数学建模习题2
数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
数学建模题目c (2)

关于炼油厂生产计划的分析讨论问题引出炼油厂将A、B、C三种原料加工成甲乙丙三种汽油。
一桶原油加工成汽油的费用为4元,每天至多能加工汽油14,000桶。
原油的买入价、买入量、辛烷值、硫含量,及汽油的卖出价、需求量、辛烷值、硫含量由下表给出。
问如何安排生产计划,在满足需求的条件下使利润最大?一般来说,作广告可以增加销售,估计一天向一种汽油投入一元广告费,可以使这种汽油日销量增加10桶。
问如何安排生产计划和广告计划使利润最大?基本假设假设A、B、C每种原油生产甲、乙、丙每种汽油的产量以及广告投入如下表所示:建立模型及求解一、不考虑广告投入时的模型求解:由以上述条件可知:PA=PB=PC=0;总利润为:70*3000+60*2000+50*1000-45*(X1+X2+X3)-35*(Y1+Y2+Y3)-25*(Z1+Z2+Z3)-4*(X1+X2+ X3+Y1+Y2+Y3+Z1+Z2+Z3)针对买入量与总产量得条件①:X1+X2+X3+Y1+Y2+Y3+Z1+Z2+Z3≤14000;X1+X2+X3≤5000;Y1+Y2+Y3≤5000;Z1+Z2+Z3≤5000;针对需求量得条件②:X1+Y1+Z1≥3000;X2+Y2+Z2≥2000;X3+Y3+Z3≥1000;针对辛烷值得条件③:12%*X1+6%*Y1+8%*Z1≥10%*(X1+Y1+Z1);12%*X2+6%*Y2+8%*Z2≥2%*(X2+Y2+Z2);12%*X3+6%*Y3+8%*Z3≥6%*(X3+Y3+Z3);针对硫含量得条件④:0.5%*X1+2.0%*Y1+3.0%*Z1≤1.0%*(X1+Y1+Z1);0.5%*X2+2.0%*Y2+3.0%*Z2≤0.8%*(X2+Y2+Z2);0.5%*X3+2.0%*Y3+3.0%*Z3≤1.0%*(X3+Y3+Z3);X1,X2,X3,Y1,Y2,Y3,Z1,Z2,Z3均为非负整数;结果分析与检验利用LING0 9.0求解在上述四条件下利润的最大值得(LINGO程序见附录一):当X1=2400,X2=1600, X3=800,Z1=600,Z2=400,Z3=200,其余变量值为0;即用A类原油生产2400桶甲类汽油,生产1600桶乙类石油,生产800桶丙类石油,用C类原油生产600桶甲类汽油,用C类原油生产400桶乙类汽油,用C类原油生产200桶丙类汽油时,总利润达到最大值为110000元。
章绍辉数学建模第二章

第二章 习题二1.(1)按照“两秒准则”表明前后车距与车速成正比,这和“一车长度准则”是类似的。
在2.2节的基础上引入下面的符号: D ~前后车距(m ) v ~车速(m/s )K ~按照“两秒准则”,D 与v 之间的比例系数(s ),在“两秒准则”中,K=2 于是“两秒准则”的数学模型为(2)D K v K =⨯=而刹车距离的数学模型为212d kv k v =+ 要考虑“两秒准则”是否安全,即要比较D 与d 的大小212d D kv k v K v -=+-⨯(1) 代入k 1=0.75v ,k 2=0.082678,K=2,所以当d>D ,即刹车距离的理论大于前后车距时,认为不够安全;当d<D ,即刹车距离的理论小于前后车距时,认为足够安全。
计算得到当速度超过15.12 m/s 时,“两秒准则”就不安全了,也就是说“两秒准则”适用于车速不是很快的情况。
另外,还可以通过绘图直观解释为什么“两秒准则”不够安全,用以下程序把刹车距离实测数据与“两秒准则”都画在同一幅图中:v=(20:5:80).*0.44704;d2=[18,25,36,47,64,82,105,132,162,196,237,283,334 22,31,45,58,80,103,131,165,202,245,295,353,41820,28,40.5,52.5,72,92.5,118,148.5,182,220.5,266,318,376]; d2=0.3048.*d2;k1=0.75; k2=0.082678; K=2; d1=[v;v;v].*k1;d=d1+d2;plot([0,40],[0,K*40],'k')hold onplot(0:40,polyval([k2,k1,0],0:40),':k')plot([v;v;v],d,'ok')title('比较刹车距离实测数据、理论值和两秒准则')legend('两秒准则','刹车距离理论值',...'刹车距离的最小值、平均值和最大值',2)xlabel('车速v(m/s)')ylabel('距离(m)')hold off(2)“两秒准则”的不安全性在于,其刹车距离随着车速增长的速度赶不上理论刹车距离的增长速度,为此我们提出一个“t秒准则”,通过不断增加t的值使得刹车距离总是大于理论刹车距离。
《数学建模与数学实验》(第三版)6.5习题作业2

1.根据物理定律K K K R I V =,R I P 2=,建立如下模型:(1):目标函数为:∑==412k k k R IP 约束条件⎪⎪⎩⎪⎪⎨⎧===++=≤≤8,6,41023213214I I I I I I I I R I k k k 1)直接计算求解183214=++=I I I I()K K k K K K K R I I R I P ∑∑====41412min min=K k K V I∑=41min现在K V 一定,要想求P 的最小值,只需K I 最小即可。
又因为K I 已知,代入数据即可求解。
即218282624min 44332211⨯+⨯+⨯+⨯=+++=V I V I V I V I P2)有K I 已知及K V 的取值范围,可得K R 的取值范围。
min =I1^2*R1+I2^2*R2+I3^2*R3+I4^2*R4;I1=4;I2=6;I3=8;I4=18;R1>=1/2;R2>=1/3;R3>=1/4;R4>=1/9;R1<=5/2;R2<=5/3;R3<=5/4;R4<=5/9;EndGlobal optimal solution found.Objective value: 72.00000Total solver iterations: 0Variable Value Reduced Cost I1 4.000000 0.000000 R1 0.5000000 0.000000 I2 6.000000 0.000000 R2 0.3333333 0.000000 I3 8.000000 0.000000 R3 0.2500000 0.000000 I4 18.00000 0.000000 R4 0.1111111 0.000000Row Slack or Surplus Dual Price 1 72.00000 -1.000000 2 0.000000 -4.000122 3 0.000000 -4.000081 4 0.000000 -4.000061 5 0.000000 -4.000027 6 0.000000 -16.00000 7 0.000000 -36.00000 8 0.000000 -64.00000 9 0.000000 -324.0000 10 2.000000 0.000000 11 1.333333 0.000000 12 1.000000 0.000000 13 0.4444444 0.000000(2):目标函数:∑==412k k k R I P 约束条件为:⎪⎪⎩⎪⎪⎨⎧≤≤===≤≤++=628,6,4263213214k kk kI V V V V R V I I II1)183214=++=I I I I()K K k K KK K R I I R I P ∑∑====41412min min=K k K V I ∑=41min)min(44332211V I V I V I V I P +++=要使P 最小,取4V =0,则)min(332211V I V I V I P ++=现在K V 一定,要想求P 的最小值,只需K I 最小即可。
2020年高考山东版高考理科数学 第五节 生活中的优化问题举例(数学建模二)

第五节生活中的优化问题举例(数学建模二)A组基础题组1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获得最大年利润的年产量为()A.13万件B.11万件C.9万件D.7万件答案C由题意得,y'=-x2+81,令y'=0,解得x=9或x=-9(舍去).当0<x<9时,y'>0;当x>9时,y'<0.故当x=9时,y取最大值.2.(2019孝感模拟)某品牌小汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式为y=x3-x+18(0<x≤120).要使该汽车行驶200千米时的油耗最低,则汽车匀速行驶的速度应为()A.60千米/时B.80千米/时C.90千米/时D.100千米/时答案C当速度为x千米/小时时,该汽车行驶200千米时行驶了小时,设耗油量为h(x)升,y=x3-x+18(0<x≤120).依题意得h(x)=-·=x2+-20(0<x≤120),h'(x)=x-=-(0<x≤120).令h'(x)=0,得x=90.当x∈(0,90)时,h'(x)<0,h(x)是减函数;当x∈(90,120]时,h'(x)>0,h(x)是增函数.所以当x=90时,h(x)取得极小值h(90)=18.因为h(x)在(0,120]上只有一个极值,所以当x=90时取得最小值.故选C.3.设底面为正三角形的直棱柱的体积为V,那么其表面积最小时,底面正三角形的边长为()A. B. C. D.2答案C设底面正三角形的边长为x,侧棱长为l,则V=x2·sin60°·l,∴l=,∴S表=2S底+S侧=x2sin60°+3xl=x2+.令S'表=x-=0,得x=,又当x∈(0,)时,S'表<0;x∈(,+∞)时,S'表>0,∴当x=时,表面积最小.4.在半径为r的半圆内作一内接梯形,使其下底为直径,其他三边为圆的弦,则梯形的面积最大时,梯形的上底长为()A. B.r C.r D.r答案D设梯形的上底长为2x,高为h,面积为S,∵h=-,∴S=-=(r+x)·-.∴S'=---=-=-.令S'=0,得x=(x=-r舍去),∴h=r.当x∈时,S'>0;当x∈时,S'<0,∴当x=时,S取最大值,即当梯形的上底长为r 时,它的面积最大.5.某厂生产某种产品x件的总成本c(x)=1200+x3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为件时,总利润最大.答案25解析设产品的单价为p万元,根据已知,可设p2=,其中k为比例系数.因为当x=100时,p=50,所以k=250000,所以p2=,p=(x>0).设总利润为y万元,则y=·x-1200-x3=500-x3-1200.y'=-x2.令y'=0,得x=25.当0<x<25时,y'>0;当x>25时,y'<0.因此当x=25时,函数y取得极大值,也是最大值.6.要做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为cm.答案解析设该漏斗的高为x cm,则其底面半径为-cm,体积V=π(202-x2)x=π(400x-x3)(0<x<20),则V'=π(400-3x2).令V'=0,解得x1=,x2=-(舍去).当0<x<时,V'>0;当<x<20时,V'<0,所以当x=时,V取得最大值.7.统计表明,某种型号的汽车在匀速行驶过程中的耗油量y(L/h)关于行驶速度x(km/h)的解析式可以表示为y=x3-x+8(0<x≤120).已知甲、乙两地相距100km.(1)当汽车以40km/h的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少?解析(1)汽车以40km/h的速度从甲地匀速行驶到乙地需=2.5(h),要耗油-×2.5=17.5(L).(2)当匀速行驶速度为x km/h时,汽车从甲地行驶到乙地需h,设耗油量为h L,依题意得h(x)=-=-+(0<x≤120),则h'(x)=-=-(0<x≤120).令h'(x)=0,得x=80.当x∈(0,80)时,h'(x)<0,h(x)是减函数;当x∈(80,120]时,h'(x)>0,h(x)是增函数.所以当x=80时,h(x)取得极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极小值,所以它也是最小值.所以当汽车以80km/h的速度匀速行驶时,从甲地到乙地耗油最少,为11.25L.8.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h 米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时,该蓄水池的体积最大.解析(1)因为蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又据题意知200πrh+160πr2=12000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).又由r>0,h>0可得r<5,故函数V(r)的定义域为(0,5).(2)因V(r)=(300r-4r3),故V'(r)=(300-12r2).令V'(r)=0,解得r1=5,r2=-5(舍去).当r∈(0,5)时,V'(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V'(r)<0,故V(r)在(5,5)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.B组提升题组1.某商店经销一种奥运纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a(a为常数,4≤a≤5)元的税收,设每件产品的日售价为x(35≤x≤41)元,根据市场调查,日销售量与e x(e为自然对数的底数)成反比.已知每件产品的日售价为40元时,日销量为10件.(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大?并求出L(x)的最大值.解析(1)设日销售量为,则=10,所以k=10e40,则日销售量为件.则日利润L(x)=(x-30-a)=--(35≤x≤41).(2)由(1)可得L'(x)=-,因为4≤a≤5,所以35≤a+31≤36.令L'(x)=0,得x=a+31,故L(x)在[35,a+31]上为增函数,在(a+31,41]上为减函数.所以当x=a+31时,L(x)取得最大值,最大值为10e9-a.2.某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售单价每上涨1元,每天的销售量就减少10件,而降价后,日销售量Q(单位:件)与实际销售单价x(单位:元)满足关系:Q(x)=---(1)试写出该商家的销售利润y与销售单价x的函数关系式;(利润=销售额-成本)(2)当实际销售单价为多少元时,日销售利润最大?并求出最大利润.解析(1)根据题意得y=--------=-----(2)由(1)得当5<x<7时,y=39(2x3-39x2+252x-535),y'=39(6x2-78x+252),令y'=0,则6x2-78x+252=0,解得x=6或x=7(舍去).当5<x<6时,y'>0;当6<x<7时,y'<0,故当x=6时,y max=195.当7≤x<8时,y=6(33-x),故当x=7时,y max=156.当8≤x≤13时,y=-10x2+180x-650=-10(x-9)2+160,故当x=9时,y max=160.综上可知,当实际销售单价定为6元时,日销售利润最大,最大利润为195元.3.如图,点C为某沿海城市的高速公路出入口,直线BD为海岸线,∠CAB=,AB⊥BD,是以A 为圆心,半径为1km的圆弧形小路.该市拟修建一条从C通往海岸的观光专线-PQ,其中P 为上异于B,C的一点,PQ与AB平行,设∠PAB=θ.(1)证明:观光专线-PQ的总长度随θ的增大而减小;(2)已知新建道路PQ的单位成本是翻新道路的单位成本的2倍,当θ取何值时,观光专线-PQ的修建总成本最低?请说明理由.解析(1)证明:由题意,∠CAP=-θ,所以=-θ.又PQ=AB-APcosθ=1-cosθ,所以观光专线的总长度f(θ)=-θ+1-cosθ=-θ-cosθ++1,0<θ<.因为当0<θ<时,f'(θ)=-1+sin θ<0,所以f(θ)在上单调递减,即观光专线-PQ的总长度随θ的增大而减小.(2)设翻新道路的单位成本为a(a>0),则总成本g(θ)=a--=a(-θ-2cosθ++2),0<θ<,g'(θ)=a(-1+2sinθ),令g'(θ)=0,得sinθ=,因为0<θ<,所以θ=.当0<θ<时,g'(θ)<0;当<θ<时,g'(θ)>0.所以,当θ=时,g(θ)最小,即当θ=时,观光专线-PQ的修建总成本最低.。
数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
数学建模国赛17年d题2

前 i 段的时间间隔之和大于第 i 段末尾巡检点的累计时间 gik ,但不超过第 i 1段首位巡检
点的累计时间 gi1,1 ,即
i
gik yh gi1,1, i 1, 2,..., m
h1
目标函数为求 m 的最小值,即
min f m
汇总得
(7) (8)
5
min f m
(1)固定时间上班,不考虑巡检人员的休息时间和吃饭时间; (2)固定时间上班,考虑巡检人员的休息时间和吃饭时间; (3)错时上班,不考虑巡检人员的休息时间和吃饭时间; (4)错时上班,考虑巡检人员的休息时间和吃饭时间; 每班至少需要多少人?巡检线路和时间表如何安排?
二、问题分析
题目要求:(1)把所有的巡检点都要遍历;(2)耗费的人力资源尽可能少;(3)巡检人 员的工作量尽可能均衡;(4)巡检人员上班时间固定或错时上班;(5)巡检人员有休息时间 和吃饭时间;(6)每天三班倒;(7)每班工作 8 小时;
方案的优劣就体现在两个方面,其一是人员空闲时间;其二是人员加班时间。 设最短回路被划分为 p1, p2,..., pm 段,各段对应的巡检耗时(不包括走路时间)分别为
q1, q2,..., qm ,每一段安排一名巡检工人,需要 m 个工人。
设第 i 人的空闲时间和加班时间(巡检耗时和走路时间)分别为i , i ,根据假设(2),
i 1
(11)
其中, k 1,2,3 分别表示早班、中班和晚班。
若人力资源消耗量,可通过设计 3 天的轮班,就能使得不同班次(早班、中班、晚班) 的人力资源消耗量绝对均衡。
根据假设(4),每天人力资源耗费量为
3
=k
k 1
若人力资源消耗量,可以 3m 天为周期轮换,就实现了一个轮岗轮班大循环,实现了人力 资源耗费量的绝对均衡。
数学建模课后习题第二章参考答案

数学建模第二章课后习题第5题参考答案5.(1)at m me w w w w w t w --+=)()(000,要使,只需。
联系:在目前的情况下,当时,两个模型中猪的体重的变化都一样,当时,新的假设中猪的体重增长的比较快,当时,新的假设猪的体重增长的比较慢。
因为,所以函数为增函数,即当t 增大时,猪的体重会随着增加,这与原来的假设是一致的。
两个假设都满足'(0)w r =,在最佳出售时机附近误差微小。
区别:150200250300当a=1/60时两个假设模型的比较由图可知,新假设是阻滞增长模型,体重w 是t 的增函数,体重增加的速率先快后慢,时间充分长后,体重趋于w m 。
而原假设w(t)=0w +rt 只假设体重匀速增加。
从长时间来看,新假设比原假设更符合实际。
(2) 则t 天之后比现在出售多赚的纯利润为:0000((0))()()()()(0)(0)(0)()matm p gt w w Q t p t w t C t p w ct p w w w w e--=--=--+- 其中p(0)=12,g=0.08, 900=w ,270=m w ,,c=3.2,代入数据并用matlab 中的fminbnd 函数运算得到: 在t=14.4336时,纯利润到达最大值:Qm =12.1513。
代码如下:Q=@(t)((12-0.08*t)*90.*270)./(90+(270-90).*exp(-(1/60)*t))-3.2*t-12*90;nQ=@(t)-Q(t);[t,Q1]=fminbnd(nQ,0,100), Qm=-Q1 t = 14.4336 Q1 = -12.1513 Qm =12.1513 (3)所以,如果生猪体重wm 增加1%,灵敏度S(tm,dwm)= 3.7669,最佳出售时间tm 就推迟0.038%。
灵敏度比较小,所以wm 对tm 不灵敏。
程序如下:Q=@(t,wm)((12-0.08*t)*90.*wm)./(90+(wm-90).*exp(-(1/60)*t))-3.2*t-12*90;数值计算W m 对t m 的灵敏度(W m =270,t m =14.4336)m m w w +∆ ()/%m m w w ∆ m m t t +∆ ()/%m m t t ∆ (,)m m S w t272.70001.000014.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.46010.34833.4825数值计算W m 对Q m 的灵敏度(W m =270,Q m =12.1513) m m w w +∆ ()/%m m w w ∆ m m Q Q +∆ ()/%m m Q Q ∆ (,)m m S w Q272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794 297.0000 10.0000 22.47540.84968.4963d=[.01;.05;.1];dwm=d*270;Q1=@(t)-Q(t,270+dwm(1));[t1,Q1]=fminbnd(Q1,0,30);Q2=@(t)-Q(t,270+dwm(2));[t2,Q2]=fminbnd(Q2,0,30);Q3=@(t)-Q(t,270+dwm(3));[t3,Q3]=fminbnd(Q3,0,30);Qm1=-Q1;Qm2=-Q2;Qm3=-Q3;tm=14.4336;Qm=12.1513;Sw_t=@(t,w)((t-tm)/tm)./(w/270);Sw_Q=@(Q,w)((Q-Qm)/Qm)./(w/270);t=[t1;t2;t3],Q=[Qm1;Qm2;Qm3],a=[270+d.*270,d.*100,t,(t-tm)./tm,Sw_t(t,d.*270)],b=[270+d.*270,d.*100,Q,(Q-Qm)./Qm,Sw_Q(Q,d.*270)], t =14.977317.056519.4601Q =13.107817.120822.4754a =272.7000 1.0000 14.9773 0.0377 3.7669 283.5000 5.0000 17.0565 0.1817 3.6345 297.0000 10.0000 19.4601 0.3483 3.4825b =272.7000 1.0000 13.1078 0.0787 7.8720 283.5000 5.0000 17.1208 0.4090 8.1794297.0000 10.0000 22.4754 0.8496 8.4963 (4)由图可知,新假设模型是一个阻滞增长模型,比原来的模型更符合实际,可以在较长时间内使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模(I)习题
习题2
1.兔子出生后两个月就能生小兔,如果最初你养了刚出生的一雌一雄两只小兔,长成后兔子每月生一次且恰好生一雌一雄的一对,出生的小兔年内均不死,问一年后你家里共有多少对兔子?(注:本问题关系到一个十分重要的数列:菲波那奇数列)
2.有甲乙二人,乙对甲进行盯梢,甲开始时沿甲乙二人连线的垂线方向运动并一直沿此方向运动,乙的运动方向一直指向甲并与甲一直保持着d距离,求乙的运动轨迹方程。
3.据观察,个子高的人一般来说腿也较长,现从16名成年女子测得数据如下表所示,请给出身高x与腿长y之间的函数关系。
(单位:cm)
4.我们测量了十五个不同高度的人的体重,数据见下表。
各高度的人都经适当挑选,既不太胖也不太瘦。
请用这些数据建立一个体重w与身高h之间的函数关系。
单位:米(身高)、公斤(体重)。
5.举重是一种一般人都能看懂的运动,它共分九个重量级,有两种主要的比赛方法:抓举和挺举。
下表给出了到1977年底为止九个重量级的世界纪录。
单位:公斤。
显然,运动员体重越大,他能举起的重量也越大,但举重成绩和运动员体重到底是怎样关联的呢,不同量级运动员的成绩又如何比较优劣呢?试根据这些数据建立一些经验模型并通过对它们相互之间的比较来验证一下这些模型的可信度。
6.为了检查X射线的杀菌作用,用200千伏的X射线照射细菌,每次照射6分钟,共照射15次,数据如下表所示。
其中t为照射次数,y为各次照射后所剩的细菌数。
请用这些数据建立y与t之间的函数关系。
表2.8
7材料不断地侵蚀,使钢包的容积不断增长。
经测试,钢包的容积y 与相应的使用次数x 的数据如下表所示,请建立x 与y 之间的函数关系。
单位:公斤。
由于容积不便测量,容积以钢包盛满时钢水的重量来表示。
的功率p 与v 、s 、ρ的关系。
9.用量钢分析法研究人体浸在匀速流动的水里时损失的热量。
记水的流速为v ,密度为ρ,比热为c ,粘性系数为μ,热传导系数为k ,人体尺寸为d 。
证明人体与水的热交换系数h
与上述各物理量的关系可表示为(
,)k v d c
h d
k
ρμϕμ=,ϕ是未定函数,h 的定义为单位时间内在人体与水的温差为1o C 时,通过人体单位面积的流失的热量。
10.将一张四条腿的桌子放在不平的地面上,桌子的四条腿的连线呈长方形状,不允许将桌
子移到别处,但允许围绕着其中心旋转,问是否总能设法使桌子的四条腿同时落地?若桌子的四条腿共圆,结果又如何?
11.一辆汽车停于A 处并垂直于A B 方向,此汽车可转弯的最小圆半径为R ,求下列两种情况下不倒车而由A 到B 的最短路。
(1)4AB R >,要求汽车到达B 点时停车方向与在
A 点时的方向相同。
(2)2A
B R ≥,汽车到达B 点时停车方向与A 点时的方向相反。
12.设P 是π的近似值,精度为小数点后n 位,试证明:sin()P P +是精度为3n 位的π的近似值。
13.请回答2.9节中的问题:你认为到底哪种还款方式最合算?
14.我国已经逐步实行了大学收费制度。
为保障子女将来的教育费用,某家庭从他们的儿子出生时开始,每年在银行中存入若干元作为将来子女的教育基金。
若年利率为10%,儿子18岁入大学后共需受教育费用约为10万元,该家庭每年应存入银行多少钱?。