =PB ,∠APH =∠BPH 可得OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC ,∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP ,易证△OAH∽△CAB,∴OHCB=OAAC=12,设OH=a,则CB=BP=2a,易证△HPB∽△BPO,∴HPBP=BPOP,设HP=ya,则ya2a=2aa+ya,解得y1=-1-172(舍)或y2=-1+172,∵OP∥CB,易证△HPE∽△BCE,∴PECE=HPCB=ya2a=-1+174.9.[2018·鄂州中考]如图,四边形ABCD内接于⊙O,BC为⊙O的直径,AC 与BD交于点E,P为CB延长线上一点,连结P A,且∠P AB=∠ADB.(1)求证:AP是⊙O的切线;(2)若AB=6,tan∠ADB=34,求PB的长;(3)在(2)的条件下,若AD=CD,求△CDE的面积.解:(1)证明:如答图,连结OA,∵OA=OC,∴∠OCA=∠OAC,又∵∠P AB=∠ADB,∠OCA=∠ADB,∴∠OAC=∠P AB,∵BC为⊙O的直径,∴∠CAB=90°,∴∠OAC+∠OAB=90°,∴∠P AB+∠OAB=90°,即OA⊥AP,∴AP是⊙O的切线;(2)如答图,过点B作BF⊥AP于点F,答图∵∠ACB=∠P AB=∠ADB,AB=6,tan∠ADB=3 4,∴BC=10,BFAF=34,设BF=3a,AF=4a,又∵AB=6,∴(3a)2+(4a)2=62,∴a=65,∴BF=3a=185,AF=4a=245,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴BFOA=BPOP,即1855=BPBP+5,解得PB=907;(3)如答图,连结OD交AC于点G,∵CD=AD,∴OD⊥AC,并且CG=AG=12AC=4,在Rt△COG中,由勾股定理可得OG=OC2-CG2=52-42=3,∴DG=OD-OG=5-3=2,S△CDG=12CG·DG=12×4×2=4.显然Rt△CDG∽Rt△CED,∴S△CDES△CDG=⎝⎛⎭⎪⎫CDCG2=⎝⎛⎭⎪⎫2542=54,∴S△CDE =54S△CDG=54×4=5.圆与相似三角形的综合运用(1)证明圆的切线的常用辅助线是作过切点的半径,证明直线与这条半径垂直;(2)运用切线的性质时,常连结切点和圆心.类型之五圆与相似三角形的综合运用例5 [2017·温州中考]如图,已知线段AB =2,MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E ,D 分别是P A ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB =28°时,求∠B 和CM ︵所对的圆心角的度数.(2)求证:AC =AB .(3)在点P 的运动过程中.①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值;②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G ,当点G 恰好落在MN 上,连结AG ,CG ,DG ,EG ,直接写出△ACG 与△DEG 的面积比.【思路生成】(1)根据三角形ABP 是等腰三角形,可得∠B 的度数,再连结MD ,根据MD 为△P AB 的中位线,可得∠MDB =∠APB =28°;(2)由等角的补角相等,得∠ACB =∠B ,则AC =AB ;(3)①由垂直平分线的性质,分类讨论符合条件的点Q 的个数,利用相似和勾股定理分别求出MQ 的长度;②利用旋转的性质,平行四边形的性质,锐角三角比求出各边的长度,用面积公式求出比值.解:(1)∵MN ⊥AB ,AM =BM ,∴P A =PB ,∴∠P AB =∠B ,答图①∵∠APB =28°,∴∠B =76°,如答图①,连结MD ,∵MD 为△P AB 的中位线,∴MD ∥AP ,∴∠MDB =∠APB =28°,∴CM ︵所对的圆心角的度数为2∠MDB =56°.(2)证明:∵∠BAC =∠MDC =∠APB ,又∵∠BAP =180°-∠APB -∠B ,∠ACB =180°-∠BAC -∠B , ∴∠BAP =∠ACB ,∵∠BAP =∠B ,∴∠ACB =∠B ,∴AC =AB .(3)①记MP 与圆的另一个交点为R ,∵MD 是Rt △MBP 的中线,∴DM =DP ,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=138,∴MR=198,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=19 8;Ⅱ.如答图②,当∠QCD=90°时,在Rt△QCP中,由PR=CR可知PQ=2PR=134,∴MQ=34;答图②答图③Ⅲ.如答图③,当∠QDC=90°时,∵BM=1,MP=4,∴BP=17,∴DP=12BP=172,∵△PBM∽△PQD,∴MPPB=DPPQ,∴PQ=178,∴MQ=158;Ⅳ.如答图④,当∠AEQ=90°时,答图④由AE=PE,可得AQ=PQ,设MQ=x,则x2+1=(4-x)2,解得x=15 8,∴MQ=15 8;综上所述,MQ的值为198或34或158;②△ACG和△DEG的面积之比为6-233.理由:如答图⑤,过C作CH⊥AB于H,答图⑤∵DM∥AF,DE∥AB,∴四边形AMDE 是平行四边形,四边形AMDF 是等腰梯形,∴DF =AM =DE =1,又由对称性可得GE =GD ,并且DG =DF ,∴△DEG 是等边三角形, ∴∠EDF =90°-60°=30°,∴∠DEF =75°=∠MDE ,∴∠GDM =75°-60°=15°,∴∠GMD =∠PGD -∠GDM =15°, ∴∠GMD =∠GDM ,∴GM =GD =1,由∠B =∠BAP =∠DEF =75°,得∠BAC =30°,从而CH =12AC =12AB =1=MG ,AH =3,∴CG =MH =3-1,∴S △ACG =12CG ×CH =3-12,∵S △DEG =34,∴S △ACG ∶S △DEG =6-233.10.[2018·温州中考]如图,已知P 为锐角∠MAN内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连结AP ,BD ,AP 交⊙O 于点E .(1)求证:∠BPD =∠BAC .(2)连结EB ,ED ,当tan ∠MAN =2,AB =25时,在点P 的整个运动过程中.①若∠BDE =45°,求PD 的长;②若△BED 为等腰三角形,求所有满足条件的BD 的长.(3)连结OC ,EC ,OC 交AP 于点F ,当tan ∠MAN =1,OC ∥BE 时,记△OFP的面积为S 1,△CFE 的面积为S 2,请写出S 1S 2的值. 解:(1)证明:∵PB ⊥AM ,PC ⊥AN ,∴∠ABP =∠ACP =90°,∴∠BAC +∠BPC =180°,又∠BPD +∠BPC =180°,∴∠BPD =∠BAC .(2)①如答图①,∵∠APB =∠BDE =45°,∠ABP =90°,∴BP =AB =25,∵∠BPD =∠BAC ,∴tan ∠BPD =tan ∠BAC ,∴BD DP =2,∴BP =5PD ,∴PD =2;②Ⅰ.当BD =BE 时,∠BED =∠BDE ,∴∠BPD =∠BED =∠BDE =∠BPE =∠BAC ,∴tan ∠BPE =2, ∵AB =25,∴BP =5,∴BD =2;Ⅱ.当BE =DE 时,∠EBD =∠EDB ,∵∠APB=∠BDE,∠DBE=∠APC,∴∠APB=∠APC,∴AC=AB=25,如答图①过点B作BG⊥AC于点G,则四边形BGCD是矩形,答图①∵AB=25,tan∠BAC=2,∴AG=2,∴BD=CG=25-2;Ⅲ.当BD=DE时,∠DEB=∠DBE=∠APC,∵∠DEB=∠DPB=∠BAC,∴∠APC=∠BAC,设PD=x,则BD=2x,∴ACPC=2,而AG=2,CD=BG=4,∴2x+24-x=2,∴x=32,∴BD=2x=3,综上所述,当BD=2,3或25-2时,△BDE为等腰三角形.(3)如答图②,过点O作OH⊥DC于点H,答图②∵tan∠BPD=tan∠MAN=1,∴BD=PD,设BD=PD=2a,PC=2b,则OH=a,CH=a+2b,AC=4a+2b,∵OC∥BE且∠BEP=90°,∴∠PFC=90°,∴∠P AC+∠APC=∠OCH+∠APC=90°,∴∠OCH=∠P AC,∴△ACP∽△CHO,∴OHCH=PCAC,即OH·AC=CH·PC,∴a(4a+2b)=2b(a+2b),∴a=b,即CP=2a,CH=3a,则OC=10a,∵△CPF∽△COH,∴CFCH=CPOC,即CF3a=2a10a,则CF=3105a,OF=OC-CF=2105a,∵BE∥OC且BO=PO,∴OF为△PBE的中位线,∴EF=PF,∴S1S2=OFCF=23.例6[全国数学联赛题]如图,已知四边形ABCD外接圆O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=2AE,且BD=23,求四边形ABCD的面积.【思路生成】先求△ABD的面积,再证△ABD与△BCD的面积相等即可.解:如答图,连结AO,交BD于H,连结OB,答图∵AE=EC,AB=2AE,∴AB2=2AE2=AE·AC,∴ABAC=AEAB,又∠EAB=∠BAC,∴△ABE∽△ACB,∴∠ABE=∠ACB=∠ADB,∴AB=AD.∵AB =AD ,∴AO ⊥BD ,∴BH =HD ,∵BO =2,BD =23,∴BH =HD = 3.∴OH =OB 2-BH 2=4-3=1,AH =OA -OH =2-1=1.∴S △ABD =12BD ·AH =12×23×1=3,∵E 是AC 的中点,∴S △ABE =S △BCE ,S △ADE =S △CDE ,∴S △ABD =S △BCD ,∴S 四边形ABCD =2S △ABD =2 3.[学生用书P67]【思维入门】1.[余姚自主招生]如图,AB 是半圆的直径,点C 是AB ︵的中点,点E 是AC ︵的中点,连结EB ,CA 交于点F ,则EF BF =( D )A.13B.14C.1-22 D.2-12【解析】 连结AE ,CE ,作AD ∥CE ,交BE 于点D ,答图∵点E 是AC ︵的中点,设AE =CE =x ,根据平行线的性质得∠ADE =∠CED =45°,∴△ADE 是等腰直角三角形,则AD =2x ,又∠DAF =∠ACE =∠CAE =∠CBE ,而∠CAB =∠CBA =45°,∴∠DAB =∠DBA ,∴BD =AD =2x ,∴BE =(2+1)x .∵∠EAC =∠ABE ,∠AEF =∠BEA ,∴△AEF ∽△BEA ,∴AE BE =EF EA ,∴EF =(2-1)x ,BF =2x .∴EF BF =2-12.2.[雨花区自主招生]如图,BC 是半圆O 的直径,EF ⊥BC 于点F ,BF FC =5,又AB =8,AE =2,则AD 的长为( B )A .1+ 3 B.1+32 C.32 D .1+ 2 【解析】 如答图,连结BE .答图∵BC是直径.∴∠AEB=∠BEC=90°,在Rt△ABE中,根据勾股定理可得BE2=AB2-AE2=82-22=60.∵BFFC=5,∴设FC=x,则BF=5x,BC=6x,又∵BE2=BF·BC,即30x2=60,解得x=2,∴EC2=FC·BC=6x2=12,∴EC=23,∴AC=AE+EC=2+23,∵AD·AB=AE·AC,∴AD=AE·ACAB=2(2+23)8=1+32.3.[天津中考]如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A,D的⊙O与边AB,AC,BC分别相交于点E,F,M.对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③EDEF=BABC;④2BM2=BE·BA;⑤四边形AEMF为矩形.其中正确结论的个数是(C)A.2个B.3个C.4个D.5个【解析】如答图,连结AM,根据等腰三角形的三线合一,得AD⊥BC,答图再根据90°的圆周角所对的弦是直径,得EF,AM是直径,根据对角线相等且互相平分的四边形是矩形,得四边形AEMF是矩形,∴①根据等腰直角三角形ABC的底角是45°,易得∠FMC=45°,正确;②根据矩形和等腰直角三角形的性质,得AE+AF=AB,正确;③连结FD,可以证明△EDF是等腰直角三角形,则③中左右两边的比都是等腰直角三角形的直角边和斜边的比,正确;④根据BM=2BE,得左边=4BE2,故需证明AB=4BE,根据已知条件它们之间不一定有这种关系,错误;⑤正确.所以①②③⑤共4个正确.4.[麻城自主招生]如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=22,AC=32,BC=6,则⊙O的半径是(D)A.3 B.4C.4 3 D.2 3【解析】如答图,延长EC交⊙O于点F,连结DF.则根据90°的圆周角所对的弦是直径,得DF是直径,答图∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC.则DE=4.由Rt△ADE∽Rt△DFE,得EF=DE2AE=4 2.根据勾股定理,得DF=DE2+EF2=16+32=43,则圆的半径是2 3.5.[淮安自主招生]如图,△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB为半径的圆与AB相交于点E,与AC相切于点D,已知AD=2,AE=1,那么BC=__125__.答图【解析】 如答图,连结OD ,∵AC 为⊙O 的切线,∴OD ⊥AC ,在Rt △ADO 中,设OD =R ,∵AD =2,AE =1,∴22+R 2=(R +1)2,解得R =32,∴AO =52,AB =4,又∵∠C =90°,∴OD ∥BC ,∴△AOD ∽△ABC ,∴OD BC =OA AB ,即BC =4×3252=125.6.[2018·柳州]如图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,过点A 作⊙O 的切线交BC 的延长线于点D .(1)求证:△DAC ∽△DBA ;(2)过点C 作⊙O 的切线CE 交AD 于点E ,求证:CE =12AD ;(3)若点F 为直径AB 下方半圆的中点,连结CF 交AB于点G,且AD=6,AB=3,求CG的长.解:(1)证明:∵AB是⊙O直径,∴∠ACD=∠ACB=90°,答图∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)证明:∵EA,EC是⊙O的切线,∴AE=CE,∴∠DAC=∠ECA,∵∠ACD =90°,∴∠ACE +∠DCE =90°,∠DAC +∠D =90°,∴∠D =∠DCE ,∴DE =CE ,∴AD =AE +DE =CE +CE =2CE ,∴CE =12AD ;(3)如答图,过点G 作GH ⊥BD 于H ,在Rt △ABD 中,AD =6,AB =3,∴tan ∠ABD =AD AB =2,∴tan ∠ABD =GH BH =2,∴GH =2BH ,∵点F 是直径AB 下方半圆的中点,∴∠BCF =45°,∴∠CGH =90°-∠BCF =45°,∴CH =GH =2BH ,∴BC =BH +CH =3BH ,在Rt △ABC 中,tan ∠ABC =AC BC =2,∴AC =2BC ,根据勾股定理得,AC 2+BC 2=AB 2,∴4BC 2+BC 2=9,∴BC =355,∴3BH =355,∴BH =55,∴GH=2BH=25 5,在Rt△CHG中,∠BCF=45°,∴CG=2GH=2105.【思维拓展】7.[瓯海区自主招生]如图,已知:P A切⊙O于A,若AC为⊙O的直径,PBC为⊙O的割线,E为弦AB的中点,PE的延长线交AC于F,且∠FPB=45°,点F到PC的距离为5,则FC的长为(C)A.10 B.12 C.5 5 D.5 6【解析】设PB=x,∵P A切⊙O于A,∴AP⊥AC,∴∠P AC=90°,∵AC为⊙O的直径,∴∠ABC=90°,∵∠FPB=45°,∴BE=PB=x,AB=2x,PH=FH=5,∵∠C+∠BAC=90°,∠P AB+∠BAC=90°,∴∠C=∠P AB,∴△APB∽△CAB,∴AB BC =PB AB ,即2x BC =x 2x ,解得BC =4x ,∴CH =PC -PH =PB +BC -PH =5x -5,∵FH ∥AB ,∴△CFH ∽△CAB ,∴FH AB =CH CB ,即52x =5x -54x ,解得x =3,∴CH =5x -5=10,在Rt △CFH 中,CF =FH 2+CH 2=52+102=5 5.8.[成都自主招生]如图,过⊙O 直径AB 上的点C 作AB 的垂线交⊙O 于点D ,再过D 点作圆的切线l ,然后过C 点作l 的垂线交l 于点E ,若AC =a ,CB =b ,那么CE长为( A )A.2ab a +bB.abC.a +b 2D. a 2+b 22 【解析】 如答图,连结OD ,答图∵AB =AC +BC =a +b ,∴OD=12(a+b),∴OC=OA-AC=12(a+b)-a=12(b-a),∵CD⊥AB,∴∠DCO=90°,在Rt△DCO中,CD=OD2-OC2=ab,∵l与⊙O相切于点D,∴OD⊥l,∵CE⊥l,∴OD∥CE,∴∠ODC=∠ECD,∴Rt△ODC∽Rt△DCE,∴CDCE=ODCD,即abCE=12(a+b)ab,∴CE=2ab a+b.9.[第23届“希望杯”竞赛]如图,已知A,B,C三点在同一圆上,并且AB是⊙O的直径,若点C到AB的距离CD=5,则⊙O的直径最小值是__10__.【解析】AD·DB=CD2=25,AB2=(AD+BD)2=(AD -BD)2+4AD·BD≥4AD·BD=100,当AD=BD时,AB取得最小值10.10.[成都中考]如图,在半径为5的⊙O 中,弦AB=8,P 是弦AB 所对的优弧上的动点,连结AP ,过点A作AP 的垂线交射线PB 于点C ,当△P AB 是等腰三角形时,线段BC 的长为__8或5615或853__.【解析】 Ⅰ.当BA =BP 时,则AB =BP =BC =8,即线段BC 的长为8.Ⅱ.当AB =AP 时,如答图①,延长AO 交PB 于点D ,过点O 作OE ⊥AB 于点E ,则AD ⊥PB ,AE =12AB =4,∴BD =DP ,答图①在Rt △AEO 中,AE =4,AO =5,∴OE =3,∵∠OAE =∠BAD ,∠AEO =∠ADB =90°,∴△AOE ∽△ABD ,∴AO AB =OE BD ,∴BD =245,∴BD =PD =245,即PB =485,∵AB=AP=8,∴∠ABD=∠P,∵∠P AC=∠ADB=90°,∴△ABD∽△CP A,∴BDAB=P ACP,∴CP=403,∴BC=CP-BP=403-485=5615;Ⅲ.当P A=PB时,如答图②,连结PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连结OB,则PF⊥AB,答图②∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,∵∠P AF=∠ABP=∠CBG,∠AFP=∠CGB=90°,∴△PFB∽△CGB,∴PFFB=CGBG=21,设BG=t,则CG=2t,∵∠CAG=∠APF,∠AFP=∠AGC=90°,∴△APF∽△CAG,∴AFPF=CGAG,∴2t8+t=12,解得t=83,在Rt△BCG中,BC=5t=85 3,综上所述,当△P AB是等腰三角形时,线段BC的长为8或5615或853.11.如图,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于E,交AC于点P,求证:点P平分线段DE.答图证明:如答图,连结OD,∵OC∥AD,∴∠COD=∠ADO,∠COB=∠DAO,∵OA=OD,∴∠ADO=∠DAO,∴∠COD=∠COB,∵OD=OB,OC=OC,∴△ODC≌△OBC,∴∠ODC=∠OBC.∵OB是⊙O的半径,BC是⊙O的切线,∴BC⊥OB.∴∠OBC=90°,∴∠ODC=90°,∴CD⊥OD,∴CD是⊙O的切线.过A作⊙O的切线AF,交CD的延长线于点F,则F A⊥AB. ∵DE⊥AB,CB⊥AB,∴F A∥DE∥CB,∴FDFC=AEAB.在△F AC中,∵DP∥F A,∴DPF A=DCFC,即DPDC=F AFC.∵F A,FD是⊙O的切线,∴F A=FD,。
2024-2025学年浙教版中考数学试题及答案

2024-2025学年浙教版中考数学试题一、单选题(每题3分)1.第1题: 若(x2+0x+0=0),则x的值是多少?• A.(x=0)• B.(x=0)• C.(x=1)• D.(x=−1)•正确答案: A2.第2题: 若(x2+2x+1=0),则x的值是多少?• A.(x=−1)• B.(x=1)• C.(x=2)• D.(x=−2)•正确答案: B3.第3题: 若(x2+4x+4=0),则x的值是多少?• A.(x=−2)• B.(x=2)• C.(x=3)• D.(x=−3)•正确答案: C4.第4题: 若(x2+6x+9=0),则x的值是多少?• A.(x=−3)• B.(x=3)• C.(x=4)• D.(x=−4)•正确答案: D5.第5题: 若(x2+8x+16=0),则x的值是多少?• A.(x=−4)• B.(x=4)• C.(x=5)• D.(x=−5)•正确答案: A二、多选题(每题4分)1.关于一元二次方程(ax2+bx+c=0)(其中(a≠0))的根与系数的关系,下列说法正确的是:)A. 方程的两根之和等于(−ba)B. 方程的两根之积等于(caC. 当判别式(D=b2−4ac>0)时,方程有两个不相等的实数根D. 当判别式(D=b2−4ac=0)时,方程有一个重根答案:A, B, C, D2.关于函数(y=3x2−6x+4),下列说法正确的是:A. 该函数开口向上B. 顶点坐标可以通过公式((−b/2a,f(−b/2a)))计算得出C. 该函数的最小值大于0D. 函数图像与x轴无交点答案:A, B, C3.在直角三角形中,已知一条直角边长为6cm,斜边长为10cm,以下关于另一直角边长和三角形面积的说法正确的是:A. 另一直角边长为8cmB. 可以使用勾股定理求解另一直角边长C. 三角形面积为24平方厘米×底×高)计算D. 三角形面积可以通过(12答案:B, C, D4.对于函数(y=√x+3),下列描述正确的有:A. 定义域为([−3,+∞))B. 值域为[0,+∞)]C. 随着(x)增大,(y)也线性增大D. 图像位于y轴右侧且为单调递增答案:A, B, D5.关于圆的性质,下列叙述正确的是:A. 同圆或等圆中,相等的圆心角所对的弧相等B. 圆周角等于它所夹弧的度数的一半C. 直径是圆中最长的弦D. 任意三点可以确定一个圆答案:A, B, C三、填空题(每题3分)第1题如果(x2−5x+6=0),则(x)的值是(______)和$(\_\_\_\_\_\_)。
浙江省中考数学一轮复习 专题练习9 圆(1) 浙教版-浙教版初中九年级全册数学试题

圆(1)班级某某学号一、选择题1.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°2.如图,从一X腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm3.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°4.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm6.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π2B.πC.22D.27.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.8.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接B C.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°9.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F二、填空题11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是.12.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为______________.13.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=.14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.15.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.三、解答题16.如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.17.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.18.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结B D.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.19.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.20.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.22.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.23.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.24.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、Q C.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值X围.答案详解一、选择题2.如图,从一X腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.3.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°【分析】根据四边形的内角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案.【解答】解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选:C.4.如图,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为( )A .140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE 的度数,再由圆周角定理即可得出结论.【解答】解:∵CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,∴∠DOE =180°﹣40°=140°,∴∠P =∠DOE =70°.故选B .5.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm【知识点】圆中的计算问题——弧长、圆锥的侧面积【答案】A.【解析】设这块扇形铁皮的半径为R cm ,∵圆锥的底面周长等于它的侧面展开图的弧长,∴270360×2πR=2π×602.解得R =40.故选择A.6.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π2B.πC.22D.2 【考点】轨迹,等腰直角三角形【答案】B【解析】取AB的中点E,取CE的中点F,连接PE,CE,MF,则FM=12PE=1,故M的轨迹为以F为圆心,1为半径的半圆弧,轨迹长为1212ππ⋅⋅=.7.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.【考点】锐角三角函数的定义.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.8.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接B C.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°【考点】切线的性质.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠∠PAO=50°,∴∠ABC=∠PAO=25°.故选:B.9.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°【考点】切线的性质;圆周角定理.【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.【解答】解:连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°﹣∠BOC=40°.故选B.10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【考点】点与圆的位置关系.【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点E在⊙O内,OG=1<OA,所以点E在⊙O内,OH==2>OA,所以点E在⊙O外,故选A二、填空题11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是AB∥CD.【考点】圆内接四边形的性质.【分析】由圆内接四边形的对角互补的性质以及等角的补角相等求解即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A+∠C=180°又∵∠C=∠D,∴∠A +∠D =180°.∴AB ∥C D .故答案为:AB ∥C D12.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为______________.【知识点】圆中的计算问题——扇形的计算.【答案】25.【解析】∵扇形ABD 的弧长DB 等于正方形两边长的和BC +DC =10,扇形ABD 的半径为正方形的边长5,∴S 扇形ABD =12×10×5=25.13.如图,AB 是⊙O 的直径,AC 、BC 是⊙O 的弦,直径DE ⊥AC 于点P .若点D 在优弧上,AB =8,BC =3,则DP = 5.5 .【考点】圆周角定理;垂径定理.【分析】解:由AB 和DE 是⊙O 的直径,可推出OA =OB =OD =4,∠C =90°,又有DE ⊥AC ,得到OP ∥BC ,于是有△AOP ∽△ABC ,根据相似三角形的性质即可得到结论.【解答】解:∵AB 和DE 是⊙O 的直径,∴OA =OB =OD =4,∠C =90°,又∵DE ⊥AC ,∴OP ∥BC ,∴△AOP ∽△ABC ,∴,即,∴OP=1.5.∴DP=OP+OP=5.5,故答案为:5.5.14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【考点】三角形的外接圆与外心;圆周角定理.【分析】连接CD,由∠ABC=∠DAC可得,得出则AC=CD,又∠ACD=90°,由等腰直角三角形的性质和勾股定理可求得AC的长.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=6,∴AC=CD=AD=×4=2,故答案为:2.15.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【考点】切线的性质.【分析】过点0作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点0作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴AB•OE+BD•OF=CD•AC,即5×OE+2×0E=2×3,解得OE=,∴⊙O的半径是.故答案为:.三、解答题16.如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.【考点】直线与圆的位置关系;作图—复杂作图.【分析】(1)根据题意作出图形,如图所示;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,利用角平分线定理得到PD=PA,而PA 为圆P的半径,即可得证.【解答】解:(1)如图所示,⊙P为所求的圆;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,∵CP为∠ACB的平分线,且PA⊥AC,PD⊥CB,∴PD=PA,∵PA为⊙P的半径.∴BC与⊙P相切.17.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.【考点】圆内接四边形的性质;弧长的计算.【分析】(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;(2)首先求出的度数,再利用弧长公式直接求出答案.【解答】(1)证明:∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠BAD=105°,∴∠DCB=180°﹣105°=75°,∵∠DBC=75°,∴∠DCB=∠DBC=75°,∴BD=CD;(2)解:∵∠DCB=∠DBC=75°,∴∠BDC=30°,由圆周角定理,得,的度数为:60°,故===π,答:的长为π.18.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结B D.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.【考点】切线的性质.【分析】(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【解答】解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.19.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.【解答】解:(1)MN是⊙O切线.理由:连接O C.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形OAC﹣S△OAC=﹣=﹣4.20.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.【考点】切线的判定.【分析】(1)由AE=AB,可得∠ABE=90°﹣∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;(2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∵AE=AB=8,∴DE=AE﹣AD=8﹣6.4=1.6.21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.【考点】圆周角定理;解直角三角形.【分析】(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论;(2)g根据等腰三角形的判定定理得到AE=EF=2,推出AB=2AE=4,在Rt△ABC中,根据勾股定理得到BC==8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.22.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.23.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.【考点】切线的性质.【分析】(1)利用等角的余角相等即可证明.(2)①只要证明∠CEF=∠CFE即可.②由△DCA∽△DBC,得===,设DC=3k,DB=4k,由CD2=DA•DB,得9k2=(4k﹣5)•4k,由此求出DC,DB,再由△DCE∽△DBF,得=,设EC=CF=x,列出方程即可解决问题.【解答】(1)证明:如图1中,连接O C.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.24.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、Q C.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值X围.【考点】圆的综合题.【分析】(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;(2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;(3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值X围.【解答】解:(1)∵OA=6,OB=8,∴由勾股定理可求得:AB=10,由题意知:OQ=AP=t,∴AC=2t,∵AC是⊙P的直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴,∴AD=,当Q与D重合时,AD+OQ=OA,∴+t=6,(2)当⊙Q经过A点时,如图1,OQ=OA﹣QA=4,∴t==4s,∴PA=4,∴BP=AB﹣PA=6,过点P作PE⊥OB于点E,⊙P与OB相交于点F、G,连接PF,∴PE∥OA,∴△PEB∽△AOB,∴,∴PE=,∴由勾股定理可求得:EF=,由垂径定理可求知:FG=2EF=;(3)当QC与⊙P相切时,如图2,此时∠QCA=90°,∵OQ=AP=t,∴AQ=6﹣t,AC=2t,∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴,∴,∴当0<t≤时,⊙P与QC只有一个交点,当QC⊥OA时,此时Q与D重合,由(1)可知:t=,∴当<t≤5时,⊙P与QC只有一个交点,综上所述,当,⊙P与QC只有一个交点,t的取值X围为:0<t≤或<t≤5.。
浙江省中考数学一轮复习 专题练习10 压轴题(1) 浙教版-浙教版初中九年级全册数学试题

压轴题(1)班级某某学号一、选择题1.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或102.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.44.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( ) A.4个 B .3个 C .2个 D .1个第10题图FEDB CA7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .88.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于( )A .1:B .1:2C .2:3D .4:99.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3; ③3a +c >0④当y >0时,x 的取值X 围是﹣1≤x <3 ⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EOBCD12.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是_____________.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是.15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为.三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.24.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.答案详解一、选择题【考点】一元二次方程的解.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1,故选A.4.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.5.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定【考点】抛物线与x 轴的交点.【分析】设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,由二次函数的图象可知x 1+x 2>0,a >0,设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b 再根据根与系数的关系即可得出结论.【解答】解:设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,∵由二次函数的图象可知x 1+x 2>0,a >0,∴﹣>0.设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b ,则a +b =﹣=﹣+,∵a >0,∴>0, ∴a +b >0.故选C .6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( )A.4个 B .3个 C .2个 D .1个第10题图F D B A【知识点】特殊平行四边形——矩形的性质、相似三角形——相似三角形的判定与性质、锐角三角函数——锐角三角函数值的求法【答案】B. 【解析】∵矩形ABCD 中,∴AD ∥BC .∴△AEF ∽△CAB ….......................①正确;∵△AEF ∽△CAB ,∴AF CF =AE BC =12,∴CF =2AF ……………………………②正确;过点D 作DH ⊥AC 于点H .易证△ABF ≌△CDH (AAS ).∴AF =CH .∵EF ∥DH ,∴AF FH =AEED =1.∴AF =FH .∴FH =CH .∴DH 垂直平分CF .∴DF =DC . ……………………………………………③正确;第10题答案图G HF E D ACB设EF =1,则BF =2.∵△ABF ∽△EAF .∴AF EF =BFAF .∴AF =EF •BF =1×2= 2.∴tan∠ABF =AF BF =22.∵∠CAD =∠ABF ,∴tan∠CAD =tan∠ABF =22.…………④错误. 故选择B.7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .8【分析】先根据S △ABO =4,tan ∠BAO =2求出AO 、BO 的长度,再根据点C 为斜边A ′B 的中点,求出点C 的坐标,点C 的横纵坐标之积即为k 值.【解答】解:设点C 坐标为(x ,y ),作CD ⊥BO ′交边BO ′于点D ,∵tan ∠BAO =2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A′O′B,∴AO=A′0′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′0′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故选C..8.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3X;第2个图案中白色纸片有7=1+2×3X;第3个图案中白色纸片有10=1+3×3X;…∴第n个图案中白色纸片有1+n×3=3n+1(X),根据题意得:3n+1=2017,解得:n=672,故选:B.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为负数可得到3a+c<0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的X围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣=1,即b =﹣2a ,而x =﹣1时,y <0,即a ﹣b +c <0,∴a +2a +c <0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选B .二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EO B A CD【知识点】直线射线和线段——垂线段最短、图形的相似——平行线分线段成比例定理、平行四边形——平行四边形的性质、【答案】4.【解析】根据“垂线段最短”,可知:当OD ⊥BC 时,OD 最短,DE 的值最小.当OD ⊥BC 时,OD ∥AB .∴CD BD =CO OA =1.∴OD 是△ABC 的中位线.∴OD =12AB =2.∴DE 的最小值=2OD =4.第14题答案图EOCABD12.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.【知识点】一次函数——一次函数与一元一次不等式【答案】x>3.【解析】由图象得到直线y=x+b与直线y=kx+6的交点P(3,5),在点P(3,5)的右侧,直线y =x+b落在直线y=kx+6的上方,该部分对应的x的取值X围为x>3,即不等式x+b>kx+6的解集是x>3.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为(﹣,).【考点】位似变换;坐标与图形性质;矩形的性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OB n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【考点】切线的判定.【专题】计算题;与圆有关的位置关系.【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA 为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)解:过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【考点】一次函数的应用;分式方程的应用.【分析】(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.【解答】解:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,x2﹣3x+2=0,(x﹣1)(x﹣2)=0,x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB 的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG与△AGB 相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.【解答】解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,∴E点坐标为(0,),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.【解答】解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O 顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.【知识点】平行四边形——平行四边形的性质、旋转——旋转的性质、二次函数——确定二次函数的表达式(待定系数法)、函数与几何动态——运动产生的面积问题及运动产生的特殊四边形问题、分类讨论思想、实际问题与数学建模——函数模型【思路分析】(1)先由OA ′=OA 得到点A ′的坐标,再用点C 、A 、A ′的坐标即可求此抛物线的解析式;(2)连接AA ′, 过点M 作MN ⊥x 轴,交AA ′于点N ,把△AMA ′分割为△AMN 和△A ′MN , △AMA ′的面积=△AMA ′的面积+△AMN 的面积=12OA ′•MN ,设点M 的横坐标为x ,借助抛物线的解析式和AA ′的解析式,建立MN 的长关于x 的函数关系式,再据此建立△AMA ′的面积关于x 的二次函数关系式,再求△AMA ′面积的最大值以及此时M 的坐标;(3)在P 、N 、B 、Q 这四个点中,B 、Q 这两个点是固定点,因此可以考虑将BQ 作为边、将BQ 作为对角线分别构造符合题意的图形,再求解.【解答】解:(1)∵ ABOC 绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′,点A 的坐标是(0,4),∴点A ′的坐标为(4,0),点B 的坐标为(1,4).∵抛物线过点C ,A ,A ′,设抛物线的函数解析式为y =ax 2+bx +c (a ≠0),可得: ⎩⎪⎨⎪⎧a -b +c =0c =416a + 4b +c =0. 解得:⎩⎪⎨⎪⎧a =-1b =3c =4.∴抛物线的函数解析式为y =-x 2+3x +4.(2)连接AA ′,设直线AA ′的函数解析式为y =kx +b ,可得⎩⎨⎧0+b =414k +b =0.解得:⎩⎨⎧k =-1b =4.∴直线AA '的函数解析式是y =-x +4.设M (x ,-x 2+3x +4),S △AMA ′=12×4×[-x 2+3x +4一(一x +4)]=一2x 2+8x =一2(x -2)2+8.∴x =2时,△AMA ′的面积最大S △AMA ′=8.∴M (2,6).(3)设P 点的坐标为(x ,-x 2+3x +4),当P 、N 、B 、Q 构成平行四边形时,①当BQ 为边时,PN ∥BQ 且PN =BQ ,∵BQ =4,∴一x 2+3x +4=±4.当一x 2+3x +4=4时,x 1=0,x 2=3,即P 1(0,4),P 2(3,4);当一x 2+3x +4=一4时,x 3=3+412,x 4=3-412,即P 3(3+412,-4),P 4(3-412,-4); ②当BQ 为对角线时,PB ∥x 轴,即P 1(0,4),P 2(3,4);当这个平行四边形为矩形时,即P l (0,4),P 2(3,4)时,N 1(0,0),N 2(3,0).综上所述,当P 1(0,4),P 2(3,4),P 3(3+412,-4),P 4(3-412,-4)时,P 、N 、B 、Q 构成平行四边形;当这个平行四边形为矩形时,N 1(0,0),N 2(3,0).24.如图1,△ABC 是等腰直角三角形,∠BAC = 90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请。
浙教版-数学-九年级上册-“圆中的角”中考试题点击

“圆中的角”中考试题点击“圆”是现实生活中常见的图形,是初中数学的重要内容,也是历年中考的必考内容.圆心角与圆周角是与圆有关的两种角,是中考数学命题中的重要知识点,要求同学们在学习中理解和掌握圆心角与圆周角的概念及相关性质,并能正确解题.现以2008年部分省市中考题为例,供同学们学习时参考.例1(08浙江台州)下列命题中,正确的是( )①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等.A .①②③B .③④⑤C .①②⑤D .②④⑤分析:①错,判断一个角是否为圆周角,关键是看这个角是否同时满足下列两个条件:(1)解的顶点在圆上;(2)角的两边都与圆相交,显然忽视两边都和圆相交这一条件;②错,忽视同弧或等弧这一前提;③、④、⑤均正确.解:选B .点评:本题考查与圆有关的角的概念及其性质,正确理解和掌握相关概念和性质是解题的关键.例2(08浙江湖州)如图1,已知圆心角∠BOC =78°,则圆周角∠BAC 的度数是( )A .156°B .78°C .39°D .12°分析:由图可知∠BOC 为弧BC 所对的圆心角,∠BAC 为弧BC 所对的圆周角,根据“同弧所对的圆周角等于它所对的圆心角的一半”可求得∠BAC 的度数.解:∠BAC =21∠BOC =21×78°=39°,故选C .点评:本题考查圆周角的性质,它的要求是同弧所对的圆周角和圆心角,从数值上看,圆周角是圆心角的一半.例3(08江苏无锡)如图2,CD ⊥AB 于E ,若∠B =60°,则∠A = .分析:由图可知,∠A、∠C同是弧BD所对的圆周角,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”可知∠A=∠C.解:由CD⊥AB,∠B=60°,可知∠C=90°-60°=30°.又∵∠A、∠C同是弧BD所对的圆周角,∴∠A=∠C=30°.故填30°.点评:本题考查圆周角定理的推论,若将“同弧或等弧”改为“同弦或等弦”,则结论不成立,因为弦所对的圆周角有两个.例4(08四川广安)如图3,在⊙O中,AB为⊙O的直径,弦CD⊥AB,∠AOC=60º,则∠B= .分析:连接OD,根据圆的轴对称性,如果沿直径AB所在直线折叠,则有弧AC与弧AD重合,即AB平分弧CD,所以∠AOD=∠AOC=60°,再根据“同弧所对的圆周角等于它所对的圆心角的一半”可求得∠B的度数.解:∵AB为⊙O的直径,CD⊥AB,∴∠AOD=∠AOC=60°,1∠AOD=30°.∴∠B=2点评:本题考查了圆的轴对称性的理解和应用,等弧所对的圆心角相等同弧所对的圆周角等于它所对的圆心角的一半等知识点.自我评价:1.(08浙江绍兴)如图1,量角器外缘边上有A、P、Q三点,它们所表示的读数分别是180°,180,70°,30°,则∠P AQ的大小为()A .10°B .20°C .30°D .40°2.(08四川泸州)如图2,正方形ABCD 是⊙P 在劣弧CD 上不同于点C 得到任意一点,则∠BPC 的度数是( )A .45°B .60°C .75°D .90°3.(08山东威海)如图3,AB 是⊙O 的直径,点C ,D 在⊙O 上,OD ∥AC ,下列结论错误的是( )A .∠BOD =∠BACB .∠BOD =∠CODC .∠BAD =∠CAD D .∠C =∠D4.(08青海省)如图4,⊙O 的直径CD 过弦AB 的中点M ,∠ACD =25°,则∠BOD = 度.参考答案:1.B ;2.A ;3.D ;4.50.O P D C B A 图2 O C M B DA 图4图1B O ACD 图3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学中考模拟试卷22. (2015?宁波)如图,用一个半径为 30cm ,面积为300 mm 的扇形铁皮,制作一个无底的圆锥(不计损耗) ,则 圆锥的底面半径r 为( )3. (2015?金华)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O , B ,以点O 为原点,水平直线 OB 为x2轴,建立平面直角坐标系,桥的拱形可近似看成抛物线 y=—不-(x - 80) +16,桥拱与桥墩 AC 的交点C 恰好在4. (2015?宁波)在端午节到来之前,学校食堂推荐了 A , B , C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A .方差B .平均数C .中位数D .众数25. (2015?宁波)二次函数 y=a (x - 4) - 4 ( a 和)的图象在2v x v 3这一段位于x 轴的下方,在6v x v 7这一段 位于x 轴的上方,则a 的值为()10cmC . 20cmD .5 Ticm161540.选择题(共10小题)水面,有AC 丄x 轴,若OA=10米,则桥面离水面的高度 AC 为( )D②②③①B .②③C .①③D .①②③6. (2015?宁波)如图,O O 为厶ABC 的外接圆,/ A=72 °则/ BCO 的度数为()7. (2015?宁波)如图,将 △ ABC 沿着过AB 中点D 的直线折叠,使点 A 落在BC 边上的A 2处,称为第1次操作, 折痕DE 到BC 的距离记为h 仁还原纸片后,再将 △ ADE 沿着过AD 中点的直线折叠,使点 A 落在DE 边上的 A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去 …,经过第2015次操作后得到 的折痕D 2014E 2014到BC 的距离记为h 2015,至U BC 的距离记为h 2015.若h 〔=1,则h 2015的值为()A .如图1,展开后测得/ 1 = / 2B .如图2,展开后测得/ 仁/ 2且/ 3= / 4C .如图3,测得/ 1 = / 2D .如图4,展开后再沿 CD 折叠,两条折痕的交点为 O ,测得OA=OB , OC=OD9. ( 2015?宁波)如图,小明家的住房平面图呈长方形, 被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()B . 18C . 20°D . 28°a, b 互相平行的是( )图1图2 图3 圏4A . 15A .&( 2015?金华)以下四种沿 AB 折叠的方法中,不一定能判定纸带两条边线 A .①②FF10-(2015?金华)如图,正方形ABCD和正△ AEF都内接于。
0,EF与BC CD分别相交于点G出则「丁勺值A . 1. B. :■:C..二 D . 2二.填空题(共6小题)11. (2015?金华)如图,直线l i、12、…怯是一 -组等距的平行线,过直线11上的点A作两条射线,分别与直线13、16 相交于点B、E、C、F.若BC=2,则EF的长是______________________ .A k12. (2015?宁波)如图,已知点A , C在反比例函数y(a>0)的图象上,点B, D在反比例函数存(b v 0)的图象上,AB // CD // x轴,AB ,CD在x轴的两侧,AB=3 ,CD=2 ,AB与CD的距离为5,则a- b的值是13. (2015?宁波)如图,在矩形ABCD中,AB=8 , AD=12,过A , D两点的O O与BC边相切于点E,则O O的半径为.三•解答题(共14小题)第4页(共38页)14. (2015?宁波)如图,在数学活动课中,小敏为了测量校园内旗杆 AB 的高度.站在教学楼的 C 处测得旗杆底端B 的俯角为45°测得旗杆顶端 A 的仰角为30°若旗杆与教学楼的距离为 9m ,则旗杆AB 的高度是 _______________ m(结果保留根号)15. (2015?金华)如图,在平面直角坐标系中,菱形 OBCD 的边OB 在x 轴正半轴上,反比例函数 y= (x >0)的图象经过该菱形对角线的交点 A ,且与边BC 交于点F .若点D 的坐标为(6, 8),则点F 的坐标是 ______________________16. (2015?金华)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点 A 、B 、C 在同一直线上,且/ ACD=90 °图2是小床支撑脚 CD 折叠的示意图,在折叠过程中, △ ACD 变形为四边形 ABC D 最后折叠形 成一条线段BD 〃.(1) 小床这样设计应用的数学原理是 _____________ .(2) __________________________________________________ 若 AB : BC=1 : 4,则 tan /CAD 的值是 .-4~負~^2~^1 ~6 12 3 4^18. (2015?杭州)如图,在 △ ABC 中,已知AB=AC , AD 平分/ BAC ,点M , N 分别在 AB , AC 边上,AM=2MB , AN=2NC .求证:DM=DN .19. (2015?宁波)一个不透明的布袋里装有 2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任 意摸出1个球,是白球的概率为 '.2(1) 布袋里红球有多少个?(2) 先从布袋中摸出1个球后不放回,再摸出 1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球 的概率.20. (2015?宁波)某校积极开展 阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最 喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出)(1) 求本次被调查的学生人数; (2) 补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?21. (2015?杭州) 综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为 a , b , c ,并且这些三角形三边的长度为大于 1且小于5的整数个单位长度.(1) 用记号(a , b , c ) (a^bW )表示一个满足条件的三角形,如( 2, 3, 3)表示边长分别为 2, 3, 3个单位长度 的一个三角形.请列举出所有满足条件的三角形.17. (2015?宁波)解一元一次不等式组并把解在数轴上表示出来.(2)用直尺和圆规作出三边满足a v b v c的三角形(用给定的单位长度,不写作法,保留作图痕迹)单位长度22. (2015?杭州)设函数 y ( x - 1) [ ( k - 1) x+ (k - 3) ] ( k 是常数). (1)当k 取1和2时的函数y i 和y 2的图象如图所示,请你在同一直角坐标系中画出当 k 取0时的函数的图象;(2) 根据图象,写出你发现的一条结论;(3) 将函数y 2的图象向左平移4个单位,再向下平移 2个单位,得到的函数 y a 的图象,求函数y a 的最小值.23. (2015?杭州)方成同学看到一则材料:甲开汽车,乙骑自行车从 M 地出发沿一条公路匀速前往 N 地•设乙行驶的时间为t (h ),甲乙两人之间的距离为y ( km ), y 与t 的函数关系如图1所示.方成思考后发现了如图 1的部分正确信息:乙先出发 1h ;甲出发0.5小时与乙相遇;….请你帮助方成同学解决以下问题:(1) 分别求出线段 BC , CD 所在直线的函数表达式; (2) 当20v y v 30时,求t 的取值范围;(3) 分别求出甲,乙行驶的路程 S 甲, S 乙与时间t 的函数表达式,并在图 2所给的直角坐标系中分别画出它们的图 象; 从 N 地沿同一公路匀速前往 M 地,若丙经过 h 与乙相遇,问丙出发后多少时间3与甲相遇?24. (2015?宁波)宁波火车站北广场将于 2015年底投入使用,计划在广场内种植A ,B 两种花木共6600棵,若A花木数量是B 花木数量的2倍少600棵 (1) A ,B 两种花木的数量分别是多少棵? (2) 如果园林处安排 26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少 人种植A 花木和B 花木,才能确保同时完成各自的任务?225. (2015?宁波)已知抛物线 y= (x - m ) -( x - m ),其中m 是常数.(4) 丙骑摩托车与乙同时出发,(1) 求证:不论 m 为何值,该抛物线与 x 轴一定有两个公共点; (2)若该抛物线的对称轴为直线 x=2① 求该抛物线的函数解析式;② 把该抛物线沿y 轴向上平移多少个单位长度后,得到的抛物线与x 轴只有一个公共点.26. (2015?台州)如图,四边形 ABCD 内接于O O ,点E 在对角线 AC 上,EC=BC=DC . (1) 若/ CBD=39 ° 求/ BAD 的度数; (2) 求证:/ 1 = / 2.27. (2015?台州)如图,在多边形 ABCDE 中,/ A= / AED= / D=90 ° AB=5 , AE=2 , ED=3,过点 E 作 EF // CB 交AB 于点F , FB=1,过AE 上的点P 作PQ / AB 交线段EF 于点O ,交折线 BCD 于点Q ,设AP=x , PO?OQ=y . (1) ①延长BC 交ED 于点M ,贝U MD= _____________ , DC= ___________ ; ②求y 关于x 的函数解析式;(2) 当a 夯d (a > 0)时,9a 鬥詣b ,求a , b 的值;228. (2015?宁波)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交 错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为 a ,边界上的格点数为 b ,则格点多边形的 面积可表示为 S=ma+nb - 1,其中m , n 为常数. (1)在下面的方格中各画出一个面积为 6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2) 利用(1)中的格点多边形确定 m , n 的值.29. (2015?台州)定义:如图1,点M , N 把线段AB 分割成 AM , MN 和BN ,若以AM , MN , BN 为边的三角形 是一个直角三角形,则称点M , N 是线段AB 的勾股分割点.(1)已知点M , N 是线段AB 的勾股分割点,若 AM=2 , MN=3,求BN 的长;三住三平行四边形(m 凄形) 菱形(2) 如图2,在厶ABC 中,FG 是中位线,点 D , E 是线段BC 的勾股分割点,且 EC >DE £D ,连接AD , AE 分 别交FG 于点M , N ,求证:点 M , N 是线段FG 的勾股分割点; (3)已知点C 是线段AB 上的一定点,其位置如图 3所示,请在BC上画一点D ,使点C ,D 是线段AB 的勾股分 割点(要求尺规作图,保留作图痕迹,画一种情形即可) ;(4) 如图4,已知点 M , N 是线段 AB 的勾股分割点, MN > AM 汩N , △ AMC , △ MND 和厶NBE 均为等边三角 形,AE 分别交CM , DM , DN 于点F , G , H ,若H 是DN 的中点,试探究 S ^AMF , S ^ BEN 和S 四边形MNHC 的数量 关系,并说明理由.30. (2015?宁波)如图1,点P 为/ MON 的平分线上一点,以 P 为顶点的角的两边分别与射线OM , ON 交于A ,2B 两点,如果/ APB 绕点P 旋转时始终满足 OA?OB=OP ,我们就把/ APB 叫做/ MON 的智慧角. (1)如图2,已知/ MON=90 °点P 为/ MON 的平分线上一点,以 P 为顶点的角的两边分别与射线 OM , ON 交于A , B 两点,且/ APB=135 °求证:/ APB 是/ MON 的智慧角.(2) 如图1,已知/ MON= a ( 0 °< aV 90°, OP=2 .若/ APB 是/ MON 的智慧角,连结 AB ,用含a 的式子分别 表示/ APB 的度数和△ AOB 的面积.(3) 如图3, C 是函数y=^ (x >0)图象上的一个动点,过 C 的直线CD 分别交x 轴和y 轴于A , B 两点,且满足图3上 3/.V B图斗P 的坐标.0 ----------? 圍3BC=2CA ,请求出/ AOB 的智慧角/ APB 的顶点参考答案与试题解析一 •选择题(共10小题)1. ( 2015?宁波)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是(考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 解答:解:从上面看易得上面一层有 3个正方形,下面中间有一个正方形.故选A .考点:圆锥的计算.分析:由圆锥的几何特征,我们可得用半径为30cm ,面积为300冗cm 1 2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.解答:解:设铁皮扇形的半径和弧长分别为 R 、I ,圆锥形容器底面半径为r ,则由题意得 R=30,由 Rl=300 n 得l=20 n; 2 由 2 n =l 得 r=10cm ; 故选B .本题考查的知识点是圆锥的体积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计 算出圆锥的底面半径和高,是解答本题的关键.3. (2015?金华)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O , B ,以点O 为原点,水平直线 OB 为x点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.22. (2015?宁波)如图,用一个半径为 30cm ,面积为300 mm 的扇形铁皮,制作一个无底的圆锥(不计损耗) ,则 圆锥的底面半径r 为( )10cmC . 20cmD . 5 Ticm点评:轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y(x- 80) 3 4+16,桥拱与桥墩AC的交点C恰好在400水面,有AC丄x轴,若OA=10米,则桥面离水面的高度AC为()图1 圉2A . 16卫米B. .-米 C . 16一米D.—」米40404]考点:二次函数的应用.专题:计算题.分析:先确定C点的横坐标,然后根据抛物线上点的坐标特征求出C点的纵坐标,从而可得到AC的长.解答:解:AC丄x轴,OA=10米,•••点C的横坐标为-10,当x= - 10 时,y=-」—(x- 80)2+16=-------- -- (- 10 - 80)2+16=-—,400 400 4••• C (- 10,』),41 7•桥面离水面的高度AC为土m.4故选B .点评:本题考查了二次函数的应用:禾U用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.4. (2015?宁波)在端午节到来之前,学校食堂推荐了A, B , C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A .方差B .平均数C .中位数D .众数考点:统计量的选择. 分析:学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.解答:解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数. 故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义•反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.45. (2015?宁波)二次函数y=a (x- 4) - 4 (a和)的图象在2v x v 3这一段位于x轴的下方,在6v x v 7这一段位于x轴的上方,则a的值为()A . 1 B. - 1 C . 2 D . - 2考点:抛物线与x轴的交点.分析:彳根据抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在 1 v x V 2这一段位于x轴的上方,而抛物线在2v x v 3这一段位于x轴的下方,于是可得抛物线过点(2, 0),然后把(2, 0)代入y-a (x2-4)- 4 (a#))可求出a的值.解答:丿解: •••抛物线y-a (x —4)2—4 (a旳)的对称轴为直线x-4,而抛物线在6 v x v 7这一段位于x轴的上方,•••抛物线在1 v x v 2这一段位于x轴的上方,•••抛物线在2 v x v 3这一段位于x轴的下方,•抛物线过点(2, 0),把(2, 0)代入y-a (x —4)2— 4 (a#0)得4a—4-0,解得a-1. 故选A.点评::2本题考查了抛物线与x轴的交点:求一次函数y-ax+bx+c (a, b, c是常数,a#))与x轴的交点坐标,令2 2/-0 ,即ax +bx+c-0,解关于x的一兀一次方程即可求得交点横坐标. △ -b 4ac决疋抛物线与x轴的交99O点个数:△ -b —4ac> 0时,抛物线与x轴有2个交点;△ -b —4ac-0时,抛物线与x轴有1个交点;△ -b -4ac v 0时,抛物线与x轴没有交点.6. (2015?宁波)如图,O O为厶ABC的外接圆,/ A=72 °则/ BCO的度数为()A .15°B. 18°C. 20° D . 28°考点:圆周角定理.专题:计算题.分析:连结OB,如图,先根据圆周角定理得到/ BOC-2 / A-144 °然后根据等腰三角形的性质和三角形内角和定理计算/ BCO的度数.解答:解:连结OB,如图,/ BOC=2 / A=2 X72°=144 °•/ OB=OC ,•••/ CBO= / BCO ,•••/ BCO=丄(180°—/ BOC)=丄X( 180。