CFD数值模拟过程
流体流动数值模拟

流体流动数值模拟流体流动现象普遍存在于⾃然界及多种⼯程领域中。
所有这些流动过程都遵循质量守恒、动量守恒、能量守恒和组分守恒等基本物理定律;⽽且流动若处于湍流状态,则该流动系统还要遵守附加的湍流输运⽅程。
本讲座将依据流体运动的特性阐述计算流体动⼒学的相关基础知识及任务;在流体运动所遵循的守恒定律及其数学描述的基础上,介绍数值求解这些基本⽅程的思想及其求解过程。
第⼀节计算流体动⼒学概述计算流体动⼒学(CFD)技术⽤于流体机械部流动分析及其性能预测,具有成本低,效率⾼,⽅便、快捷⽤时少等优点。
近年来随着计算流体⼒学和计算流体动⼒学及计算机技术的发展, CFD技术已成为解决各种流体运动和传热,以及场问题的强有⼒、有效的⼯具,⼴泛应⽤于⽔利、⽔电,航运,海洋,冶⾦,化⼯,建筑,环境,航空航天及流体机械与流体⼯程等科学领域。
利⽤数值计算模拟的⽅法对流体机械的部流动进⾏全三维整机流场模拟,进⽽进⾏性能预测的⽅法越来越⼴泛地被从事流体机械及产品性能取决于各种场特性的设计、科研等科技⼈员所使⽤;过去只有通过实验才能获得的某些结果或结论,现在完全可借助CFD模拟的⼿段来准确地获取。
这不仅既可以节省实验资源,还可以显⽰从实验中不能得到的许多场特性的细节信息。
⼀、什么是计算流体动⼒学计算流体动⼒学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显⽰,对包含流体流动和有热传导等相关物理现象的系统所做的分析。
CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理场(如速度场和压⼒场,以及热⼒场等),⽤⼀系列有限个离散点上变量值的集合来代替;并通过⼀定的原则和规律建⽴起关于这些离散点上的场变量之间关系,从⽽组成这些场变量之间关系的代数⽅程组;然后求解这种代数⽅程组,来获得这些场变量的近似值[1-3];这就是流动的数值计算。
或者直观地说,通过数值计算中的各种离散⽅法,把描述连续流体运动的控制偏微分⽅程离散成代数⽅程组,由此建⽴该流动的数值模型;再根据问题的具体情况,设定边界条件和初始条件封闭⽅程组;然后通过计算机数值计算求解这种代数⽅程组,从⽽获得描述该流场场变量的某些运动参数的数值解。
反应器停留时间分布CFD数值模拟

3.边界条件,入口反应物质量分数为1,示踪剂为0
4.打开solution-control,取消示踪剂的方程,其他都选。图中示范的方法
5.在稳态条件下计算收敛
6.将稳态计算改为非稳态,general-time-transient
7.将入口示踪剂设定为1
8.打开示踪剂方程,关闭flow项,solution controls-equation
反应器中停留时间分布CFD模拟
做了好多便,感觉闭着眼睛都能Leabharlann 出来了,特把详细步骤拿来分享一下
1.脉冲法
步骤
1.fluent中导入反应器模型,检查网格,尺寸检查,若以mm绘制记得scale。
2.材料面板选取a.反应物b.示踪剂(注:示踪剂选取原则),两者形成mixture混合物,混合的density选取volume-mixed-weighting-law。
9.建立一个监视面,如下所示
10.迭代一个时间步
11.将入口示踪剂再改为0
12.计算直到收敛。
13.利用反应工程里的公式计算平均停留时间和E(T)
特别注意,fluent得到的是t-C(t)曲线。Species-species-transport记得打开,但不要加反应。
CFD数值模拟实验指导书

(4) (5a) (5b) (5c) (6)
对于无法用解析方法求解的微分方程可以用数值方法求解, 所谓数值方法求解就是用近 似的数值解逼近微分方程的精确解。流动控制方程的精确解是流场计算域内流动参数(如速 度、压力、温度等)的连续分布,而数值解则是流场计算域内离散的点上的近似解对连续精 确解的逼近,换句话说,我们可以把连续的流场离散为一定数目的不连续的点,在这些离散 点上,守恒方程被近似满足,如果离散点之间的距离为无穷小,则近似解将无限趋近于精确 解,因此我们可以用近似解代替精确解。这就是流动微分方程数值求解的基本思想。 以数值方法求解流动微分方程,首先要把需要求解的流场的几何空间(或称为计算域) 离散为孤立的不连续的点,或者说用一定数量的点覆盖或代表要求解的连续的流场,然后将 流动控制方程的偏导数用离散点之间的有限变化来代替, 例如, 表示速度梯度的导数 ∂u / ∂x 用差商 Δu / Δx 来代替,其中 Δu 和 Δx 分别是 x 坐标方向的两个相邻的点的速度差和坐标 x 的增量。 可以想象, 如果控制微分方程中的所有导数或偏导数都被类似于差商的量代替的话, 偏微分方程将有可能变成一个线性方程,一个只包含离散点的坐标和待求函数值(如上述的 u)的线性方程。事实上,我们可以把流动控制方程组的每一个偏微分方程在每一个离散点 上转变为一个线性方程。假如我们用 100 个点离散一个计算域,那么对每个偏微分方程我们 将得到 100 个线性方程。至此,偏微分方程的求解已经转化为线性方程组的求解,如果得到 线性方程组的解,我们就得到了偏微分方程组的近似数值解。因此,我们也可以说,CFD 模 拟的过程本质上是在计算域上构建线性方程组并求解线性方程组的过程。 从上面的论述可以看出,数值方法求解流动微分方程至少包括三个步骤:首先,离散计 算域;其次,在离散后的计算域上离散控制方程;其三,求解离散得到的线性方程组。需要 补充的是,并不是所有的线性方程都需要求解,实际上有些特殊点上的流动变量值或其梯度 是已知的,这些特殊的点就是计算域边界上的点。通常为了限定微分方程的解,我们需要给
CFD数值模拟过程

基本原理是数值求解控制流体流动的微分方程,得出流场
在连续区域上的离散分布,从而近似模拟流体流动情况。
t
ui
x
j
uiu j
P xi
ij x j
Sui
CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍
利用计算机求解各种守恒控制偏微分方程组的技术。
涉及流体力学(湍流力学)、数值方法乃至计算机图形学等多 学科。且因问题的不同,模型方程与数值方法也会有所差别, 如可压缩气体的亚音速流动、不可压缩气体的低速流动等。
发货
发货
CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍 技术路线
几何造型 网格划分
前处理
求解计算
后处理显示
DesignModeler CFX-Mesh CFX-Pre CFX-Solver CFX-Post
CAD软件 ICEMCFD
在连续区域上的离散分布,从而近似模拟x
j
uiu j
P xi
ij x j
Sui
CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍 技术路线
Computational Fluid Dynamics(计算流体动力学) 计算机技术 + 数值计算技术 流体实验 计算机虚拟实验
CFD数值模拟过程
• CFD简介 • 数值模拟简介 • CFD软件简介 • 技术路线
CFD简介 数值模拟简介 CFD软件介绍 技术路线
Computational Fluid Dynamics(计算流体动力学) 计算机技术 + 数值计算技术 流体实验 计算机虚拟实验
基本原理是数值求解控制流体流动的微分方程,得出流场
cfd数值方法

cfd数值方法CFD(Computational Fluid Dynamics)数值方法,即计算流体力学数值方法,是通过利用数值计算方法对流体运动进行数值模拟,从而求解流体力学方程的一种方法。
CFD数值方法已经成为了流体力学分析中的重要分支,并且在航空、汽车、船舶、电子、建筑等领域得到了广泛的应用。
CFD数值方法的基本原理是将流体动力学方程组离散化,采用数值方法求解得到流场、温度场、压力场等物理量。
在CFD数值方法中,我们需要对流体运动的连续性、动量和能量守恒等方程进行求解。
这些方程是流体力学方程的基础,在CFD数值方法中有多种不同的求解方法。
其中,最常用的方法是有限体积法(Finite Volume Method,简称FVM),这种方法将求解区域划分成若干个小体积,对每一小体积应用质量守恒、动量守恒和能量守恒方程进行求解。
在FVM方法中,需要对流体运动中的速度、压力、浓度等物理量进行离散化处理,并通过代数方程求解得到数值解。
除了FVM方法外,还有有限元法(Finite Element Method,简称FEM)、差分法(Finite Difference Method,简称FDM)等数值方法。
这些方法中,FEM方法的应用场景较广,可以对非结构化网格进行求解,其优点体现在对高级复杂结构的求解和可视化方面,但应用在液体/气体流体求解时,计算速度相对慢。
而FDM方法因为其求解速度快、实现简单等特点,在实际工程计算中应用较多。
总的来说,CFD数值方法在流体力学方面的应用发挥了重要作用,为工业生产与科学研究提供了有力支持。
但是,由于计算机性能限制,CFD在求解实际问题时也面临着许多挑战,尤其在复杂流动物理行为的求解中,还需要进一步发展数值技术,提高计算精度和效率。
基于CFD-PBE耦合的连续结晶过程数值模拟

基于CFD-PBE耦合的连续结晶过程数值模拟
潘立杰;刘伯潭;赵文立;盖晓龙
【期刊名称】《化学工程》
【年(卷),期】2024(52)1
【摘要】通过CFD(计算流体力学)与PBE(粒数衡算方程)耦合对连续结晶过程进行数值模拟。
采用QMOM(积分矩方法)求解PBE。
在考虑成核、生长、聚并和破碎的情况下,通过网格独立性验证确定计算网格数量。
在此基础上研究挡板设置、停留时间、搅拌转速以及搅拌桨类型等因素对CSD(晶体粒径分布)演变的影响,结果表明:挡板的设置增强了结晶器内湍流程度;高转速和低停留时间会获得平均粒径较小的颗粒。
对比3种搅拌桨对CSD演变的影响,轴流式的螺旋桨功耗小,适用于大颗粒晶体结晶过程,而径流式的圆盘涡轮桨适用于微粒结晶过程。
【总页数】7页(P41-47)
【作者】潘立杰;刘伯潭;赵文立;盖晓龙
【作者单位】天津科技大学化学工程与材料科学学院;天津大学化学工程联合国家重点实验室
【正文语种】中文
【中图分类】TQ026.5
【相关文献】
1.异型坯结晶器内钢水流动和凝固过程的耦合数值模拟
2.连铸结晶器内铸坯温度场和应力场耦合过程数值模拟
3.基于多相流耦合过程数值模拟的茶鲜叶离心式连续
脱水设备参数模拟与优化4.基于连续-非连续耦合方法的降雨滑坡数值模拟研究5.漏斗型结晶器内坯壳凝固过程热力耦合数值模拟
因版权原因,仅展示原文概要,查看原文内容请购买。
CFD数值模拟4

1D steady heat conduction
At surfaces w and e , Γw = and ΓA ΓA let finally we get Γe Ae φE − φP δxPE − Γw Aw φP − φW δxWP + (Su + SP φP ) = 0 (14) ΓW + ΓP ΓP + ΓE , Γe = 2 2 = Γe Ae
The general form of scalar quantity transport equation
Differential form: ∂ (ρφ) + div (ρφu) = div (Γgrad φ) + Sφ ∂t (2)
where φ is a scalar quantity like temperature, concentration, or even velocity components; div is divergence, same as ∇·; grad is gradient operator: div (ρu) = ∇ · (ρu) = grad φ = ∂ (ρu ) ∂ (ρv ) ∂ (ρw ) + + ∂x ∂y ∂z (3) (4)
Approximation of volume integrals
¯ Sφ dV = S φ V ≃ S φP V
V
(6)
Overview Intruduction to Finite Volume Methods FVM for difussion and convection Some applications
Overview Intruduction to Finite Volume Methods FVM for difussion and convection Some applications
流化床内颗粒流体两相流的CFD模拟

万方数据万方数据万方数据万方数据万方数据第9期张锴等:流化床内颗粒流体两相流的CFD模拟时难以获得颗粒的真实堆积率,因此研究者们需要假设最大颗粒堆积率,如洪若瑜等[49’56巧71采用o.55,Chen等№143取o.60,Lettieri等[45]选O.62。
3.1液固体系在O.5m(高)×0.1m(宽)的二维流化床考察了液(IDl=1000kg・m一,产l一1.o×10-3Pa・s)固(佛=3000kg・m~,或一2.5×10-3m)体系内网格尺度、时间步长和收敛判据对床层固含率分布特性的影响。
结果表明:(1)从整体来看网格数目和时间步长对床层固含率分布的影响不大,但是从局部放大图可以发现,当网格数目(10×50和15×75)较少时,平衡时垂直方向上的固含率出现振荡,且10×50网格的振荡幅度大于15×75的网格,而网格数目(20×100和30×150)较多时,床层固含率趋于均匀分布特征;(2)通过对0.01、O.005、0.001、O.O005s和O.o001s时间步长的模拟表明,o.001s时间步长给出了更适宜的模拟结果;(3)收敛判据取10一、10-6和10_。
,所得模拟结果几乎完全一致,详细结果见文献[58]。
3.2气固体系首先采用摄像法考察了图2所示中心孔口为O.010m的2.Om(高)×O.3m(宽)拟二维流化床内射流形成及发展过程、射流穿透深度和射流频率。
实验以常温和常压下的空气为流化介质,GeldartB类物料的玻璃珠(佛=2550kg・m一,矾一250~300肛m,“mf一0.07m・s-1)为固体。
通过对射流气速为7.07m・s。
1的1200张图像进图2实验装置流程示意图Fig.2{khematicdiagramofexperimentalapparatus行逐帧分析,发现当时间为o.025s时射流已经形成并开始逐渐长大,到o.150s时,该射流在分布器上方脱落形成气泡,并有新的射流产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍 技术路线 商用CFD软件使许多不擅长CFD的其它专业研究人员能够轻松 地进行流动数值计算,从而使其以更多的精力投入到考虑所涉 及问题的物理本质、问题的提法、边界(初值)条件和计算结 果的合理解释等重要方面。
发货
发货
数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍 技术路线
CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍 技术路线 进行流场分析、计算、预测的专业软件。通过CFD软件,可以 分析并显示发生在流场中的现象,在比较短的时间内,能预测 性能,并通过改变各种参数,达到最佳设计效果。
CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍 技术路线 深刻地理解问题产生机理,指 导实验,节省所需人力、物力 和时间,并有助于整理实验结 果、总结规律。
CFD数值模拟过程 CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件简介 技术路线
CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍 技术路线 基本原理是数值求解控制流体流动的微分方程,得出流场 在连续区域上的离散分布,从而近似模拟流体流动情况。
τ (ρui ) + (ρui u j ) = P + ij + Sui t x j xi x j
Computational Fluid Dynamics(计算流体动力学) 计算机技术 + 数值计算技术 流体实验 计算机虚拟实验
CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍 技术路线 基本原理是数值求解控制流体流动的微分方程,得出流场 在连续区域上的离散分布,从而近似模拟流体流动情况。
τ (ρui ) + (ρui u j ) = P + ij + Sui t x j xi x j
Computational Fluid Dynamics(计算流体动力学) 计算机技术 + 数值计算技术 流体实验 计算机虚拟实验
CFD数值模拟过程
CFD简介 数值模拟简介 CFD软件介绍 技术路线 建立数学物理模型 数值算法求解 结果可视化 利用计算机求解各种守恒控制偏微分方程组的技术。 涉及流体力学(湍流力学)、数值方法乃至计算机图形学等多 学科。且因问题的不同,模型方程与数值方法也会有所差别, 如可压缩气体的亚音速流动、不可压缩气体的低速流动等。
CFX-Mesh ICEMCFD DesignModeler CAD
CFX-Pre
CFX-Solver
CFX-Post