专题一:特殊的平行四边形

合集下载

北师大九年级上《第1章特殊平行四边形》单元测试含答案解析

北师大九年级上《第1章特殊平行四边形》单元测试含答案解析

《第1章 特殊平行四边形》一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015 D .()2014二、填空题 3.如图,▱ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使▱ABCD 是矩形.4.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .5.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形,再以对角线AE 为边作第三个正方形AEGH ,如此下去,第n 个正方形的边长为 .6.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 度.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为 .8.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 .10.已知E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD= 度.11.如图,要使平行四边形ABCD 是矩形,则应添加的条件是 (只填一个).12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= cm ,AB= cm .三、解答题14.如图,在△ABC 中,AB=BC ,BD 平分∠ABC .四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE .求证:四边形BECD 是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.17.正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.18.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.24.如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.27.如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.28.如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.29.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.30.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.《第1章 特殊平行四边形》参考答案与试题解析一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A 、是邻边相等,可得到平行四边形ABCD 是菱形,故不正确;B 、是对角线相等,可推出平行四边形ABCD 是矩形,故正确;C 、是对角线互相垂直,可得到平行四边形ABCD 是菱形,故不正确;D 、无法判断.故选B .【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()2014【考点】正方形的性质.【专题】压轴题;规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n C n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,∴D 1E 1=B 2E 2=,∵B 1C 1∥B 2C 2∥B 3C 3…∴∠E 2B 2C 2=60°,∴B 2C 2=, 同理:B 3C 3=×=…∴a 1=1,q=,∴正方形A 2015B 2015C 2015D 2015的边长=1×.【点评】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.二、填空题3.如图,▱ABCD的对角线相交于点O,请你添加一个条件AC=BD (只添一个即可),使▱ABCD 是矩形.【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.【点评】本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.4.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.5.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,=()n﹣1.∴第n个正方形的边长an故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.6.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【考点】正方形的性质;等边三角形的性质;含30度角的直角三角形.【分析】过点C作CD和CE垂直正方形的两个边长,再利用正方形和等边三角形的性质得出CE的长,进而得出△ABC的面积即可.【解答】解:过点C作CD和CE垂直正方形的两个边长,如图∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=,∴△ABC的面积=AB•CE=×1×=,故答案为:.【点评】此题考查正方形的性质,关键是根据正方形和等边三角形的性质得出BE和CE的长.8.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 5 .【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出BC 的长,难度适中.9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 (,0) .【考点】正方形的性质;一次函数图象上点的坐标特征.【专题】压轴题;规律型.【分析】设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),根据t 一次函数图象上点的坐标特征得到t=﹣t+2,解得t=1,得到B 1(1,1),然后利用同样的方法可求得B 2(,),B 3(,),则A 3(,0).【解答】解:设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),所以t=﹣t+2,解得t=1,得到B 1(1,1);设正方形A 1A 2B 2C 2的边长为a ,则B 2(1+a ,a ),a=﹣(1+a )+2,解得a=,得到B 2(,);设正方形A 2A 3B 3C 3的边长为b ,则B 3(+b ,b ),b=﹣(+b )+2,解得b=,得到B 3(,),所以A 3(,0).故答案为(,0).【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角.也考查了一次函数图象上点的坐标特征.10.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD= 22.5 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.【解答】解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.【点评】本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.11.如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(只填一个).【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.【解答】解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD .故答案为:∠ABC=90°或AC=BD .【点评】本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先在Rt △A 1BB 1中,由勾股定理可求得正方形A 1B 1C 1D 1的面积=,然后再在Rt △A 2B 1B 2中,由勾股定理求得正方形A 2B 2C 2D 2的面积=,然后找出其中的规律根据发现的规律即可得出结论.【解答】解:在Rt △A 1BB 1中,由勾股定理可知; ==,即正方形A 1B 1C 1D 1的面积=;在Rt △A 2B 1B 2中,由勾股定理可知:==;即正方形A 2B 2C 2D 2的面积= …∴正方形A n B n C n D n 的面积=.故答案为:.【点评】本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= 5 cm ,AB= 13 cm .【考点】矩形的判定与性质;勾股定理的应用;平行四边形的性质;相似三角形的应用.【专题】综合题;压轴题.【分析】由条件易证∠AEB=∠AFD=∠DMC=90°.进而可证到四边形EFMN 是矩形及∠EFM=90°,由FM=3cm ,EF=4cm 可求出EM .易证△ADF ≌△CBN ,从而得到DF=BN ;易证△AFD ∽△AEB ,从而得到4DF=3AF .设DF=3k ,则AF=4k .AE=4(k+1),BE=3(k+1),从而有AD=5k ,AB=5(k+1).由▱ABCD 的周长为42cm 可求出k ,从而求出AB 长.【解答】解:∵AE 为∠DAB 的平分线,∴∠DAE=∠EAB=∠DAB ,同理:∠ABE=∠CBE=∠ABC ,∠BCM=∠DCM=∠BCD ,∠CDM=∠ADM=∠ADC .∵四边形ABCD 是平行四边形,∴∠DAB=∠BCD ,∠ABC=∠ADC ,AD=BC .∴∠DAF=∠BCN ,∠ADF=∠CBN .在△ADF 和△CBN 中,.∴△ADF≌△CBN(ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5(cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4(k+1),BE=3(k+1),∴AB=5(k+1).∵2(AB+AD)=42,∴AB+AD=21.∴5(k+1)+5k=21.∴k=1.6.∴AB=13(cm).故答案为:5;13.【点评】本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.三、解答题14.(2015•聊城)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC 于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.【考点】矩形的判定;一次函数图象上点的坐标特征.【专题】证明题.【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后根据△ABE的面积得到整个四边形的面积和AD的长,根据平行四边形的面积计算方法得当DA⊥AB即可判定矩形.【解答】证明:作EF⊥AB于点F,∵AB∥CD,∴∠1=∠2,∠3=∠4,在△ABE和△CDE中,,∴△ABE≌△CDE,∴AE=CE,∴四边形ABCD是平行四边形,∵A(2,n),B(m,n),易知A,B两点纵坐标相同,∴AB∥CD∥x轴,∴m﹣2=4,m=6,将B(6,n)代入直线y=x+1得n=4,∴B(6,4),∵CD=4=AB,△AEB的面积是2,∴EF=1,∵D(p,q),∴E(,),F(,4),∴+1=4,∴q=2,p=2,∴DA⊥AB,∴四边形ABCD是矩形.【点评】本题考查了矩形的判定,解题的关键是了解有一个角是直角的平行四边形是矩形,难度不大.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)AAS或ASA证全等;(2)根据对角线互相平分的证明四边形AFBD是平行四边形,再根据等腰三角形三线合一证明∠ADB=90°,进而根据有一个角是直角的平行四边形是矩形得证.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠EDB,∵E为AB的中点,∴EA=EB,在△AEF和△BED中,,∴△AEF≌△BED(ASA);(2)∵△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴AD⊥BD,∴四边形AFBD是矩形.【点评】本题考查了矩形的判定,三角形全等的判定及性质,能够了解矩形的判定定理是解答本题的关键,难度不大.17.(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【考点】正方形的性质;全等三角形的判定与性质;命题与定理;旋转的性质.【专题】压轴题.【分析】(1)利用正方形的性质证明△DGF≌△BEF即可;(2)当α=180°时,DF=BF.(3)利用正方形的性质和△DGF≌△BEF的性质即可证得是真命题.【解答】(1)证明:如图1,∵四边形ABCD和四边形AEFG为正方形,∴AG=AE,AD=AB,GF=EF,∠DGF=∠BEF=90°,∴DG=BE,在△DGF和△BEF中,,∴△DGF≌△BEF(SAS),∴DF=BF;(2)解:图形(即反例)如图2,(3)解:补充一个条件为:点F在正方形ABCD内;即:若点F在正方形ABCD内,DF=BF,则旋转角α=0°.【点评】本题主要考查正方形的性质及全等三角形的判定和性质,旋转的性质,命题和定理,掌握全等三角形的对应边相等是解题的关键,注意利用正方形的性质找三角形全等的条件.18.(2015•鄂州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质,可得AB=AD=CD,∠BAD=∠ADC=90°,根据正三角形的性质,可得AE=AD=DE,∠EAD=∠EDA=60°,根据全等三角形的判定与性质,可得答案;(2)根据等腰三角形的性质,∠ABE=∠AEB,根据三角形的内角和定理,可得∠AEB,根据角的和差,可得答案.【解答】(1)证明:∵四边形ABCD为正方形∴AB=AD=CD,∠BAD=∠ADC=90°∵三角形ADE为正三角形∴AE=AD=DE,∠EAD=∠EDA=60°∴∠BAE=∠CDE=150°在△BAE和△CDE中,∴△BAE≌△CDE∴BE=CE;(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAE=150°,∴∠ABE=∠AEB=15°,同理:∠CED=15°∴∠BEC=60°﹣15°×2=30°.【点评】本题考查了正方形的性质,(1)利用了正方形的性质,等腰三角形的性质,全等三角形的判定与性质;(2)利用了等腰三角形的判定与性质,角的和差.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.【专题】证明题.【分析】(1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠ABP=∠CBP是解题的关键.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】分两种情况:①如图1,令x=0,则y=3,令y=0,则x=3,得到OA=OB=3,∠BAO=45°,根据DE⊥OA,推出DE=AE,由于四边形COED是正方形,得到OE=DE,等量代换得到OE=AE,即可得到结论;②如图2,由(1)知△OFC,△EFA是等腰直角三角形,由四边形CDEF是正方形,得到EF=CF,于是得到AF=OF=2OF,求出OA=OF+2OF=3,即可得到结论.【解答】解:分两种情况;①如图1,令x=0,则y=3,令y=0,则x=3,∴OA=OB=3,∴∠BAO=45°,∵DE⊥OA,∴DE=AE,∵四边形COED是正方形,∴OE=DE,∴OE=AE,∴OE=OA=,∴E(,0);②如图2,由①知△OFC,△EFA是等腰直角三角形,∴CF=OF,AF=EF,∵四边形CDEF是正方形,∴EF=CF,∴AF=OF=2OF,∴OA=OF+2OF=3,∴OF=1,∴F(1,0).【点评】本题考查了正方形的性质,一次函数图象上点的坐标特征,等腰直角三角形的性质,正确的画出图形是解题的关键.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.【考点】矩形的判定与性质;勾股定理;平行四边形的性质.【分析】(1)利用三线合一定理可以证得∠ADB=90°,根据矩形的定义即可证得;(2)利用勾股定理求得BD的长,然后利用矩形的面积公式即可求解.【解答】解:(1)∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形.∴平行四边形ADBE是矩形;(2)∵AB=AC=5,BC=6,AD是BC的中线,∴BD=DC=6×=3,在直角△ACD中,AD===4,∴S=BD•AD=3×4=12.矩形ADBE【点评】本题考查了三线合一定理以及矩形的判定,理解三线合一定理是关键.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.24.(2014•宁德)如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】先判断四边形AECD为平行四边形,然后由∠AEC=90°即可判断出四边形AECD是矩形.【解答】证明:∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°.∴▱AECD是矩形.【点评】本题考查了梯形和矩形的判定,难度适中,解题关键是掌握平行四边形和矩形的判定定理.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【考点】矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.【专题】证明题;开放型.(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,【分析】可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.【点评】本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【解答】证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,。

四川省中考复习专题:特殊平行四边形

四川省中考复习专题:特殊平行四边形

四川省中考复习专题:特殊平行四边形2021年四川中考复习专题:特殊的平行四边形一、解答题1.如图,在平行四边形ABCD中,E,F是对角线BD上的点,且BE=DF,连接AE,CF.(1)求证△ADE≌△CBF;(2)连接AF,CE,若AB=AD,求证:四边形AFCE是菱形.2.如图,点E,F分别在菱形ABCD的边BC,CD上,且∠BAE=∠DAF.求证:AE=AF.3.如图,在菱形ABCD中,E、F是AC上两点,AE=CF.求证:四边形BFDE是菱形.4.如图,正方形ABCD的边长是4,BE=CE,DF=3CF.证明:∠AEF =90°.5.如图,四边形ABCD为菱形,点E,F分别为边DA,DC上的点,DE=DF,连接BE,BF,求证:BE=BF.6.如图,菱形ABCD中,DM⊥AB于点M,DN⊥BC于点N.求证:AM =CN.7.如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.8.已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD于点E,BF⊥AC于点F.求证:AE=BF.9.如图,在▱ABCD中,BC=2CD,E,F分别是AD,BC的中点,连接EF.(1)求证:四边形EFCD是菱形;(2)连接AF,若AF=23,∠DEF=60°,则EF的长为;菱形EFCD的面积为.10.如图,在菱形ABCD中,点O为对角线AC的中点,过O的直线交AD,BC分别于点E,F,连接CE,AF.求证:AF=CE.11.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC 到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.12.如图,在▱ABCD中,E、F分别为AD、BC的中点,点M、N在对角线AC上,且AM=CN.(1)求证四边形EMFN是平行四边形;(2)若AB⊥AC,求证▱EMFN是菱形.13.如图,在▱ABCD 中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.14.如图,在△ABC中,AD是边BC上的中线,AE∥BC,DE∥AB,DE与AC交于点O,连接CE.(1)求证:AD=EC;(2)若∠BAC=90°,求证:四边形ADCE是菱形.15.如图,在▱ABCD中,对角线AC平分∠BAD,点E、F在AC上,且CE=AF.连接BE、BF、DE、DF.求证:四边形BEDF是菱形.16.如图,R t△ABC中,∠ABC=90°,D是AC的中点,连接BD,过点C作CE∥BD,过B作BE∥AC,两直线相交于点E.(1)求证:四边形DBEC是菱形;(2)若∠A=30°,BC=2,求四边形DBEC的面积.17.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF =45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.18.如图,矩形ABCD中,AB=23,BC=3,点E射线BC上一动点,△ABE关于AE的轴对称图形为△FAE.(1)当点F在对角线AC上时,求FC的长;(2)当△FCE是直角三角形时,求BE的长.19.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(x1+x22,y1+y22).已知平行四边形的对角线互相平分,如图连接OE,FN相交于点M,则OE,FN是平行四边形ONEP的对角线,且OE,PN互相平分,即点M是线段OE,FN的中点.(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M是线段OE中点,则点M的坐标为.(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.20.如图1,点E在正方形AOCD的边AD上,点H在边AO上,AH =DE.(1)求证:DH⊥CE;(2)如图2,EF⊥CE,FH⊥AO,垂足为点H.求证:FH=AH.21.如图,正方形ABCD的对角线AC、BD交于点O,∠OCF=∠OBE.求证:∠AEB=∠BFC.22.如图,在菱形ABCD 中,∠ACD=30°,BD=6,求AC的长.23.如图①,点P是菱形ABCD对角线AC上的一点,点E在BC的延长线上,且PE =PB.(1)求证:PD=PE;(2)如图②,当∠ABC=90°时,连接DE,则DEBP是否为定值?如果是,请求其值;如果不是,请说明理由.24.如图,在▱ABCD中,延长AB 到点E,使BE=AB,DE交BC于点O,连接EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,当∠BOD等于多少度时四边形BECD是矩形,并说明理由.25.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,BC=12,求MN的值.26.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=4,求▱ABCD的面积.27.如图,▱ABCD的对角线AC、BD相交于点O.AB=10,AC=12,BD=16.(1)求证:▱ABCD是菱形;(2)若点P是对角线BD上一动点(不与点B、D重合),PE⊥AB于点E,PF⊥AD于点F,PE+PF是否为定值?若是,求出这个定值;若不是,请说明理由.28.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF.(1)求证:△EBF≌△ABC;(2)求证:四边形AEFD是平行四边形;(3)△ABC满足时,四边形AEFD是正方形.29.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E 作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.30.如图,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC.2021年四川中考复习专题:特殊的平行四边形参考答案与试题解析一、解答题1.如图,在平行四边形ABCD中,E,F是对角线BD上的点,且BE=DF,连接AE,CF.(1)求证△ADE≌△CBF;(2)连接AF,CE,若AB=AD,求证:四边形AFCE是菱形.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADE=∠CBF,∵BE=DF,∴BF=DE,在△ADE 和△CBF中,AD=CB∠ADE=∠CBFDE=BF,∴△ADE≌△CBF (SAS);(2)连接AC,交BD于点O,∵AB=AD,四边形ABCD 是平行四边形,∴四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形,又∵AC⊥BD,∴四边形AECF是菱形.2.如图,点E,F分别在菱形ABCD的边BC,CD上,且∠BAE=∠DAF.求证:AE=AF.证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,∠BAE=∠DAFAB=AD∠B=∠D,∴△ABE≌△ADF(ASA),∴AE=AF.3.如图,在菱形ABCD 中,E、F是AC上两点,AE=CF.求证:四边形BFDE是菱形.证明:连接BD交AC于点O,∵四边形ABCD为菱形,∴OB=OD,OA=OC,AC⊥BD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,∵AC⊥BD,∴四边形BEDF为菱形.4.如图,正方形ABCD的边长是4,BE =CE,DF=3CF.证明:∠AEF=90°.证明:连接AF,∵四边形ABCD是正方形,∴∠B=∠C=∠D=90°,∵正方形ABCD的边长是4,BE=CE,DF=3CF.∴BE=CE=2,CF=1,DF=3,由勾股定理得,AE2=AB2+BE2=42+22=20,EF2=CE2+CF2=22+12=5,AF2=AD2+DF2=42+32=25,又∵AE2+EF2=AF2,∴△AEF是直角三角形,即∠AEF=90°.5.如图,四边形ABCD为菱形,点E,F分别为边DA,DC上的点,DE=DF,连接BE,BF,求证:BE=BF.证明:如图,连接BD,在菱形ABCD中,∠ADB=∠CDB,在△EDB和△FDB中,DE=DF∠EDB=∠FDBBD=BD,∴△EDB≌△FDB (SAS),∴BE=BF.6.如图,菱形ABCD中,DM⊥AB于点M,DN⊥BC于点N.求证:AM=CN.证明:∵四边形ABCD 是菱形,∴AD=CD,∠A=∠C,∵DM⊥AB,DN⊥BC,∴∠DMA=∠DNC=90°,在△DAM和△DCN中,∠A=∠C∠DMA=∠DNC=90°AD=CD,∴△DAM≌△DCN (AAS),∴AM=CN.7.如图,矩形ABCD的对角线AC、BD 相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=12AC,OB =OD=12BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.8.已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,AE⊥BD于点E,BF⊥AC于点F.求证:AE=BF.证明:∵四边形ABCD是矩形,∴OA=OB,∵AE⊥BD于点E,BF⊥AC于点 F ∴∠AEO=∠BFO=90°,∵∠AOE=∠BOF,在△AEO与△BFO中,∠AEO=∠BFO=90°∠AOE=∠BOFOA=OB,∴△AEO≌△BFO (AAS),∴AE=BF.9.如图,在▱ABCD中,BC=2CD,E,F分别是AD,BC的中点,连接EF.(1)求证:四边形EFCD 是菱形;(2)连接AF,若AF=23,∠DEF=60°,则EF的长为2;菱形EFCD的面积为23.证明:(1)在▱ABCD中,BC =2CD,∴AD∥BC,AD=BC=2CD,∵E,F分别是AD,BC 的中点,∴DE=CF=CD,又AD∥BC,∴四边形EFCD是平行四边形,又∵CD=DE,∴四边形EFCD是菱形;(2)如图,过点F作FH⊥AD于H,∵四边形EFCD是菱形,∴DE=EF=AE,∵∠DEF=60°,∴∠EFH=30°,∴EH=12EF,FH=3EH,∴AH=AE+EH=3EH,∵AF2=AH2+HF2,∴12=9EH2+3EH2,∴EH=1,∴EF=2=DE,HF=3,∴菱形EFCD的面积=2×3=23,故答案为:2,23.10.如图,在菱形ABCD中,点O为对角线AC的中点,过O的直线交AD,BC分别于点E,F,连接CE,AF.求证:AF=CE.证明:∵四边形ABCD是菱形,∴AD∥BC,∴∠DAC=∠BCA,∵点O是AC的中点,∴AO=CO,在△AOE和△COF中,∠DAC=∠BCAAO=CO∠AOE=∠COF,∴△AOE≌△COF (ASA),∴AE=CF,∴四边形AECF是平行四边形,∴AF=CE.11.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE =CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=AB2-BE2=102-62=8,在Rt△AEC中,AC=AE2+EC2=82+42=45,∵四边形ABCD是菱形,∴OA=OC,∴OE=12AC=25.12.如图,在▱ABCD中,E、F分别为AD、BC的中点,点M、N在对角线AC上,且AM=CN.(1)求证四边形EMFN是平行四边形;(2)若AB⊥AC,求证▱EMFN是菱形.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAM=∠FCN,∵E、F分别为AD、BC的中点,∴AE=DE=BF=CF,在△AEM和△CFN中,AE=CF∠EAM=∠FCNAM=CN,∴△AEM≌△CFN(SAS),∴EM=FN,∠AME=∠CNF,∴∠EMN=∠FNM,∴EM∥FN,∴四边形EMFN是平行四边形;(2)连接EF交AC于O,如图所示:由(1)得:AE∥BF,AE=BF,∴四边形AEBF是平行四边形,∴AB∥EF,∵AB⊥AC,∴∠BAC=90°,∴∠COF=∠BAC =90°,∴EF⊥MN,∴▱EMFN是菱形.13.如图,在▱ABCD 中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD,AB∥CD,∵AE=FD,∴AE+EF =FD+EF,即AF=DE,在△ABF和△DCE中,AB=CDBF=CEAF=DE,∴△ABF≌△DCE(SSS);(2)由(1)可知:△ABF≌△DCE,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴2∠A=180°,∴∠A=90°,∴▱ABCD 为矩形.14.如图,在△A BC中,AD是边BC上的中线,AE∥BC,DE∥AB,DE与AC交于点O,连接CE.(1)求证:AD=EC;(2)若∠BAC=90°,求证:四边形ADCE是菱形.证明:(1)∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE∥BD,且AE=BD,又∵AD是BC边的中线,∴BD=CD,∴AE=CD,∵AE∥CD,∴四边形ADCE是平行四边形,∴AD=EC;(2)∵∠BAC=90°,AD是斜边BC上的中线,∴AD=BD =CD,由(1)得:四边形ADCE是平行四边形,∴平行四边形ADCE是菱形.15.如图,在▱ABCD中,对角线AC平分∠BAD,点E、F在AC上,且CE=AF.连接BE、BF、DE、DF.求证:四边形BEDF是菱形.证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵CE =AF,∴EO=FO,∴四边形BEDF是平行四边形,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAC=∠ACD,∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠ACD=∠DAC,∴AD=CD,∴AB=AD,在△ABF和△ADF中,AB=AD∠BAF=∠DAFAF=AF,∴△ABF≌△ADF(SAS),∴BF =DF,∴四边形BEDF是菱形.16.如图,Rt△ABC中,∠ABC =90°,D是AC的中点,连接BD,过点C作CE∥BD,过B作BE∥AC,两直线相交于点E.(1)求证:四边形DBEC是菱形;(2)若∠A=30°,BC=2,求四边形DBEC的面积.证明:(1)∵CE∥BD,BE∥AC,∴四边形BECD是平行四边形,∵∠ABC=90°,D是AC中点,∴BD=DC,∴四边形DBEC是菱形;(2)∵∠A=30°,∠ABC=90°,BC=2,∴AC=2BC=4,AB=3BC=23,∴S△CDB=12S△ABC=12×12×2×23=3,∵四边形BECD是菱形∴S菱形DBEC=2S△CDB=23.17.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF =45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.解:(1)EF2=AF2+BF2.理由:如图1,∵四边形ABCD 是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠EOF=∠AOB=90°,∴∠EOA=∠FOB,在△EOA和△FOB 中,∠EOA=∠FOBOA=OB∠OAE=∠OBF,∴△EOA≌△FOB (ASA),∴AE=BF,在Rt△EAF中,EF2=AE2+AF2=AF2+BF2;(2)在BC上取一点H,使得BH=AE.∵四边形ABCD是正方形,∴OA=OB,∠OAE=∠OBH,∠AOB=90°,在△OAE 和△OBH中,OA=OB∠OAE=∠OBHAE=BH ∴△OAE≌△OBH (SAS),∴AE=BH,∠AOE=∠BOH,OE=OH,∵∠EOF=45°,∴∠AOE+∠BOF=45°,∴∠BOF+∠BOH=45°,∴∠FOE=∠FOH=45°,在△FOE和△FOH中-,OF=OF∠FOE=∠FOHOE=OH,∴△FOE≌△FOH(SAS),∴EF =FH,∵∠FBH=90°,∴FH2=BF2+BH2,∴EF2=BF2+AE2,18.如图,矩形ABCD中,AB=23,BC=3,点E射线BC上一动点,△ABE关于AE的轴对称图形为△FAE.(1)当点F在对角线AC上时,求FC的长;(2)当△FCE是直角三角形时,求BE的长.解:(1)如图所示:∵AB=23,BC=3,∴AC=AB2+BC2=21,∵△ABE关于AE的轴对称图形为△FAE,∴AF=AB=23,∴FC=AC﹣AF=21-23.(2)当△FCE是直角三角形时,①当∠CFE是直角时,如(1)图所示:由题意可知点F在对角线AC上,且EF⊥AC,设BE=x,则EF=x,∴S△ABC=12×3×23=33,S△ABE=12×23__=3x,S△ACE=12×21__,∴33=3x+212x,解得:x=27-4.∴BE=27-4.②当∠FCE是直角时,如图所示:∵△ABE关于AE的轴对称图形为△FAE.∴AB=AF,BE=EF,在Rt△ADF中,AD=3,AF=23,∴DF=AF2-AD2=12-9=3,CF=DC﹣CE=23-3=3,设BE=x,则EF=x,CE=3﹣x,∴在Rt△ADF中,EF2=CE2+CF2,x2=(3﹣x)2+(3)2,解得:x=2,∴BE=EF=2;③当E在BC延长线上时,此时∠CEF是直角,如图所示:由题意得:BE=AB=EF=23.19.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(x1+x22,y1+y22).已知平行四边形的对角线互相平分,如图连接OE,FN相交于点M,则OE,FN是平行四边形ONEP的对角线,且OE,PN互相平分,即点M是线段OE,FN的中点.(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y 轴上,O为坐标原点,点E的坐标为(4,3),则点M是线段OE 中点,则点M的坐标为(2,32).(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.解:(1)∵四边形ONEF是矩形,∴M是OE的中点,∵O为坐标原点,点E的坐标为(4,3),∴M(42,32),即M(2,32);故答案为:(2,32);(2)如图,有三种情况:①当AC和BC为平行四边形的边时,连接对角线AB、CD1交于E,∴AE=EB,CE=ED1,∵A(﹣1,2),B(3,1),∴E (1,32),∵C(1,4),∴D1(1,﹣1);②当BC和CD2为平行四边形的边时,连接对角线BD2和AC交于G,同理可得D2(﹣3,5);③当AC和AB为平行四边形的边时,连接AD3和BC交于F,同理可得D3(5,3);综上所述,点D的坐标为(1,﹣1)或(﹣3,5)或(5,3).20.如图1,点E在正方形AOCD的边AD上,点H在边AO上,AH=DE.(1)求证:DH⊥CE;(2)如图2,EF⊥CE,FH⊥AO,垂足为点H.求证:FH=AH.证明:(1)∵四边形ABCD是正方形,∴AD=CD,∠DAH =∠CDE=90°,在△HAD与△EDC中,AD=CD∠DAH=∠CDEAH=DE,∴△HAD≌△EDC(SAS),∴∠ADH=∠DCE,∵∠ADH+∠HDC=∠DCE+∠HDC=90°,∴∠DFC=90°,∴CE⊥DH;(2)如图2,过F作FG⊥AD,交DA的延长线于G,∵FH⊥A O,∴∠G=∠GAH=∠AHF=90°,∴四边形AGFH是矩形,∴FG=AH=DE,∠G=90°,在△GFE和△DEC中,∠GEF=∠DCE∠G=∠DGF=DE,∴△GFE≌△DEC(AAS),∴EG =DC=AD,∴EG﹣AE=AD﹣AE,∴AG=DE=FH=AH,∴FH =AH.21.如图,正方形ABCD的对角线AC、BD交于点O,∠OCF=∠OBE.求证:∠AEB=∠BFC.证明:∵四边形ABCD 是正方形,∴AC⊥BD,即∠AOB=∠BOC=90°,∴OB=OC,在△OCF和△OBE中,∠OCF=∠OBEOC=OB∠COF=∠BOE,∴△OCF≌△OBE(ASA),∴∠OFC=∠OEB,∴∠BFC=∠AEB.22.如图,在菱形ABCD中,∠ACD=30°,BD=6,求AC的长.解:∵四边形ABCD是菱形,∴BO=DO=12BD=3,AO=CO,AC⊥BD,∵∠ACD=30°,∴CO=3DO=33,∴AC =2CO=63.23.如图①,点P是菱形ABCD对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:PD=PE;(2)如图②,当∠ABC=90°时,连接DE,则DEBP是否为定值?如果是,请求其值;如果不是,请说明理由.证明:(1)∵四边形ABCD是菱形,∴BC=DC,∠BCP=∠DCP,AB∥DC,在△BCP和△DCP 中,BC=DC∠BCP=∠DCPPC=PC,∴△BCP≌△DCP(SAS),∴PB=PD,∵PE=PB,∴PD=PE;(2)DEBP=2,理由如下:∵∠ABC=90°,∴四边形ABCD是正方形,由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠CFE=∠DFP(对顶角相等),∴180°﹣∠DFP﹣∠CDP =180°﹣∠CFE﹣∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC=90°,又∵PD=PE,∴DE=2PE,∴DEBP=2.24.如图,在▱ABCD中,延长AB到点E,使BE=AB,DE交BC于点O,连接EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,当∠BOD等于多少度时四边形BECD是矩形,并说明理由.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:若∠A=40°,当∠BOD=80°时,四边形BECD是矩形,理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=40°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=80°﹣40°=40°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形.25.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,BC=12,求MN的值.(1)证明:∵BD⊥AC于D,CE⊥AB于E,点M是BC的中点,∴MD=ME=12BC,∴点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A =60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△MED是等边三角形,∴DE=DM,有(1)知DM=12BC=6,∴DE=6,∵N是DE的中点,∴DN=12DE=3,∴MN=DM2-DN2=33.26.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=4,求▱ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴CD﹣CF=AB﹣AE,∴DF =BE且DC∥AB,∴四边形BFDE是平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴平行四边形BFDE是矩形;(2)解:∵∠DAB=60°,AD=4,DE⊥AB,∴∠ADE=30°,∴AE=12AD=2,DE=3AE=23,由(1)得:四边形DFBE是矩形,∴BF=DE=23,∠ABF=90°,∵AF平分∠DAB,∴∠FAB=12∠DAB=30°,∴AB=3BF=3×23=6,∴▱ABCD的面积=AB×DE=6×23=123.27.如图,▱ABCD的对角线AC、BD相交于点O.AB=10,AC=12,BD=16.(1)求证:▱ABCD 是菱形;(2)若点P是对角线BD上一动点(不与点B、D重合),PE⊥AB于点E,PF⊥AD于点F,PE+PF是否为定值?若是,求出这个定值;若不是,请说明理由.(1)证明:∵四边形ABCD是平行四边形,AC=12,BD=16,AB=10,∴AO=CO=12AC=6,BO=DO=12BD=8,∵62+82=102,∴AO2+BO2=AB2,∴∠AO B=90°,∴AC⊥BD,∴▱ABCD是菱形;(2)解:是定值,连接OP,过B作BH⊥DA于H,∵四边形ABCD是菱形,∴AB=AD=10,S△ABD=12S菱形ABCD=12×12AC-BD=14×12×16=48,∵S△ABD=S△ABO+S△ADO=12AB-PE+12AD-PF=12AD(PE+PF)=12AD-BH,∴PE+PF=BH,∵S△ABD=12AD-BH=12×10-BH=48,∴BH=485,∴PE+PF=485.故PE+PF定值为485.28.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF.(1)求证:△EBF≌△ABC;(2)求证:四边形AEFD是平行四边形;(3)△ABC满足AB=AC,∠BAC=150°时,四边形AEFD 是正方形.(1)证明:∵△ABE、△BCF为等边三角形,∴AB =BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF =∠FBC﹣∠ABF,即∠CBA=∠FBE,在△EBF和△ABC中,EB=ABFBE=∠CBABF=BC,∴△EBF≌△ABC(SAS);(2)证明:∵△EBF≌△ABC,∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD=DC,同理可得△ABC≌△DFC,∴AB=AE=DF,∴四边形AEFD是平行四边形;(3)解:当AB=AC,∠BAC=150°时,四边形ADEF是正方形.理由是:∵△ABE、△ACD为等边三角形,∴AB=AE,AC=AD,∠EAB=∠DAC=60°,∵AB=AC,∴AE=AD,∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∵∠BAC =150°,∴∠EAD=360°﹣60°﹣60°﹣150°=90°,∴平行四边形ADEF是正方形,故答案为:AB=AC,∠BAC=150°.29.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E 作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.(1)证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=PH,∠GPH=∠PGB=∠PHE=90°.∵PE⊥PB,即∠BPE=90°,∴∠BPG=90°﹣∠GPE=∠EPH.在△PGB和△PHE中,∠PGB=∠PHEPG=PH∠BPG=∠EPH,∴△PGB≌△PHE(ASA),∴PB=PE.(2)解:PE的长度不变.连接BD,如图2.∵四边形ABCD是正方形,∴∠BOP =90°,∵PE⊥PB,即∠BPE=90°,∴∠PBO=90°﹣∠BPO=∠EPF,∵EF⊥PC,即∠PFE=90°,∴∠BOP=∠PFE,在△BOP 和△PFE中,∠PBO=∠EPF∠BOP=∠PFEPB=PE,∴△BOP≌△PFE(AAS),∴BO=PF.∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴BC=2OB.∵BC=2,∴OB=2,∴PF=OB=2.∴点P在运动过程中,PF的长度不变,值为2.30.如图,在正方形ABCD中,P是对角线BD的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.(1)求证:PC=PE;(2)若PD=DE,求证:BP=BC.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,AD=CD∠ADP=∠CDPDP=DP,∴△ADP≌△CDP (SAS),∴PA=PC,∵PA=PE,∴PC=PE.(2)证明:四边形ABCD为正方形,∴∠ADC=∠CDE=90°,∴∠E+∠DFE =90°,∵PA=PE,∴∠PAD=∠E,由(1)知△ADP≌△CDP,∴∠PAD=∠PCD,∴∠PCD=∠E,∵∠PFC=∠DFE,∴∠PCD+∠PFC=∠E+∠DFE=90°,∴∠CPE=90°,∴∠BPC+∠DPE=90°,∵PD=DE,∴∠DPE=∠E,∴∠DPE =∠PCD,∵∠BCP+∠PCD=90°,∴∠BPC=∠BCP,∴BP =BC.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/5/14 13:27:40;用户:__;邮箱:__.__;学号:__。

专题1 特殊的平行四边形章末重难点题型(举一反三)(北师大版)

专题1 特殊的平行四边形章末重难点题型(举一反三)(北师大版)

A.5 cm
B.2 cm
荨 C. cm
荨 D. cm
【变式 2-1】(2020•雁塔区校级模拟)如图,在菱形 ABCD 中,AB=5,对角线 BD=8,过 BD 的中点 O 作 AD 的垂线,交 AD 于点 E,交 BC 于点 F,连接 DF,则 DF 的长度为( )
第2页

A.
B.
C.
D.
【变式 2-2】(2020•锦州)如图,在菱形 ABCD 中,P 是对角线 AC 上一动点,过点 P 作 PE⊥BC 于点 E.PF
A.6
B.12
C.20
D.24
【考点 3 菱形的性质(求点的坐标)】
【方法点拨】掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,
并且每一条对角线平分一组对角.
【例 3】(2020 春•临江市校级期末)如图,在菱形 ABCD 中,点 A 在 x 轴上,点 B 的坐标为(8,2),点 D
【考点 5 菱形的判定与性质(计算与证明)】 【例 5】(2020 春•海淀区校级期末)如图,在▱ ABCD 中,对角线 AC,BD 交于点 O,E 是 AD 上一点,连
接 EO 并延长,交 BC 于点 F.连接 AF,CE,EF 平分∠AEC. (1)求证:四边形 AFCE 是菱形; (2)若∠DAC=60°,AC=2,求四边形 AFCE 的面积.
A.4
B.4
C.2+2
D.6
【变式 4-2】(2020•成都模拟)如图,菱形 ABCD 中,∠ABC=60°,AB=2,E、F 分别是边 BC 和对角线
BD 上的动点,且 BE=DF,则 AE+AF 的最小值为

【变式 4-3】(2019•邹平县模拟)如图,在菱形 ABCD 中,AB=6,∠B=60°,点 G 是边 CD 边的中点, 点 E、F 分别是 AG、AD 上的两个动点,则 EF+ED 的最小值是 .

初中数学《特殊平行四边形》单元教学设计以及思维导图精选全文完整版

初中数学《特殊平行四边形》单元教学设计以及思维导图精选全文完整版

可编辑修改精选全文完整版特殊平行四边形主题单元教学设计主题单元学习目标知识与技能:理解平行四边形是中心对称图形,矩形、菱形、正方形都具有这样的特征矩形、菱形、正方形作为特殊的平行四边形,不仅具有平行四边形的特征,还分别具有各自的特征,而且它们都是轴对称图形.掌握特殊平行四边形的性质和判定,并能运用有关知识进行推理证明和计算边、角、对角线及面积;通过知识的综合应用的说理,初步培养学生的逻辑思维能力.过程与方法:通过探索、归纳几类特殊四边形的特征和识别,了解它们之间的包含关系;让学生在探索知识之间的相互联系及应用的过程中,体验推理的方法和技巧,获取推理的经验;通过探索,进行观察、猜想、分析、归纳、推理,培养学生发散思维能力;同时提高学生分析问题,解决问题的能力;情感态度与价值观:通过基础题和探究题体验数学活动的逻辑性和趣味性,同时增强解题的自信心;对应课标1.理解平行四边形、矩形、菱形、正方形的概念,以及他们之间的关系2.探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。

四边相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。

正方形具有矩形和菱形的一切性质主题单元问题设计1.矩形、菱形、正方形的定义2.矩形的边、角、对角线有怎样的特征?矩形有怎样的性质?3.菱形的边、角、对角线有怎样的特征?菱形有怎样的性质?怎样的性质?5. 如何判断一个平行四边形是矩形?6. 如何判断一个四边形是矩形?7. 矩形的判定?所需教学材料和资源信息化资源PPT , 几何画板课件常规资源作图工具(直尺、三角板、圆规等)教学支撑环境多媒体教室,几何画板软件其他纸笔等学习活动设计第一课时矩形的性质活动一:说说生活中的矩形【活动步骤】1.结合图,回顾矩形定义2.举出几个生活中矩形的例子.活动二:探索矩形的一般性质(即平行四边形所有性质)【技术应用】在PPT中动态演示菱形活动4:认识菱形【活动步骤】教师点拨:1.菱形是中心对称图形么?是轴对称图形么?【技术应用】几何画板演示菱形的中心对称和轴对称性活动5:探究菱形性质1.菱形的边有什么特性?菱形的角有什么特性?菱形的对角线有什么特性?活动三:推导菱形判定定理【活动步骤】1.写出命题2.思考:证明命题的步骤3.推理得出菱形的判定定理【技术应用】使用专门制作的几何画板课件探究、演示.第三课时(课外)折叠菱形活动一:折一折剪一剪1.如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?2.组内交流活动二:展示成果1.作品展示交流.2.说明下面这问同学剪法的依据。

2023年中考数学 几何专题:特殊的平行四边形(含答案)

2023年中考数学 几何专题:特殊的平行四边形(含答案)

2023中考数学 几何专题:特殊的平行四边形(含答案)例1 矩形的性质(1)如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α=∠________度.(2)矩形边长为10和15,其中一内角平分线分长边为两部分,这两部分的长为( )A .6和9B .5和10C .4和11D .7和8(3) 如图,矩形ABCD中,120AOD BC ∠=︒=,,则下列结论:①AOB △是等边三角形②130∠=︒③3cm AB =④6cm AC =⑤2ABCD S =矩形.其中正确的有( )A .①②③B .①②③④C .②③④⑤D .①②③④⑤(4) 如图,矩形ABCD 中,O 是两对角线的交点,AE BD ⊥,垂足为E.若2OD OE AE =,则DE 的长为________.【答案】(1)30;(2)B ;(3)D ;(4)3例2 矩形模型 (1)如图,已知矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥,垂足为E ,:3:1DAE BAE ∠∠=,则EAC ∠的度数为_______.α60°lm DCBAO 1DC BA第14题图E OCBDAA B(2)如图所示,矩形ABCD 内一点P 到A 、B 、C 的长分别是2、3、4,则PD 的长为_______.(3)已知,如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3AB =,4AD =,那么PE+PF=_______.【答案】(1)45︒;(2(3)125例3 矩形的判定(1)在四边形ABCD 中,AB DC =,AD BC =.请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是________.(写出一种即可)【答案】AC BD =或AB BC ⊥或90ABC =︒∠(答案不唯一)(2)如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,若MA=MC ,∠BAN=90°,求证:四边形ADCN 是矩形.证明:∵CN ∥AB , ∴∠DAC=∠NCA , 在△AMD 和△CMN 中,∵∠DAC =∠NCA ,MA =MC ,∠AMD =∠CMN ∴△AMD ≌△CMN (ASA ), ∴AD=CN . 又∵AD ∥CN ,∴四边形ADCN 是平行四边形. 又∵∠BAN=90度,∴四边形ADCN 是矩形.(3)如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分PDCBAABCDPEF线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.【答案】∵四边形ABCD 为平行四边形∴AB CD ∥,AD BC ∥∵AQ 、BN 分别是DAB ∠、ABC ∠的平分线 ∴180BAD ABC ∠+∠=︒ ∴90QPN ∠=︒同理90PQM QMN MNP ∠=∠=∠=︒ ∴四边形PQMN 是矩形.例4 (1)如图,已知菱形ABCD 的两条对角线相交于点O ,若6AC =,4BD =,则菱形ABCD 的周长是( )A .24B .16C.D.(2)如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( ) A .2.4cmB .4.8cmC .5cmD .9.6cm(3)如图,在边长为2的菱形ABCD 中,∠A=60°,DE ⊥AB ,DF ⊥BC ,则△DEF 的周长为_______(4)如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若70B =︒∠,则AED ∠的大小为( )NMQPDCBAODC BAA .60︒B .55︒C .65︒D .70︒ (5)如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点E ,点F 为垂足,连接DE ,则CDE ∠=( )A .80︒B .70︒C .65︒D .60︒(6)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 是对角线AC 上的一个动点,点E 是AB 边上的中点,则PB PE +的最小值为( )A .2B.C. D .4【答案】(1)C ;(2)B ;(3)(4)B ;(5)D ;(6)B能力提升例5 菱形的判定(1)已知:如图,平行四边形的对角线、相交于点,且,,求证:平行四边形是菱形;ABCDEHFABCDEABCD AC BD O 10AB =5AO =BO =ABCD【答案】∵在中,,, ∴ ∴是直角三角形∴平行四边形是菱形.AOB △10AB =5AO=BO =222AB AO BO =+AOB △AC BD ⊥ABCD(2)如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD 于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.【答案】∵∠ACB=90°,AD 是∠CAB 的平分线,DE ⊥AB , ∴DC=DE ,∠CAD=∠EAD ,∠CDF+∠CAD=90°, ∵CH 是AB 边上的高, ∴CH ⊥AB ,∴CH ∥DE ,∠AFH+∠EAD=90°, ∴∠CDF=∠AFH , ∵∠CFD=∠AFH , ∴∠CDF=∠CFD , ∴CF=DC , ∴CF=DE ,∴四边形CDEF 是平行四边形, ∴四边形CDEF 是菱形.例6 (1)如图,在正方形ABCD 中,E 是对角线BD 上任意一点,过E 作EF ⊥BC 于F ,作EG ⊥CD 于G ,若正方形ABCD 的周长为m ,则四边形EFCG 的周长为(2)如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,联结EB ,ED ,当126BED ∠=°时,EDA ∠的度数为( )A .54°B .27°C .36°D .18°(3)已知正方形ABCD ,以AB 为边构造等边ABP ∆,那么DCP ∠=HF DECBAEDCB A【答案】(1)2m;(2)D ;(3)15°或75° 例7 下列说法不正确的是( ) A .有一个角是直角的菱形是正方形 B .两条对角线相等的菱形是正方形 C .对角线互相垂直的矩形是正方形D .四条边都相等的四边形是正方形【答案】D练1 (1)如图,矩形ABCD 中,3AB =,两条对角线AC 、BD 所夹的钝角为120︒,则对角线BD 的长为________(2) 矩形ABCD 的对角线AC 、BD 交于O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则边AD 的长是 .【答案】(1)6 ;(2)10cm练2 (1)下列说法不能判定四边形是矩形的是( ) A .三个角是直角的四边形 B .四个角都相等的四边形 C .对角线相等的平行四边形 D .对角线垂直且相等的四边形 【答案】D(2)已知:如图,M 为▱ABCD 的AD 边上的中点,且MB=MC , 求证:▱ABCD 是矩形.证明:∵四边形ABCD 是平行四边形, ∴AB=CD .∵AM=DM ,MB=MC , ∴△ABM ≌△DCM . ∴∠A=∠D . ∵AB ∥CD ,∴∠A+∠D=180°. ∴∠A=90°.∴▱ABCD 是矩形.练3 (1)如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为_______;BC 上的高为_____(2)菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较长的对角线的长度为 【答案】(1)5、245;(2)练4 如图.矩形的对角线相交于点.,. ⑴ 求证:四边形是菱形;⑵ 若,菱形的面积为ABCD 的面积.【答案】⑴ ∵, ∴四边形是平行四边形 ∵四边形是矩形∴(矩形对角线相等且互相平分)∴四边形是菱形(邻边相等的平行四边形是菱形)⑵ABCD S练5 四边形ABCD 是正方形,延长BC 至E ,使CE AC =,连结AE 交CD 于F ,那么AFC ∠的度数为________.【答案】112.5°ABCD O DE AC ∥CE BD ∥OCED 30ACB ∠=︒OCED OEDC BADE AC ∥CE BD ∥OCED ABCD OC OD =OCED 12OCD OCED S S =△菱形FED CBA。

特殊的平行四边形专题(题型详细分类)要点

特殊的平行四边形专题(题型详细分类)要点

特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。

·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。

对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。

九年级数学特殊的平行四边形中考总复习

九年级数学特殊的平行四边形中考总复习

《特殊的平行四边形》专题复习学习目标:1.平行四边形、矩形、菱形、正方形的性质和判定在几何问题中的综合运用。

2.连平行四边形、矩形、菱形、正方形的对角线,能得到特殊三角形(直角三角形和等腰三角形)、全等三角形,要用心体会方程思想(直角三角形)和分类讨论思想(等腰三角形)在解决问题中的作用.知识梳理:一.矩形、菱形、正方形的性质与判定.二.矩形、菱形、正方形与平行四边形的关系.(小组讨论)注意:以平行四边形为基础,从边、角、对角线等不同角度进行演变,推出特殊的四边形:矩形、菱形、正方形。

他们之间既有联系又有区别。

(1)矩形的性质与判定.注意:从矩形的图形中可以分解出:直角三角形、等腰三角形、对角线的夹角是60°时有等边三角形。

(2)矩形性质的推论:直角三角形斜边上的中线等于斜边的一半. (3)菱形的性质与判定.注意:从菱形的图形中可以分解出:直角三角形、等腰三角形或等边三角形。

(4)菱形的面积1.运用平行四边形的面积公式: .2.菱形的面积等于两条对角线乘积的一半.(5)正方形的性质与判定.注意:从正方形的图形中可以分解出:等腰直角三角形。

例1.如图,在菱形ABCD 中,P 是对角线AC 上任一点(不与A ,C 重合),连接BP ,DP ,过P 作PE ∥CD 交AD 于E ,过P 作PF ∥AD 交CD 于F ,连接EF .(1)求证:△ABP ≌△ADP ;(2)若BP=EF ,求证:四边形EPFD 是矩形.S =⨯平行四形底高12ABCD S AC BD =⋅菱形跟踪练习.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=,求△AOC的面积.例2.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.跟踪练习.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O 的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.巩固提高:准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.总结中考这类题做题方法与注意事项:专项训练:1.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB 上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.2. 如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.3. 如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.4. 如图,在边长为l的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.5. 如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.6. 如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.7. 如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.8. 如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求ABCD的面积?9. 如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.10. 如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.11. 如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.12. 如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.13. 如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.14. 如图,在正方形ABCD中,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF(2)若AB=4,DE=1,求AG的长.15.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,16.延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.。

2020年中考数学复习《特殊的平行四边形》专题训练及答案解析

2020年中考数学复习《特殊的平行四边形》专题训练及答案解析

2020年中考数学复习《特殊的平⾏四边形》专题训练及答案解析2020年中考数学专题练习特殊的平⾏四边形⼀、选择题1. (2019·上海)已知ABCD Y ,下列条件中,不能判定这个平⾏四边形为矩形的是( )A.A B ∠=∠ B. A C ∠=∠C. AC BD =D. AB BC ⊥ 2. (2019.杭州)如图,P 是矩形ABCD 内⼀点(不含边界),设1PAD θ∠=,2PBA θ∠=,3PCB θ∠=,4PDC θ∠=.若80APB ∠=?,50CPD ∠=?,则( )A.1423()()30θθθθ+-+=? B. 2413()()40θθθθ+-+=? C. 1234()()70θθθθ+-+=? D. 1234()()180θθθθ+++=?3. (2019·遵义)如图,P 是矩形ABCD 的对⾓线AC 上⼀点,过点P 作//EF BC ,分别交,AB CD 于点,E F ,连接,PB PD .若2,8AE PF ==,则图中涂⾊部分的⾯积为( )A. 10B. 12C. 16D. 184. (2019·威海)矩形ABCD 与矩形CEFG 如图放置,点,,B C E 共线,点,,C D G 共线,连接AF,取AF的中点H,连接GH.若2,1====,则BC EF CD CE GH的长为( )C. D.A. 1B. 235. (2019·⼗堰)菱形不具备的性质是( )A.四条边都相等B.对⾓线⼀定相等C.是轴对称图形D.是中⼼对称图形6. (2019·淮安)如图,菱形ABCD的对⾓线,AC BD的长分别为6和8,则这个菱形的周长是( )A. 20B. 24C. 40D. 487. (2019·⼤连)如图,在菱形ABCD中,对⾓线,AC BD相交于点O.若5,6==,则BD的长是( )AB ACA. 8B. 7C. 4D. 38. (2019·⾈⼭)⽤尺规在⼀个平⾏四边形内作菱形ABCD,下列作法中错误的是( )9. (2019·宿迁)如图,菱形ABCD的对⾓线,AC BD相交于点O,E 为边CD 的中点.若菱形ABCD 的周长为16,60BAD ∠=?,则OCE ?的⾯积是( )10.(2019·湘西州)下列说法:①对顶⾓相等;②两直线平⾏,同旁内⾓相等;③对⾓线互相垂直的四边形为菱形;④对⾓线互相垂直平分且相等的四边形为正⽅形.其中正确的有( )A. 1个B. 2个C. 3个D. 4个11.(2019·宜昌)如图,正⽅形ABCD 的边长为1,,E F 分别是对⾓线AC 上的两点,EG AB ⊥,EI AD ⊥,FH AB ⊥,FJ AD ⊥,垂⾜分别为,,,G I H J ,则图中涂⾊部分的⾯积为( )A. 1B. 12C. 13D. 1412.(2019·河南)如图①,点F 从菱形ABCD 的顶点A 出发,沿B →→以1 cm/s 的速度匀速运动到点B ,图②是点F 运动时,FBC ?的⾯积y (cm 2)随时间x (s)变化的图象,则a 的值为( ) A.B. 2C. 52D.⼆、填空题13. (2019·株洲)如图,矩形ABCD的对⾓线AC与BD相交点O,AO AD的中点,则PQ的长度=分别为,10,,AC P Q为.14.(2019·成都)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆⼼,以⼤于1AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若==,则矩形的对⾓线AC的长为. 2,3DE CE15. (2019·徐州)若菱形两条对⾓线的长分别是6 cm和8 cm,则其⾯积为cm 2.16. (2019·⼴州)如图,若菱形ABCD的顶点,A B的坐标分别为-,点D在y轴上,则点C的坐标是.(3,0),(2,0)17. (2019·葫芦岛)如图,在菱形OABC 中,点B 在x 轴上,点A的坐标为(2,3),则点C 的坐标为 .18.(2019·黔西南州)已知⼀个菱形的边长为2,较长的对⾓线长为,则这个菱形的⾯积是 .19.( 2019·双鸭⼭)如图,在ABCD Y 中,添加⼀个条件,使ABCD Y 是菱形.20.(2019·南通)如图,在ABC ?中,,AD CD 分别平分BAC ∠和ACB ∠,//AE CD ,//CE AD .若从三个条件:①AB AC =;②AB BC =;③AC BC =中选择⼀个作为已知条件,则能使四边形ADCE 为菱形的是 . (填序号)21. (2019·随州)如图,在平⾯直⾓坐标系xOy 中,菱形OABC 的边长为2,点A 在第⼀象限,点C 在x 轴正半轴上,60AOC ∠=?.若将菱形OABC 绕点O 顺时针旋转75o,得到四边形'''OA B C ,则点B 的对应点'B 的坐标为 .22. (2019·荆门)如图,在平⾯直⾓坐标系xOy 中,函数(0,0)k y k x x=>>的图象经过菱形OACD 的顶点D 和边AC 的中点E .若菱形OACD 的边长为1,则k 的值为 .23. (2019·镇江)如图,点,,E F G 分别在菱形ABCD 的边,,AB BC AD 上,13AE AB =,13CF CB =,13AG AD =.已知EFG ?的⾯积等于6,则菱形ABCD 的⾯积等于 .24. (2019·乐⼭)如图,四边形ABCD 是正⽅形,延长AB 到点E ,使AE AC =,连接CE ,则BCE ∠的度数是 .25. (2019·咸宁)如图,将正⽅形OEFG 放在平⾯直⾓坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 .26. (2019·上海)对于⼀个位置确定的图形,如果它的所有点都在⼀个⽔平放置的矩形内部或边上,且该图形与矩形的每条边都⾄少有⼀个公共点(如图①),那么这个矩形⽔平⽅向的边长称为该图形的宽,铅垂⽅向的边长称为该矩形的⾼.如图②,菱形ABCD 的边长为1,边AB ⽔平放置.如果该菱形的⾼是宽的23,那么它的宽的值是 .27.(2019·武汉)以正⽅形ABCD 的边AD 作等边三⾓形ADE ,则BEC ∠的度数是 .28. (2019·青岛)如图,正⽅形ABCD 的边长为5,点,E F 分别在,AD DC 上,AE DF = 2=,BE 与AF 相交于点,G H 为BF 的中点,连接GH ,则GH 的长为 .29. (2019·呼和浩特)如图,在正⽅形ABCD 中,M 是边BA 延长线上的动点(不与点A 重合),且AM AB <,CBE ?由DAM ?平移得到.若过点E 作EH AC ⊥,H 为垂⾜,则有以下结论:①点M 位置变化,使得60DHC ∠=?时,2BE DM =;②⽆论点M 运动到何处,都有DM =;③⽆论点M 运动到何处,CHM ∠⼀定⼤于135o.其中正确的结论为 . (填序号)30. (2019·江西)在正⽅形ABCD 中,6AB =,连接,,AC BD P 是正⽅形边上或对⾓线上⼀点.若2PD AP =,则AP 的长为 .三、解答题31. (2019·湘西州)如图,在矩形ABCD 中,E 是AB 的中点,连接,DE CE .(1)求证: ADE BCE ;(2)若6,4AB AD ==,求CDE ?的周长.32. (2019连云港)如图,在矩形ABCD 中,E 是AD 的中点,延长,CE BA 交于点F ,连接,AC DF .(1)求证:四边形ACDF 是平⾏四边形;(2)当CF 平分BCD ∠时,写出BC 与CD 的数量关系,并说明理由.33. ( 2019·河南)如图,反⽐例函数(0)k y x x =>的图象过格点(⽹格线的交点)P .(1)反⽐例函数的解析式为 .(2)在图中⽤直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满⾜下⾯两个条件:①四个顶点均在格点上.且其中两个顶点分别是,O P ;③矩形的⾯积等于k的值.34. (2019·青岛)如图,四边形ABCD是平⾏四边形,对⾓线AC 与BD相交于点,E G为AD的中点,连接,CG CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB AF=;(2)若AG AB∠=?,判断四边形ACDF的形状,并证BCD=,120明你的结论.35. (2019·⼴东)如图,BD是菱形ABCD的对⾓线,75∠=?.CBD(1)请⽤尺规作图法,作AB的垂直平分线EF,垂是为E,交AD于点F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求DBF∠的度数.36.(2019·娄底)如图,在四边形ABCD中,对⾓线, AC BD相交于点O,且AD BC于点,E F.==,过点O作EF BD,OA OC OB OD⊥,分别交,(1)求证: AOE COF;(2)判断四边形BEDF的形状,并说明理由.37. (2019·南京)如图,在四边形ABCD中,BC CDC BAD∠=∠.=,2==.求证: O是四边形ABCD内⼀点,且OA OB OD (1) BOD C∠=∠;(2)四边形ABCD是菱形.38. (2019·乌鲁⽊齐)如图,在四边形ABCD中,90∠=?,EBAC 是BC的中点,//⊥于点F.AE DC,EF CDAD BC,//(1)求证:四边形AECD是菱形;(2)若6,10==,求EF的长.AB BC39. (2019·⼴安)如图,四边形ABCD是正⽅形,M为BC上⼀点,连接AM,延长AD⾄点E,使得AE AM=,过点E作=.⊥,垂⾜为F,求证:AB EFEF AM40. (2019·盐城)如图,在正⽅形ABCD中,对⾓线BD所在的直线上有两点,E F满⾜BE DFAE AF CE CF.=,连接,,,(1)求证: ABE ADF;(2)试判断四边形AECF的形状,并说明理由.41. (2019·长春)在正⽅形ABCD中,E是边CD上⼀点(点E不与点,C D重合),连接BE. [感知]如图①,过点A作AF BE⊥交BC于点F.易证.(不需要证明)ABF BCE[探究]如图②,取BE的中点M,过点M作FG BE⊥交BC于点F,交AD于点G.(1)求证:BE FG=.(2)连接CM,若1CM=,则FG的长为.[应⽤]如图③,取BE的中点M,连接CM.过点C作CG BE⊥交AD于点G,连接,EG MG.若3CM=,则四边形GMCE的⾯积为.42. (2019·潍坊)如图,M是正⽅形ABCD边CD上⼀点,连接⊥于点E,BF AM⊥于点F,连接BE.AM,作DE AM(1)求证:AE BF=;(2)已知2∠的正弦AF=,四边形ABED的⾯积为24,求EBF值.43. (2019·吉林)如图①,在ABC=,过AB上⼀点D中,AB AC作//DE AC交BC于点E,以E为顶点,ED为⼀边,作∠=∠,另⼀边EF交AC于点F. DEF A(1)求证:四边形ADEF为平⾏四边形;(2)当D为AB的中点时,ADEFY的形状为;(3)延长图①中的DE 到点G ,使EG DE =,连接,,AE AG FG ,得到图②,若AD AG =,判断四边形AEGF 的形状,并说明理由.44. (2019·绍兴)⼩敏思考解决如下问题:原题:如图①,点,P Q 分别在菱形ABCD 的边,BC CD 上,PAQ B ∠=∠,求证: AP AQ =.(1)⼩敏进⾏探索,将点,P Q 的位置特殊化:把PAQ ∠绕点A旋转得到EAF ∠,使AE BC ⊥,点,E F 分别在边,BC CD 上,如图②.此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图③,作AE BC ⊥,AF CD ⊥,垂⾜分别为,E F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=?,如图①,请你编制⼀个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)参考答案⼀、1. B 2. A 3. C 4. C 5. B 6. A 7. A 8. C 9. A 10. B 11. B 12. C⼆、15.13. 2.5 14.2416.-17. (2,3)-18.19. 答案不唯⼀,如:AB BC=20. ②21.22. 23. 27 24.22.5o 25. (1,5)- 26.1813 27. 30o或150o28. 29. ①②③30. 2或三、解答题31. (1)点拨:由AD BCA B AE BE =??∠=∠??=?,可得()ADE BCE SAS .(2) CDE ?的周长是16.32. (1) 点拨:由()FAE CDE ASA ,可得FA CD =. ⼜∵//CD AF ,∴四边形ACDF 是平⾏四边形.(2)2BC CD =33. (1)反⽐例函数的解析式为4y x= (2) 答案不唯⼀,如图,矩形OAPB ,矩形OCDP 即为所求作的图形34. (1) 点拨:由AGF DGC=.,可得AF DC∵四边形ABCD是平⾏四边形,∴AB CD=,∴AB AF=.(2) 四边形ACDF是矩形点拨:由(1)可知四边形ACDF是平⾏四边形.由AGF DGCCF FG=,2=.,可得2AD AG由AG AB是∠=?,AB AF=,120BCD=,可得AFG等边三⾓形,∴AG FG=,∴AD CF=.∴四边形ACDF是矩形35. (1) 如图所⽰,直线EF即为所求(2) 45∠=?DBF36. (1)点拨:由题意得到四边形ABCD 是平⾏四边形,∴EAO FCO ∠=∠,⼜∵OA OC =,OEA COF ∠=∠,∴AOE COF(2) 四边形BEDF 是菱形37. (1)如图,延长线段AO 到点E .由题意可得,2BOD BAD ∠=∠.(2)如图,连接OC .证明OBC ODC .得到12BOC DOC BOD ∠=∠=∠,12 BCO DCO BCD ∠=∠=∠,∵BOD BCD ∠=∠,∴BOC BCO ∠=∠,∴OB CB =,∴OB CB CD OD ===,∴四边形ABCD 是菱形.38. (1)点拨:AE CE =(2)245EF=39. 点拨:EFA ABM40. (1) 点拨:AB ADABE ADF BE DF=∠=∠=(2)点拨:连接AC,交BD于点O.可知OC OA=,OE OF=,AC EF⊥,∴四边形AECF是菱形.41. [探究] (1)点拨如图,过点G作GP BC ⊥于点P.由PGF CBEPG CBFPG ECB∠=∠=∠=∠,得到PGF CBE(2) 2 [应⽤] 942. (1)点拨:由AFB DEAAB DAABF DAE∠=∠=∠=∠,可得ABF DAE(2)213sin EBF∠= 43. (1)点拨://AD EF(2)菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.下列说法错误的是().
A、矩形的对角线互相平分B、矩形的对角线相等
C有一个角是直角的四边形是矩形D、有一个角是直角的平行四边形叫做矩形
3.矩形的对角线把矩形分成的三角形中全等三角形一共有().
A2对B、4对C、6对D、8对
4.已知矩形的一条对角线长为10cm两条对角线的一个交角为120。,则矩形的边长分别为
由性质2有AO=BO=CO=d0AC=1BD因此可以得到直角三角形的一个性质:直角三角形2 2
斜边上的中线等于斜边的一半.
例1、已知:如图,矩形ABCD勺两条对角线相交于点0,/AOB=0°,AB=4cm求矩形对角 线的长.
例2、已知:如图,矩形ABCD中,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长
4-31(b)).求证:EF=BF,OF=CF(4)如图4-31(c),若将矩形沿直线MN折叠,使顶 点B与D重合,M N交AD于M交BC于N.求折痕MN长.
3矩形的判定:
判定一:有一个角是90。的平行四边形
判定二:有三个内角是直角的四边形
判定三:对角线相等的平行四边形
由判定一、三可知要证明一个四边形是矩形,一般先证明它是平行四边形,再证明有一 个角是直角。
cmcm,cm,cm
5. 如图,矩形ABCD中,AE±BD垂足为E,/DAE=Z
6、已知如图,0是矩形ABCD寸角线的交点,AE平分/BAD/AOD=120,求/AEO勺度数.
7、如图 (a),在矩形ABCD中,两条对角线交于点0,/A0&120° ,AB=4.求:
(1)矩形对角线长;(2)BC边的长;(3)若过0垂直于BD的直线交AD于E,交BC于F(图
专题一:特殊的平行四边形
矩形菱形 正方形
一、学法指引
矩形 菱形 正方形是特殊的平行四边形,因此它们既具有平行四边形的一般性质,又 具有自己的特殊性质,要求掌握各自的性质,判定,并能运用性质、判定解决相关问题 同时注意它们的包含与被包含的关系。
二、探究与思考
1)探究矩形的定义,性质,判定
1矩形的定义
矩形定义:有一个角是直角的平行四边形叫做矩形
例3、如图,四边形ABCC中,AC丄BD于点0,EF// AC// HG EH// BD// FQ点E、F、G H分
别在四边形的边上。
求证:FH=EG
讲中练
1.填空:(1)矩形的定义中有两个条件:一是,二是.
(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四
个角的度数分别为、、、.
例4、如图,在△ABC中,点D在AB上,且AD=CD=BDDE DF分别是/BDC/ADC的平分 线。四边形FDEC是矩形吗?为什么?
2矩形的特殊性质
因为平行四边形的对角相等,邻角互补,而矩形有一个角是直角,所以矩形的四个角都 是直角
矩形性质1矩形的四个角都是直角.
如图,在矩形ABCD中AC BD相交于点0,显然△ABC^A DCB所以AC=B性质:直角三角形斜边上的中线等于斜边的一半.
相关文档
最新文档