协调控制系统PPT课件
合集下载
CCS

b
b
)
dP dt
b
负荷管理控制中心
T1
T2
T8
T9
<
最大负荷限制设定器
N0
图2—1 负荷要求指令处理模块结构图
滑压运行时锅炉跟随方式分析
当负荷指令和实际负荷之间偏差较小时,系统中非线性元件输出为零,µ T 就等于f3(x)的输出,即保持一定的汽机调门开度,但当机组功率跟不上负 荷指令的变化时,其差值经非线性元件暂时改变µ T'。由于这一改变量不能 太大,故系统中采用了小值选择来保证该改变量不会大于15%。
该系统直接采用经过动态校正的(P 该系统直接采用经过动态校正的 1/PT)×PSP作为 × 锅炉负荷指令信号。 锅炉负荷指令信号。燃料控制回路的反馈信号采 用热量信号( 用热量信号(P1+CbdPb/dt )。 进入锅炉燃料控制器入口的能量偏差信号为
P1 ∆e = ( ) × P SP − ( P 1 + C PT ( P SP − P T ) = P1 × − C PT P1 = × ∆ PT − C PT
间接能量平衡( 间接能量平衡(IEB)协调控制系统 )
系统的特点是用用负荷指令间接平衡机炉之间的能量关系, 系统的特点是用用负荷指令间接平衡机炉之间的能量关系,属于 以汽轮机跟随为基础的协调控制系统。 以汽轮机跟随为基础的协调控制系统。
直接能量平衡( 直接能量平衡(DEB)协调控制系统 )
Pb
在稳定工况下,汽轮机第一级压力 代表了进入汽机的蒸汽量; 在稳定工况下,汽轮机第一级压力P1代表了进入汽机的蒸汽量;P1与机前压力 PT的比值可以很好地代表汽机调节阀门的开度。在动态过程中,( 1/PT)×Psp不 的比值可以很好地代表汽机调节阀门的开度。在动态过程中,( ,(P 等于实际进入汽机的能量,而是代表了汽机所需的能量。 等于实际进入汽机的能量,而是代表了汽机所需的能量。 信号的另一特点是不受锅炉内扰的影响, 发生变化时, (P1/PT)×Psp信号的另一特点是不受锅炉内扰的影响,PT发生变化时,汽机首 级压力P 也会相应地变化, 近似不变。 级压力 1也会相应地变化,P1/PT近似不变。
3协调控制系统---负荷指令的形成

第一类原因:运行中可能存在一类导致机 组实际负荷加减受到限制,但又不能直接 识别的故障。如:燃烧器喷嘴堵,风机挡 板卡等。
第二类原因:各辅机动作速率不一致或负 荷变化速度过快。
送风量指令到高限 送风机自动
BI/BD指令的生成
或
BI指令的生成
与 与
实际送风量低于送风量 给定值超过允许偏差
RD指令的生成
(三)负荷增/减闭锁(BLOCK I/D)
负荷增/减闭锁环节的主要作用是,对这些运行 参数的偏差大小和方向进行监视。如果其中任何 一个超出规定限值,就认为设备工作异常,或出 现故障。这时,环节根据偏差的方向,对实际负 荷指令实施增或减方向的闭锁,以防止故障危害 的进一步扩大,直到偏差回到规定限值内才解除 闭锁。
3协调控制系统---负荷指令的形成
最大/最小负荷限制回路
正常工况:根据运行人员设定的负荷上下限,对 负荷斜坡信号进行限幅加工。
异常工况(BI/BD):根据BI/BD回路提供的负 荷上下限,对负荷斜坡信号进行限幅加工。
该环节的主要作用是,保证机组的实际负荷指令 不超过机组的最大/最小允许负荷值。最大和最小 允许负荷值可由运行人员手动设定。但是,最大 允许负荷设定值必须受机组最大可能出力值的限 制。此环节的一种可能的实现方案如图4-2所示。
(四)负荷迫升/迫降(RUN UP/DOWN)
负荷迫升/迫降环节的主要作用是对有关运行参 数的偏差大小和方向进行监视,如果它们超越限 值,且相应的控制器输出已达到极限位置,不再 有调节余地,则环节根据偏差的方向,对实际负 荷指令实施迫升或迫降,以使偏差回到允许范围 内,从而达到缩小故障危害的目的。由此可见, 如果说负荷增/减闭锁是“消极防守”性措施, 那么负荷迫升/迫降则是“积极进攻”性措施。 从偏差允许限值范围看,前者为第一道防线;后 者为第二道防线。
第二类原因:各辅机动作速率不一致或负 荷变化速度过快。
送风量指令到高限 送风机自动
BI/BD指令的生成
或
BI指令的生成
与 与
实际送风量低于送风量 给定值超过允许偏差
RD指令的生成
(三)负荷增/减闭锁(BLOCK I/D)
负荷增/减闭锁环节的主要作用是,对这些运行 参数的偏差大小和方向进行监视。如果其中任何 一个超出规定限值,就认为设备工作异常,或出 现故障。这时,环节根据偏差的方向,对实际负 荷指令实施增或减方向的闭锁,以防止故障危害 的进一步扩大,直到偏差回到规定限值内才解除 闭锁。
3协调控制系统---负荷指令的形成
最大/最小负荷限制回路
正常工况:根据运行人员设定的负荷上下限,对 负荷斜坡信号进行限幅加工。
异常工况(BI/BD):根据BI/BD回路提供的负 荷上下限,对负荷斜坡信号进行限幅加工。
该环节的主要作用是,保证机组的实际负荷指令 不超过机组的最大/最小允许负荷值。最大和最小 允许负荷值可由运行人员手动设定。但是,最大 允许负荷设定值必须受机组最大可能出力值的限 制。此环节的一种可能的实现方案如图4-2所示。
(四)负荷迫升/迫降(RUN UP/DOWN)
负荷迫升/迫降环节的主要作用是对有关运行参 数的偏差大小和方向进行监视,如果它们超越限 值,且相应的控制器输出已达到极限位置,不再 有调节余地,则环节根据偏差的方向,对实际负 荷指令实施迫升或迫降,以使偏差回到允许范围 内,从而达到缩小故障危害的目的。由此可见, 如果说负荷增/减闭锁是“消极防守”性措施, 那么负荷迫升/迫降则是“积极进攻”性措施。 从偏差允许限值范围看,前者为第一道防线;后 者为第二道防线。
干道交通协调控制.课件

干线协调控制
根据实时交通情况动态调整信号灯的控制策略,以适应交通流的变化。
动态协调控制
干道交通协调控制技术
传感器技术是干道交通协调控制中的重要组成部分,它负责采集各种交通信息,并将其转换为可处理的数据。
传感器技术包括雷达传感器、红外传感器、超声波传感器等,它们被安装在道路和交通信号灯上,可以实时监测车辆流量、车速、车辆间距等信息。
干道交通协调控制案例分析
方案效果
经过实施干道交通协调控制方案,该城市的干道交通状况得到了明显改善,道路通行效率提高了30%,交通拥堵和事故发生率分别下降了20%和15%。
方案背景
随着城市交通流量的不断增加,某城市的干道交通状况日益严峻,经常出现交通拥堵和事故。
方案目标
通过实施干道交通协调控制,提高道路通行效率,减少交通拥堵和事故。
优化交通信号灯的运行方案,减少交通事故的发生,提高道路交通安全水平。
03
02
01
干道交通协调控制技术的起源可以追溯到20世纪60年代,经过几十年的发展,技术不断完善和成熟。
随着智能化、信息化技术的发展,干道交通协调控制正朝着智能化、自适应化的方向发展,未来将进一步提高道路通行效率和交通安全水平。
发展趋势
方案效果
经过实施干道交通协调控制方案,该高速公路的通行效率和安全性得到了明显提升,道路通行效率提高了25%,交通事故发生率下降了10%。
方案目标
通过实施干道交通协调控制,提高高速公路的通行效率和安全性。
方案背景:某景区是著名的旅游胜地,游客众多,景区内的干道交通状况十分繁忙。
干道交通协调控制未来发展
传感器技术提高了交通监控的准确性和实时性,为干道交通协调控制提供了可靠的数据支持。
计算机技术包括计算机硬件、操作系统、数据库、编程语言等,它们被用于实现交通监控系统的各项功能。
根据实时交通情况动态调整信号灯的控制策略,以适应交通流的变化。
动态协调控制
干道交通协调控制技术
传感器技术是干道交通协调控制中的重要组成部分,它负责采集各种交通信息,并将其转换为可处理的数据。
传感器技术包括雷达传感器、红外传感器、超声波传感器等,它们被安装在道路和交通信号灯上,可以实时监测车辆流量、车速、车辆间距等信息。
干道交通协调控制案例分析
方案效果
经过实施干道交通协调控制方案,该城市的干道交通状况得到了明显改善,道路通行效率提高了30%,交通拥堵和事故发生率分别下降了20%和15%。
方案背景
随着城市交通流量的不断增加,某城市的干道交通状况日益严峻,经常出现交通拥堵和事故。
方案目标
通过实施干道交通协调控制,提高道路通行效率,减少交通拥堵和事故。
优化交通信号灯的运行方案,减少交通事故的发生,提高道路交通安全水平。
03
02
01
干道交通协调控制技术的起源可以追溯到20世纪60年代,经过几十年的发展,技术不断完善和成熟。
随着智能化、信息化技术的发展,干道交通协调控制正朝着智能化、自适应化的方向发展,未来将进一步提高道路通行效率和交通安全水平。
发展趋势
方案效果
经过实施干道交通协调控制方案,该高速公路的通行效率和安全性得到了明显提升,道路通行效率提高了25%,交通事故发生率下降了10%。
方案目标
通过实施干道交通协调控制,提高高速公路的通行效率和安全性。
方案背景:某景区是著名的旅游胜地,游客众多,景区内的干道交通状况十分繁忙。
干道交通协调控制未来发展
传感器技术提高了交通监控的准确性和实时性,为干道交通协调控制提供了可靠的数据支持。
计算机技术包括计算机硬件、操作系统、数据库、编程语言等,它们被用于实现交通监控系统的各项功能。
单元机组协调控制系统一课件

单元机组协调控制系 统一课件
目录
PART 01
单元机组协调控制系统的 概述
定义与特点
定义
单元机组协调控制系统是一种用于协 调控制单元机组多个设备的自动化系 统,通过优化机组运行参数,实现安 全、高效、经济运行。
特点
单元机组协调控制系统具有自动化程 度高、控制精度高、响应速度快、稳 定性好等特点,能够提高机组的整体 性能和运行效率。
协调控制系统的基本组成
协调控制系统主要由指令输入装置、控制器、执行器和反馈装置等组成。
指令输入装置用于接收外部输入的指令信号,控制器根据指令信号和系 统状态计算控制信号,执行器根据控制信号调节单元机组的运行参数。
反馈装置用于实时监测单元机组的运行状态,将监测数据反馈给控制器, 以便控制器进行实时调整。
PART 02
单元机组协调控制系统的 基本原理
单元机组的工作原理
单元机组是一种将多种能源转化为电能的装置,由燃烧系统、汽水系统和控制系统 等组成。
单元机组通过燃烧系统将燃料转化为蒸汽,蒸汽通过汽水系统驱动汽轮机转动,进 而发电。
单元机组的运行状态和效率受到多种因素的影响,如燃料品质、蒸汽参数、负荷变 化等。
具体策略包括
优化控制算法、改进系统结构、 提高传感器和执行器的性能等。
系统改进的方法与步骤
• 方法:根据系统优化的目标和策略,选择合适的方法进行 改进。
系统改进的方法与步骤
步骤 1. 对现有系统进行深入分析,了解其优点和不足。
2. 根据分析结果,制定具体的改进方案。
系统改进的方法与步骤
3. 对改进方案进行仿 真和实验验证,确保 其可行性和有效性。
PART 06
单元机组协调控制系统的 应用案例
目录
PART 01
单元机组协调控制系统的 概述
定义与特点
定义
单元机组协调控制系统是一种用于协 调控制单元机组多个设备的自动化系 统,通过优化机组运行参数,实现安 全、高效、经济运行。
特点
单元机组协调控制系统具有自动化程 度高、控制精度高、响应速度快、稳 定性好等特点,能够提高机组的整体 性能和运行效率。
协调控制系统的基本组成
协调控制系统主要由指令输入装置、控制器、执行器和反馈装置等组成。
指令输入装置用于接收外部输入的指令信号,控制器根据指令信号和系 统状态计算控制信号,执行器根据控制信号调节单元机组的运行参数。
反馈装置用于实时监测单元机组的运行状态,将监测数据反馈给控制器, 以便控制器进行实时调整。
PART 02
单元机组协调控制系统的 基本原理
单元机组的工作原理
单元机组是一种将多种能源转化为电能的装置,由燃烧系统、汽水系统和控制系统 等组成。
单元机组通过燃烧系统将燃料转化为蒸汽,蒸汽通过汽水系统驱动汽轮机转动,进 而发电。
单元机组的运行状态和效率受到多种因素的影响,如燃料品质、蒸汽参数、负荷变 化等。
具体策略包括
优化控制算法、改进系统结构、 提高传感器和执行器的性能等。
系统改进的方法与步骤
• 方法:根据系统优化的目标和策略,选择合适的方法进行 改进。
系统改进的方法与步骤
步骤 1. 对现有系统进行深入分析,了解其优点和不足。
2. 根据分析结果,制定具体的改进方案。
系统改进的方法与步骤
3. 对改进方案进行仿 真和实验验证,确保 其可行性和有效性。
PART 06
单元机组协调控制系统的 应用案例
(完整)09第三章 单元机组协调控制系统

协调控制:通过控制回路协调汽轮机和锅炉的工作状 态,同时给锅炉和汽轮机自动控制系统发出指令,以 达到快速响应负荷变化的目的,尽最大可能发挥机组 调频、调峰能力,稳定运行参数。 特别是600MW以上的机组都设置了协调控制系统。 协调控制系统(CCS)(按原电力部自动化协会推荐应 称为:MCS),但习惯原因多数仍使用CCS表示协调控 制系统。 二、协调系统的运行方式 (插图) 协调控制系统在协调机炉运行时共有四种运行方式, 各运行方式都有优缺点,根据实际情况酌情选择使用。 (原则:负荷变动不能使主汽压力变化过大) 1)炉跟机:需要机组进行负荷变化时,首先改变汽机 的负荷,然后在协调系统控制下让炉来稳定主汽压力。 优点:负荷变化快;缺点:机组参数变化大
4)采用前馈信号使跟随方及时动作以避免参数波动。 应该说这一点是协调系统和原来常规仪表的主要区别。 常规仪表就是由于没有这种功能才会在大机组负荷变 动面前“束手无策”。 下面以图3-1为例,了解以下内容: 1)如何看自动控制图(了解各种符号的含义) 2)如何分析自动控制图(自动控制原理) 3)分析协调控制原理
一、符号识别 最好能将符号记录 下来,以便日后查看
补充自动控制图形符号说明:
LAG(英文含义:落后、迟延)--惯性 LIM(limit:限制、限定)--幅值限定 RAMPC—速率限定
汽轮机负荷调节
锅炉负荷指令运
系统:(机主控
算系统:经过此
电路)输入量为
运算单元输出到
发电机+ 功率T和
锅炉调节系统以
自上动边信调菱高两数小出负低入R加入个法为高定被被过限输切备切用的/为号节U形手值个值负的荷值中法的信运手的N比信器值数限限限定出换,换两一自发可中动选信。荷最指选选为减器两号算动模B较号的限值定定定数为:可设个个动生以例时过大上指但某切A择号其,小令A择择输负:个进。信拟器之输表C幅(输的数值限一以备输。,器产如快,面令应时换器中右是数必数函(测线偿器最出荷将或行号信K: 差 出示器 右 入 输 值 时 定般 控 以 入右, 生: 汽 , 会 传 不 力 间开:选侧要值须值数X量性运是:小。指输 多 加。号自根两作。模:侧。入,,数切制决信)边手不在机否损送大计段关在择输求,大转信矫算自在的右令动据个为拟一)在输当该值换这定号:的动同启温则坏下于算内,输最入机运于换号正等动两信侧。调输输比侧,运入输限设个使中对动度热汽来高会不入小为组行这器进或操快个号节入入较输一行不入定被汽不应机的限限大的的最输中个F行补作速输作器信入侧时能超单轮增力设负数制于。:号限为,超过元机长过备荷值在某,, 个数值(偏差信号) 决定输出调节 信号的大小。
机组协调控制系统(CCS) ppt课件

二、协调控制系统的分类
目前,各种不同单元机组协调控制系统的设计,都是从处理快速负荷响应和主要 参数运行稳定这一矛盾出发的,一般协调控制系统可按反馈或前馈回路的不同进行分 类。
(一)、按反馈回路分类 按反馈回路分类可以将协调控制系统分为以汽机跟随(锅炉基本)为基础的协调
控制系统和以锅炉跟随(汽机基本)为基础的协调控制系统。
员改变负荷的指令、电网频率自动调整的指令。根据机组运行状态和电网对机
组的要求,选择其中一种指令或两种以上指令。
(2)限制负荷指令的变化率和起始变化p幅pt课度件。
9
(3)限制机组最高和最低负荷。 (4)甩负荷保护。 (5)根据机组的辅机运行状态,选择不同的运行工况。
2、机炉主控制回路的作用 (1)接受经过处理的负荷指令P0,对锅炉调节系统和汽机调节系统发出协调的指挥
调度所可以直接改变机组负荷,机组运行人员也可以改变机组输出功率,机炉自动调 节系统都投入运行。
(2)方式II--汽机根随锅炉而汽机输出功率可调方式 这种调节方式时,锅炉、汽机自动系统都投入,但机组不参加电网调频,调度所
也不直接改变机组的负荷。只有机组运行人员可以改变机组的给定功率,机组输出功 率能自动保持等于给定功率。
汽机跟随(锅炉基本)为基础的协调控制系统,可以在汽机调节器前,加入功率
偏差的前馈信号,其原理是利用锅炉的蓄能,同时允许汽压在一定范围内波动。如图 11-2所示,功率偏差信号(P0-PE)可以看作是暂时改变的汽机调节器的给定值,当 (P0-PE)0时,汽压给定值降低,汽机调节器发出开大调节阀的指令,增加输出 功率,反之亦然,当F(x)=0时,前馈作用不存在。 2、以锅炉跟随(汽机基本)为基础的协调控制系统:
能量平衡信号与功率给定信号性质不同。后者仅表示电网对机组的负荷要求,前
目前,各种不同单元机组协调控制系统的设计,都是从处理快速负荷响应和主要 参数运行稳定这一矛盾出发的,一般协调控制系统可按反馈或前馈回路的不同进行分 类。
(一)、按反馈回路分类 按反馈回路分类可以将协调控制系统分为以汽机跟随(锅炉基本)为基础的协调
控制系统和以锅炉跟随(汽机基本)为基础的协调控制系统。
员改变负荷的指令、电网频率自动调整的指令。根据机组运行状态和电网对机
组的要求,选择其中一种指令或两种以上指令。
(2)限制负荷指令的变化率和起始变化p幅pt课度件。
9
(3)限制机组最高和最低负荷。 (4)甩负荷保护。 (5)根据机组的辅机运行状态,选择不同的运行工况。
2、机炉主控制回路的作用 (1)接受经过处理的负荷指令P0,对锅炉调节系统和汽机调节系统发出协调的指挥
调度所可以直接改变机组负荷,机组运行人员也可以改变机组输出功率,机炉自动调 节系统都投入运行。
(2)方式II--汽机根随锅炉而汽机输出功率可调方式 这种调节方式时,锅炉、汽机自动系统都投入,但机组不参加电网调频,调度所
也不直接改变机组的负荷。只有机组运行人员可以改变机组的给定功率,机组输出功 率能自动保持等于给定功率。
汽机跟随(锅炉基本)为基础的协调控制系统,可以在汽机调节器前,加入功率
偏差的前馈信号,其原理是利用锅炉的蓄能,同时允许汽压在一定范围内波动。如图 11-2所示,功率偏差信号(P0-PE)可以看作是暂时改变的汽机调节器的给定值,当 (P0-PE)0时,汽压给定值降低,汽机调节器发出开大调节阀的指令,增加输出 功率,反之亦然,当F(x)=0时,前馈作用不存在。 2、以锅炉跟随(汽机基本)为基础的协调控制系统:
能量平衡信号与功率给定信号性质不同。后者仅表示电网对机组的负荷要求,前
单元机组集控运行一单元机组的协调控制系统 PPT精品课件
为了解决这两个问题,本章首先介绍了CCS的组成及各模块的 功能。了解各模块之间的输入、输出关系,是理解各模块功能的逻 辑线索。这一部分,重点介绍了CCS的核心:主控制器。通过机组 启动、停运和事故中对主控制器的功能需求分析,介绍了主控制器 的回路组成,工作方式,以及对应得使用工况。
此处为老师站位区 禁止编辑任何内容
单元机组的协调控制系统
二、CCS的组成及各部分的功能
(一)CCS概述 控制汽轮机升速进程。 区间:从盘车冲转开始,到3000RPM并网结束。 例如:实际转速低于值班员设的转速目标值时,DEH需要开大 调门开度、增大机组进汽量,让实际转速升至转速转速目标值。
此处为老师站位区 禁止编辑任何内容
单元机组的协调控制系统
单元机组的协调控制系统
根据集控值班员的需求,对压力给定值处理回路也做了简要介 绍。通过SAMA图分析,在“调门开度校正环节”中,重点介绍了与 运行相关的“滑压”和“滑压偏置”的概念。
负荷指令处理回路是集控值班员关注的重点,本章进行了详细 的介绍。kai'd从以下几个方面重点介绍了BI/BD,RD/RUP:1、 设置的目的;2、触发条件;3、动作过程;4、复位过程。
此处为老师站位区 禁止编辑任何内容
CCS出现以前,机组的负荷调节方式
煤、风&水 流量实测
煤、风&水 流量设定
负荷设定 负荷实测
电网
FSSS
DEH
炉
汽机
发电机
此处为老师站位区 禁止编辑任何内容
单元机组的协调控制系统
一、CCS前言
(二)CCS产生的工程背景 CCS出现以前,机组中锅炉出力的调节方式: 1.值班员为FSSS中的煤量调节器设置给定值(直吹式,一次风 流量);煤量调节器根据偏差计算出一次风挡板开度的给定值。 2.按烟气氧量,自动确定送风量给定值。 3.按炉膛负压,自动确定引风量给定值。 4.直流炉,按煤/水比,自动确定给水流量给定值。
此处为老师站位区 禁止编辑任何内容
单元机组的协调控制系统
二、CCS的组成及各部分的功能
(一)CCS概述 控制汽轮机升速进程。 区间:从盘车冲转开始,到3000RPM并网结束。 例如:实际转速低于值班员设的转速目标值时,DEH需要开大 调门开度、增大机组进汽量,让实际转速升至转速转速目标值。
此处为老师站位区 禁止编辑任何内容
单元机组的协调控制系统
单元机组的协调控制系统
根据集控值班员的需求,对压力给定值处理回路也做了简要介 绍。通过SAMA图分析,在“调门开度校正环节”中,重点介绍了与 运行相关的“滑压”和“滑压偏置”的概念。
负荷指令处理回路是集控值班员关注的重点,本章进行了详细 的介绍。kai'd从以下几个方面重点介绍了BI/BD,RD/RUP:1、 设置的目的;2、触发条件;3、动作过程;4、复位过程。
此处为老师站位区 禁止编辑任何内容
CCS出现以前,机组的负荷调节方式
煤、风&水 流量实测
煤、风&水 流量设定
负荷设定 负荷实测
电网
FSSS
DEH
炉
汽机
发电机
此处为老师站位区 禁止编辑任何内容
单元机组的协调控制系统
一、CCS前言
(二)CCS产生的工程背景 CCS出现以前,机组中锅炉出力的调节方式: 1.值班员为FSSS中的煤量调节器设置给定值(直吹式,一次风 流量);煤量调节器根据偏差计算出一次风挡板开度的给定值。 2.按烟气氧量,自动确定送风量给定值。 3.按炉膛负压,自动确定引风量给定值。 4.直流炉,按煤/水比,自动确定给水流量给定值。
单元机组协调控制系统(CCS)
过程。 “快速负荷响应和主要运行参数稳定”
§7.1 CCS的基本概念(6)
➢ 以锅炉跟随为基础的协调控制方式:
§7.1 CCS的基本概念(7)
➢ 以汽轮机跟随为基础的协调控制方式
§7.1 CCS的基本概念(8)
➢ 综合型协调控制方式
§7.1 CCS的基本概念(9)
CCS 的基 本组 成
➢ CCS
➢ p1/pT信号的微分项整定不受汽轮机控制回路的影响,只需按 机炉对负荷要求响应速度的差异确定参数就可以了。与负荷 指令间接平衡的协调系统相比,锅炉控制回路的前馈信号无 论是动态的还是静态的精度都比较高,整定也比较方便。
§7.3 机炉主控制器(17)
系统分析(2)
➢ 从锅炉内扰来看,当燃烧率自发增加时,pT及p1均升高,因 为p1对燃烧率变化比实发电功率PE灵敏,在汽轮机控制回路 中功率积分项尚未改变时,汽轮机调节器就使汽轮机调节阀 关小,促使p1恢复到与功率给定值相适应的水平。与此同时, 锅炉控制回路接受两个减小PB指令的信号,一个是由于p1恢 复而使p1/pT减小的信号,另一个是负的压力偏差信号(p0pT),所以锅炉侧消除内扰的能力较强。
§7.1 CCS的基本概念(1)
CCS释义: 在单元机组的调节方式中,无论扰动发生在
锅炉侧还是汽轮机侧,都能保证机炉之间能很好 地相互跟随协调运行,同时兼顾负荷和汽压两者 的关系,能在确保机组安全运行的前提下最大限 度地适应负荷需要的调节方式或控制系统。
§7.1 CCS的基本概念(2)
单元机组负荷控制的特点:
协调锅炉、汽轮发电机的运行,在负荷变化较大时,能维持两 者之间的能量平衡,保证主蒸汽压力稳定。
协调机组内部各子控制系统(燃料、送风、炉膛压力、给水、 汽温等控制系统)的控制作用,在负荷变化过程中使机组的主 要运行参数在允许的工作范围内,以确保机组有较高的效率和 可靠的安全性。
§7.1 CCS的基本概念(6)
➢ 以锅炉跟随为基础的协调控制方式:
§7.1 CCS的基本概念(7)
➢ 以汽轮机跟随为基础的协调控制方式
§7.1 CCS的基本概念(8)
➢ 综合型协调控制方式
§7.1 CCS的基本概念(9)
CCS 的基 本组 成
➢ CCS
➢ p1/pT信号的微分项整定不受汽轮机控制回路的影响,只需按 机炉对负荷要求响应速度的差异确定参数就可以了。与负荷 指令间接平衡的协调系统相比,锅炉控制回路的前馈信号无 论是动态的还是静态的精度都比较高,整定也比较方便。
§7.3 机炉主控制器(17)
系统分析(2)
➢ 从锅炉内扰来看,当燃烧率自发增加时,pT及p1均升高,因 为p1对燃烧率变化比实发电功率PE灵敏,在汽轮机控制回路 中功率积分项尚未改变时,汽轮机调节器就使汽轮机调节阀 关小,促使p1恢复到与功率给定值相适应的水平。与此同时, 锅炉控制回路接受两个减小PB指令的信号,一个是由于p1恢 复而使p1/pT减小的信号,另一个是负的压力偏差信号(p0pT),所以锅炉侧消除内扰的能力较强。
§7.1 CCS的基本概念(1)
CCS释义: 在单元机组的调节方式中,无论扰动发生在
锅炉侧还是汽轮机侧,都能保证机炉之间能很好 地相互跟随协调运行,同时兼顾负荷和汽压两者 的关系,能在确保机组安全运行的前提下最大限 度地适应负荷需要的调节方式或控制系统。
§7.1 CCS的基本概念(2)
单元机组负荷控制的特点:
协调锅炉、汽轮发电机的运行,在负荷变化较大时,能维持两 者之间的能量平衡,保证主蒸汽压力稳定。
协调机组内部各子控制系统(燃料、送风、炉膛压力、给水、 汽温等控制系统)的控制作用,在负荷变化过程中使机组的主 要运行参数在允许的工作范围内,以确保机组有较高的效率和 可靠的安全性。
协调控制系统
15
协调控制系统
(2)系统功能完善 除了在正常工况下的连续调节功能之外,
系统还设计有一整套逻辑控制系统。包括实 际功率给定逻辑,局部故障处理逻辑,运行 方式切换逻辑,以及显示报警、监督管理等 功能。系统可根据实际需要和设备状况,选 择不同的运行方式,比如机跟炉、炉跟机、 机炉协调方式;定压运行或滑压运行方式; 固定功率输出或可调功率方式;调频或非调 频方式等。适应不同运行工况对控制功能的 要求。
WT2(s)
WNM(s) M WPM(s)
+
NE
+ 输出功率
+
机前压力
+
PT
32
协调控制系统
工作过程:汽机调节器WT1(s)控制输出功率, 锅炉调节器WT2(s)控制汽压。当功率给定值 N0变化时,通过汽机调节器控制蒸汽调节阀 开度uT,改变汽机的进汽量,使输出功率NE 符合负荷要求。同时,调节阀开度uT的改变, 使机前压力PT发生变化,通过锅炉调节器改 变燃料量。
11
协调控制系统
单元机组协调控制主控系统结构框图
12
协调控制系统
负荷管理中心结构图
13
协调控制系统
单元机组协调控制系统简化框图
14
协调控制系统
4、主要特点 (1)系统结构先进
采用了递阶控制结构,在局部控制级的基础 上引入了机炉协调级,把锅炉、汽轮发电机组作 为一个整体进行控制。控制器设计主要采用了前 馈、反馈、补偿以及变结构控制等技术,并充分 地利用了机炉动态特性方面的特点,克服系统内 部耦合和非线性特性,获得优良的控制品质。同 时,又保留了控制器结构简单,易于工程实现和 参数整定,便于操作、维护等优点。并能直接接 收电网自动调度系统指令,为实现电网级自动调 度和协调控制奠定了基础。
协调控制系统
(2)系统功能完善 除了在正常工况下的连续调节功能之外,
系统还设计有一整套逻辑控制系统。包括实 际功率给定逻辑,局部故障处理逻辑,运行 方式切换逻辑,以及显示报警、监督管理等 功能。系统可根据实际需要和设备状况,选 择不同的运行方式,比如机跟炉、炉跟机、 机炉协调方式;定压运行或滑压运行方式; 固定功率输出或可调功率方式;调频或非调 频方式等。适应不同运行工况对控制功能的 要求。
WT2(s)
WNM(s) M WPM(s)
+
NE
+ 输出功率
+
机前压力
+
PT
32
协调控制系统
工作过程:汽机调节器WT1(s)控制输出功率, 锅炉调节器WT2(s)控制汽压。当功率给定值 N0变化时,通过汽机调节器控制蒸汽调节阀 开度uT,改变汽机的进汽量,使输出功率NE 符合负荷要求。同时,调节阀开度uT的改变, 使机前压力PT发生变化,通过锅炉调节器改 变燃料量。
11
协调控制系统
单元机组协调控制主控系统结构框图
12
协调控制系统
负荷管理中心结构图
13
协调控制系统
单元机组协调控制系统简化框图
14
协调控制系统
4、主要特点 (1)系统结构先进
采用了递阶控制结构,在局部控制级的基础 上引入了机炉协调级,把锅炉、汽轮发电机组作 为一个整体进行控制。控制器设计主要采用了前 馈、反馈、补偿以及变结构控制等技术,并充分 地利用了机炉动态特性方面的特点,克服系统内 部耦合和非线性特性,获得优良的控制品质。同 时,又保留了控制器结构简单,易于工程实现和 参数整定,便于操作、维护等优点。并能直接接 收电网自动调度系统指令,为实现电网级自动调 度和协调控制奠定了基础。
第一章 机炉协调控制系统
15
North China Electric Power University
第一章 协调控制系统
函数f(x)具有如上图所示的特性,输入为压差,其 函数f(x)具有如上图所示的特性,输入为压差,其 输出作用于汽机指令回路。由图可知,当∆P在 输出作用于汽机指令回路。由图可知,当∆P在(-ε,+ε) 内,输出为零;在∆P越过设定范围后,其输出限制汽机 内,输出为零;在∆P越过设定范围后,其输出限制汽机 指令的变化。 如机组负荷指令增加时,调节器输出增大,汽机指 令TMOUT增大,开大汽机调节汽门,汽机进汽量增加, TMOUT增大,开大汽机调节汽门,汽机进汽量增加, 机组输出功率增加。在汽门开大的同时,机前压力P 机组输出功率增加。在汽门开大的同时,机前压力PT下 降,P 与其设定值P 的差值大于+ 降,PT与其设定值Ps的差值大于+ε时,函数器输出正值 反向作用到汽机指令运算回路抑制汽机调节阀开大,这 种变结构控制有利于机组的稳定运行。
5
North China Electric Power University
第一章 协调控制系统
在图DROP3 sh01中,来自中调负荷遥控装置RTU在图DROP3 sh01中,来自中调负荷遥控装置RTU-1 的电网负荷指令是本接口回路的输入信号,而接口回路 输出信号是积分器的输出信号负荷指令LDCOUT, 输出信号是积分器的输出信号负荷指令LDCOUT, LDCOUT就是电网对机组的负荷要求指令。正常状态下, LDCOUT就是电网对机组的负荷要求指令。正常状态下, ADS投入,逻辑<TY11>为ADSMODE, RTUADS投入,逻辑<TY11>为ADSMODE, RTU-1的电网 负荷指令与当前LDCOUT比较,形成 负荷指令与当前LDCOUT比较,形成 “LDC INC”和 INC”和 DEC”逻辑。 “LDC DEC”逻辑。 当 “LDC INC” 逻辑时,正值RATE 作用到积分器 逻辑时,正值RATE 的输入端,积分器输出信号LDOUT增加,其速率由积 的输入端,积分器输出信号LDOUT增加,其速率由积 分器积分常数决定。同理,当 “LDC DEC” 逻辑时,负 值A作用至积分器,LDOUT指令减。在既没有增指令又 作用至积分器,LDOUT指令减。在既没有增指令又 没有减指令时,即SELRATE逻辑不成立时,零值作用 没有减指令时,即SELRATE逻辑不成立时,零值作用 于积分器,输出LDCOUT指令保持不变。 于积分器,输出LDCOUT指令保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统的特点是用用负荷指令间接平衡机炉之间的能量关系,属于
以汽轮机跟随为基础的协调控制系统。
.
8
直接能量平衡(DEB)协调控制系统
Pb
在稳定工况下,汽轮机第一级压力P1代表了进入汽机的蒸汽量;P1与机前压力PT 的比值可以很好地代表汽机调节阀门的开度。在动态过程中,(P1/PT)×Psp不等于 实际进入汽机的能量,而是代表了汽机所需的能量。
(P1/PT)×Psp信号的另一特点是不受锅. 炉内扰的影响,PT发生变化时,汽机9首级 压力P1也会相应地变化,P1/PT近似不变。
该系统直接采用经过动态校正的(P1/PT)×PSP作为 锅炉负荷指令信号。燃料控制回路的反馈信号采 用热量信号(P1+CbdPb/dt )。
进入锅炉燃料控制器入口的能量偏差信号为
协调控制系统(CCS)
.
1
单元机组负荷控制对象的动态特性
.
2
锅炉燃烧率μB扰动下主蒸汽压力pT和输出电功率 NE的动态特性
.
3
汽轮机调门开度μT扰动下主蒸汽压力pT和输出电功 率NE的动态特性
.
4
负荷控基础的协调控制方式(CCS-BF)
在燃烧率扰动时,汽压变化而产生偏差,蒸汽流量也变化。汽轮机侧为了保持输出电功率而
要动作调门,其结果将进一步加剧汽压的变化,使偏差增大,造成较大的汽压波动。
.
6
以汽轮机跟随为基础的协调控制方式(CCS-TF)
当负荷指令N0改变时,锅炉和汽轮机主控制器同时动作。最终,由汽轮机侧 保持汽压pT为给定值p0;由锅炉侧保证输出电功率NE与负荷指令N0一致。
.
7
间接能量平衡(IEB)协调控制系统
.
16
谢谢观看!
CCS控制中的几个问题
1. 风煤交叉控制。 2. 自动增益控制 3. AGC的动态锅炉前馈。
.
15
一个实际的CCS系统静态和动态参数调试的 例子:
1. CCS系统静态参数设置的重点在于信号量纲的转 换和匹配。
2. CCS系统动态参数调试细节: 3. (1). 蓄热系数的测试。 4. (2). PID参数的调试。 5. (3). CCS系统交叉控制参数的调试。
.
12
滑压曲线
N0—HT静态关系
.
13
混合阀滑压运行时增加的控制部分
在机组启动初期,调节门1、2、3、4号全开,但随着负荷↑,4号调节门↓至全关位 置;在滑压阶段的稳态时,3号(全开)+4号(全关)=50%。在DEH动态调节时,如 需增加负荷,则在1、2、3号调节门开到最大后,再开4号调节门。如需降负荷,则4 号调节门全关后,再关1、2、3号调节门,因此系统中增加了1个阀门定位调节器PID5, 使3、4号调节门开度的代数和为50%,确保机. 组滑压运行在最经济的方式下。 14
e
( P1 PT
) PSP
( P1 C b
dPb ) dt
P1
( PSP PT
PT )
Cb
dP b dt
P1 PT
PT
Cb
dP b dt
.
10
负荷管理控制中心
T1
T2
T8
T9
<
最大负荷限制设定器
N0
图2—1 负荷要求指令处理模块结构图
.
11
滑压运行时锅炉跟随方式分析
当负荷指令和实际负荷之间偏差较小时,系统中非线性元件输出为零,µT 就等于f3(x)的输出,即保持一定的汽机调门开度,但当机组功率跟不上负 荷指令的变化时,其差值经非线性元件暂时改变µT'。由于这一改变量不能 太大,故系统中采用了小值选择来保证该改变量不会大于15%。