利用导数研究函数的单调性之二阶求导型
第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。
2020届高三数学之函数与导数(文理通用)二次求导函数处理(二阶导数)(解析版)

专题03 二次求导函数处理(二阶导数)一、考情分析1、在历年全国高考数学试题中,函数与导数部分是高考重点考查的内容,并且在六道解答题中必有一题是导数题。
利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大.2、而在有些函数问题中,如含有指数式、对数式的函数问题,求导之后往往不易或不能直接判断出原函数的单调性,从而不能进一步判断函数的单调性及极值、最值情况,此时解题受阻。
需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. 若遇这类问题,必须“再构造,再求导”。
本文试以全国高考试题为例,说明函数的二阶导数在解高考函数题中的应用。
3、解决这类题的常规解题步骤为: ①求函数的定义域;②求函数的导数)('x f ,无法判断导函数正负; ③构造求)(')(x f x g =,求'(x)g ; ④列出)(),(',x g x g x 的变化关系表; ⑤根据列表解答问题。
二、经验分享方法 二次求导使用情景对函数()f x 一次求导得到()f x '之后,解不等式()0()0f x f x ''><和难度较大甚至根本解不出.解题步骤设()()g x f x '=,再求()g x ',求出()0()0g x g x ''><和的解,即得到函数()g x 的单调性,得到函数()g x 的最值,即可得到()f x '的正负情况,即可得到函数()f x 的单调性.三、题型分析(一) 利用二次求导求函数的极值或参数的范围例1.【2020届西南名校联盟高考适应月考卷一,12】(最小整数问题-导数的单调性和恒成立的转化) 已知关于x 的不等式()22ln 212x m x mx +-+≤在()0,∞上恒成立,则整数m 的最小值为( ) A.1 B.2 C.3 D.4 【答案】B .【解析】【第一种解法(排除法)(秒杀)】:令1=x 时,m m ≤+⨯-+21)1(21ln 2化简:34≥m ; 令2=x 时,m m 422)1(22ln 2≤+⨯-+,化简42ln 22+≥m 你还可以在算出3,4,选择题排除法。
使用导数来解决含参函数单调性的讨论方法的总结

155使用导数来解决含参函数单调性的讨论方法的总结蓝荣升作者发现,使用导数来解决函数的单调性,它在高中数学试卷中占有相当大的份额。
函数的单调性是求解函数极值,最值(范围)以及零点个数问题的基础,它经常出现在压轴题的第一问,并且存在一定的困难。
求函数单调性的最困难的部分是含参函数的分类讨论,而分类讨论的思想又是高中阶段着重培养的思想方法。
因此,利用分类讨论来解决带参数的函数单调性问题已成为近年来高考的重点和热点。
这类问题的难点在于学生不懂得如何讨论,或者讨论不全面,这里总结了带参函数单调性的分类讨论的一般步骤,在学会之后,没有不知道如何讨论或讨论不全面的情况。
以下是对单调性一般步骤的讨论(解决了讨论的大部分单调性问题):第一步:求定义域,单调区间是定义域的子集,因此求单调区间必须先求定义域,定义域有三种常见的情况需要讨论。
(1)偶次根式,根号下整体不小于0。
(2)分式,分母不等于0。
(3)对数,真数大于0。
第二步:求函数导数,令0)('=x f ,求出它的根21,x x ,根的个数一般有三种情况:无根、一个根,两个根。
导函数是分式一般先通分,并且还要考虑能不能因式分解。
第三步:如果方程有两根,则要考虑4种情况;如果只有一根则只需考虑第一种情况;如果根不能被求解,并且导数不能被判断出正的或负的,那么我们就需要求函数的二阶导数,利用二阶导数的正负来确定一阶导数的单调性,然后利用最值得到一阶导数的正负,进而判断出原函数的单调性。
(1)是否存在根(判断根是否在定义域中),得到参数的讨论点。
(2)21x x =,得到参数的讨论点。
(3)21x x >,得到参数的讨论点。
(4)21x x <,得到参数的讨论点。
第四步:判断21,x x 分定义域的每个区间的导数的正负情况,如果导数大于0,则函数单调递增,如果导数小于0,则函数单调递减。
以下三种常见方法可用来判断导数的正负:(1)数轴穿根法:(2)函数图像法:(3)区域判断法:只需要判断每个因式的正负。
利用导数研究函数的单调性2

o
x
-8
-6
-8
-6
y 3
2
1
-4
-2
o
2
-1
x
2
6 -2
5
-3
x
y 4
2
-4
3
-5 2
1
-4
-2
o
2
-1
-2
-3
-4
y sin x
4
6
8
10
x
x 3
2
y cos x
4
6
8
x10
函数及图象 单调性
y
f ( x) x2 在(,0)上递减
切线斜率
k 的正负
k<0
导数的正负
-
o x 在(0, )上递增 k>0
《导数在研究函数中的应用》
利用导数研究函数的单调性
回顾函数的单调性的定义:
函数 y = f (x) 在给定区间 I 上,当 x 1、x 2 ∈I 且 x 1< x 2 时 1)都有 f ( x 1 ) < f ( x 2 ), 则 f ( x ) 在I 上是增函数;
2)都有 f ( x 1 ) > f ( x 2 ), 则 f ( x ) 在I 上是减函数;
的单调减区间
基础练习:求下列函数的单调区间 (1) y ln x 2x
(2) y ex x
例4:证明:函数f(x)=x-sinx在R上为 增函数.
课堂小结
知识技能
思想方法
成功体验
1.在利用导数讨论函数的单调性时,首先要 确定函数的定义域,解决问题的过程中,只能在函 数的定义域内, 通过讨论导数的符号来判断函 数的单调区间,或证明函数的单调性.
2阶导数求导公式

2阶导数求导公式概述:求导是微积分中的重要概念,它描述了函数在某一点的变化率。
而2阶导数求导公式则是对函数的二次导数进行求导的公式。
本文将介绍2阶导数的概念及其求导公式,并通过例题展示其应用。
一、2阶导数的概念在微积分中,导数描述了函数在某一点的斜率或变化率。
而2阶导数则是对一阶导数的导数,它描述了函数变化率的变化率。
换句话说,2阶导数可以帮助我们分析函数的曲率。
二、2阶导数求导公式对于函数f(x),其一阶导数为f'(x),二阶导数为f''(x)。
下面是常见函数的2阶导数求导公式:1. 常数函数:对于常数c,它的任意阶导数都为0,即f''(x) = 0。
2. 幂函数:对于幂函数f(x) = x^n,其中n为正整数,它的二阶导数为f''(x) = n(n-1)x^(n-2)。
3. 指数函数:对于指数函数f(x) = e^x,它的二阶导数仍为f''(x) = e^x。
4. 对数函数:对于对数函数f(x) = ln(x),它的二阶导数为f''(x) = -1/x^2。
5. 三角函数:对于三角函数f(x) = sin(x)和f(x) = cos(x),它们的二阶导数分别为f''(x) = -sin(x)和f''(x) = -cos(x)。
三、示例问题为了更好地理解2阶导数求导公式的应用,我们来看几个示例问题:1. 已知函数f(x) = x^3,求其二阶导数f''(x)。
根据幂函数的2阶导数求导公式,我们有f''(x) = 3(3-1)x^(3-2) = 6x。
2. 已知函数f(x) = e^x,求其二阶导数f''(x)。
根据指数函数的2阶导数求导公式,我们有f''(x) = e^x。
3. 已知函数f(x) = ln(x),求其二阶导数f''(x)。
二阶导数的求法例子

二阶导数的求法例子
假设有一个函数 f(x),我们需要计算它的二阶导数。
以下是求解二阶导数的步骤示例:
步骤1:首先计算一阶导数
求解 f(x) 的一阶导数,也称为导函数,可以表示为 f'(x)。
一阶导数的求法可以使
用常见的求导法则,如幂函数的指数减一、常数的导数为零、和差法则、乘积法则和商规
则等等。
具体的求导方法根据函数类型的不同而有所差别。
步骤2:计算一阶导数的导函数
将一阶导数 f'(x) 再次求导,得到 f''(x),即 f(x) 的二阶导数。
这个过程与求一
阶导数的方法类似,可以使用相同的导数法则进行计算。
步骤3:简化和验证结果
在得到二阶导数 f''(x) 后,可以对结果进行简化和验证。
可以将结果与已知的函数
性质进行比对,以确定求导的过程是否正确。
也可以利用数值计算或绘制函数图像的方法,验证二阶导数是否满足预期的性质。
总结:
二阶导数是一阶导数的导函数,可以通过连续两次求导来计算。
求导的方法根据所给
函数的类型和特点不同而有所变化,因此需要根据具体的函数形式来进行求导。
通过验证
结果和比对已知的函数性质,可以确认求导过程的正确性。
注意:所给的是一个示例,具体的求导方法应根据实际的函数形式而定,且计算过程
中需遵循数学的求导规则与法则。
巧用二次求导解决函数单调性和极值问题

所以,函数f (x)
的单调递(增1,0区)间是
(0,,)递减区间是
f x ex 1 x ax2
(Ⅰ)若a 0求 f x
的单调区间;
(Ⅱ)若x当 0 f x时 ,0。求a 的取值范围。
•
(2)、解:当 上
a<
0时,在区间 成立。故
a<
上0满0显, 足然题意。
,综ax上2 (1)0可得在区间
• 定理3设函数 在点 处具有二阶导数且
,
,那么
• (1) 当
时,函数 在 处取得极大值;
• (2) 当 f (x) 时,函x数0 在 处取得极小值.f (x0) 0 f (x0 ) 0
f (x0) 0
x0
f (x0) 0
x0
• 例题1、已知函数
f (x) ln 2 (1 ,x) 求x函2 数 1 x
• 凹凸性是函数图像的主要形状之一。结合 地判断一个函数与其导函数图像的关系。
的关系可以方便
f (x), f (x), f (x)
• 二.二阶导数与极值
• 在高中,判断函数是否在 取得极值,经常是利用函数导数在 两侧的 符号来判断。实际上,还可以利用二阶导数的符号来判断 是否为函数的
极值点。有如下的判定定理:
0 x x • 我时所出们,以当可有0<以当x尝0<;试1时x当再对1<时f ,xf时,x,则0 l求n x导> 1x,0在,,可区我即得间们通过f二上次在fx为求增x区导函,间分1x数显析,然x1的2即当f 单上x调<为 ln性减x ,函1x得数,,
此时,0, 则有
成立。
1 f x f 1 1
• 解: 的定义域是
.
f x
(1,)
的单f调( x区) 间。
利用导数讨论函数的单调性

利用导数讨论函数的单调性广西南宁市第二十六中学(530201)许莉[摘要]导数是研究函数性质的一个重要工具,利用求导研究含参函数的单调性是高考的热点,也是学生感到棘手的一个问题.文章结合实例,分类讨论研究导数与函数的单调性之间的关系.[关键词]导数;函数;单调性[中图分类号]G633.6[文献标识码]A[文章编号]1674-6058(2021)14-0030-02一、利用导数求函数的单调区间利用导数研究函数单调性的依据:若函数y=f(x)在某个区间内可导:若f′(x)>0,则f(x)在这个区间内单调递增;若f′(x)<0,则f(x)在这个区间内单调递减;若f′(x)=0,则f(x)在这个区间内是常数函数[1].[例1](2013年高考天津卷节选)已知函数f(x)=x2ln x.求函数f(x)的单调区间.分析:在对f(x)进行求导之前,应先考虑函数的定义域(因为单调区间必须是在定义域的限定范围内,而这个也是学生容易忽略的问题),再进行求导判断符号.解:函数f(x)的定义域为(0,+∞),f'(x)=2x ln x+x=x()2ln x+1,令f'(x)>0,得x>1e;令f'(x)<0,得0<x<1e,所以函数f(x)的单调递减区间是()0,1e,单调递增区间是()1e,+∞.小结:利用导数判断函数单调性的一般步骤:第一步,求函数的定义域;第二步,求导数f′(x),其中求导后若有分母就考虑通分,若能因式分解就要因式分解,不能因式分解再考虑求根公式或者其他化简;第三步,在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;第四步,写出函数f(x)的单调区间.二、利用导数讨论含参数函数的单调性[例2](2015年高考新课标卷2节选)已知函数f(x)=ln x+a(1-x),讨论函数f(x)的单调性.分析:在对f(x)进行求导后,发现求导后的函数不能直接判断符号,而是当a不为0时分子为一个含参的一次函数,这类问题就转化为求解含参的一次函数问题.解:f(x)的定义域为(0,+∞),f'(x)=1x-a=1-axx,若a≤0,则f′(x)>0,所以f(x)在(0,+∞)单调递增.若a>0,则当x∈()0,1a时,f′(x)>0;当x∈()1a,+∞时,f′(x)<0.所以f(x)在()0,1a单调递增,在()1a,+∞单调递减.小结:求导后导函数为含参的一次函数,求解不等式ax+b>0(<0)的步骤:(1)将不等式化为ax>-b;(2)a=0时,不等式不是一元一次不等式,单独讨论;(3)若a>0,则x>-ba;若a<0,则x<-ba,还要注意单调区间必须包含在定义域内.[例3](2016年高考四川卷节选)已知函数f(x)=ax2-a-ln x,其中a∈R,讨论f(x)的单调性.分析:在对f(x)进行求导后,发现求导后的函数不能直接判断符号,而当a不为0时分子为一个含参的二次函数,这类问题就转化为求解含参的二次函数问题.对于含参的二次函数,首先考虑的是二次函数图像的开口方向,其次是是否有根,是否能直接求零点,而这也正是分类讨论的标准.对于学生来说,不重不漏地进行分类是答题的关键点.解:定义域{x|x>}0,f′()x=2ax-1x=2ax2-1x,x>0,当a≤0时,2ax2-1≤0,f′()x≤0,f()x在(0,+∞)上单调递减.当a>0时,令f'(x)=0,得x=当x∈(时,f'(x)<0;当x∈)∞时,f′(x)>0.故f(x)在(上单调递减,在)+∞上单调递增.小结:求导后导函数为含参的二次函数,求解不等式ax2+bx+c>0(<0)的步骤:(1)讨论二次项系数;(2)判断是否有零点;(3)根据对应一元二次方程数学·解题研究根的情况,得到一元二次不等式的解集,从而得到函数的单调性.[例4](2019年高考全国卷Ⅲ理20节选)已知函数f (x )=2x 3-ax 2+b .讨论f (x )的单调性.分析:在对f (x )进行求导后,发现求导后可以因式分解,从而得到二次含参函数的零点,这时二次函数的开口方向已经确定,只需要对得到的两个两点进行分类讨论即可.解:(1)f '(x )=6x 2-2ax =2x (3x -a ),令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈()-∞,0∪()a3,+∞时,f '(x )>0;当x ∈()0,a3时,f '(x )<0.故f (x )在()-∞,0和()a3,+∞上单调递增,在()0,a3上单调递减;若a =0,f (x )在(-∞,+∞)上单调递增;若a <0,则当x ∈()-∞,a3∪()0,+∞时,f ′(x )>0;当x ∈()a3,0时,f ′(x )<0;故f (x )在()-∞,a3∪()0,+∞上单调递增,在()a3,0上单调递减.综上所述,若a =0,f (x )在()-∞,+∞上单调递增;若a <0,f (x )在()-∞,a3和()0,+∞上单调递增,在()a3,0上单调递减.若a >0时,f (x )在()-∞,0和()a3,+∞上单调递增,在()0,a3上单调递减.小结:求导后导函数为含参的二次函数,但是可以直接求出导函数的零点,只需要判断两根的大小,再根据“大于取两边,小于取中间”,得到f ′(x )>0,则f (x )在这个区间内单调递增;若f ′(x )<0,则f (x )在这个区间内单调递减即可.[例5](2018年高考全国卷Ⅰ节选)已知函数f (x )=1x -x +a ln x .讨论f (x )的单调性.分析:在对f (x )进行求导后,发现求导后的二次函数的开口方向已经确定,但是是否有零点还不能判断,因此分类的标准应该是对判别式进行讨论,进而再对可能存在的零点进行讨论,做到不重不漏.解:f (x )的定义域为()0,+∞,f '(x )=-1x2-1+a x =-x 2-ax +1x 2.(1)若a ≤2,则f '(x )≤0,所以f (x )在()0,+∞单调递减.(2)若a >2,令f '(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈()0,a -a 2-42∪()a +a 2-42,+∞时,f '(x )<0;当x ∈()0,a -a 2-42,a +a 2-42时,f ′(x )<0.所以f (x )在()0,a -a 2-42,()a +a 2-42,+∞单调递减,在()0,a -a 2-42,a +a 2-42单调递增.小结:求导后导函数为含参的二次函数,但是不能判断导函数是否有零点,则需要根据判别式的正负从而得到“存在零点”和“不存在零点”的分类标准,当判别式大于零时,还要判断是否可以比较两零点的大小,以及零点与定义域的关系,做到分类有序、不重不漏[2].通过以上例题发现,利用导数研究函数的单调性是一个有效的工具.利用导数求含参函数单调性的分类标准为:(1)求导后若导函数为含参数的一次函数,可以根据含参数的一次函数进行分类讨论.(2)求导后若导函数为含参数的二次函数,若求导后不能判断开口方向的,分类的标准是先讨论二次函数的开口方向,再讨论是否存在零点;若求导后导函数可以直接因式分解得到零点,则分类标准是直接对零点进行分类讨论;若求导后导函数确定了开口方向,但是不能判断是否有零点,则分类标准是直接对判别式进行分类讨论[3].而在分类时要做到不重不漏.[参考文献][1]祝敏芝.利用导数研究函数的单调性问题[J ].中学数学教学参考,2020(Z1):130-133.[2]王历权,范美卿,金雷.利用导数研究函数的单调性问题[J ].中学数学教学参考,2019(7):36-39.[3]陈达辉.利用导数研究函数单调性的几种类型[J ].数学学习与研究,2019(8):97.(责任编辑陈昕)数学·解题研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数研究函数的单调性之二阶求导型一、解答题(题型注释)1.已知函数ax x xe x f x--=ln )(2.(1)当0=a 时,求函数)(x f 在]1,21[上的最小值; (2)若0>∀x ,不等式1)(≥x f 恒成立,求a 的取值范围;(3)若0>∀x ,不等式ex xe x e e xx f 11111)1(2+-+≥-恒成立,求a 的取值范围.1.(1)ln 22e+;(2)2a ≤;(3)11(1)ee a e e≤---.【解析】试题分析:(1)由0=a 时,得出x xe x f xln )(2-=,则21()(21)x f x x e x'=+-,再求导()f x '',可得函数)(/x f 在),0(+∞上是增函数,从而得到函数()f x 的单调性,即可求解函数)(x f 在]1,21[上的最小值; (2)由(1)知函数)(/x f 在),0(+∞上是增函数,且00>∃x ,使得0()0f x '=,得01)12(0200=--+a x ex x ,即022000(2)1x a x x x e =+-,设022000()1ln 2x f x x x e =--,利用函数0()f x 的单调性,即可求解求a 的取值范围;(3)根据题意,转化为11ln xexe a x x x e+-≤--对任意0>x 成立,令exe e xx x x x g 11ln )(+---=,所以()g x ',可得出()g x 的单调性,求解出()g x 的最小值,即可a 的取值范围.试题解析:(1)0=a 时,x xe x f xln )(2-=,xe x xf x 1)12()(2/-+=∴,01)44()(22//>++=⇒xe x xf x ,所以函数)(/x f 在),0(+∞上是增函数,又函数)(/x f 的值域为R ,故00>∃x ,使得01)12()(0200/=-+=x ex x f x , 又022)21(/>-=e f ,210<∴x ,所以当]1,21[∈x 时,0)(/>x f , 即函数)(x f 在区间]1,21[上递增,所以2ln 2)21()(min +==ef x f(2)a xe x xf x --+=1)12()(2/,由(1)知函数)(/x f 在),0(+∞上是增函数,且00>∃x ,使得0)(0/=x f进而函数)(x f 在区间),0(0x 上递减,在),(0+∞x 上递增,00200min ln )()(0ax x e x x f x f x --==,由0)(0/=x f 得:01)12(0200=--+a x e x x, 1)2(020200-+=⇒x e x x ax ,0220002ln 1)(x e x x x f --=∴,因为0>∀x ,不等式1)(≥x f 恒成立,02ln 12ln 10022002200≤+⇒≥--∴x x e x x e x x2021)12(0200=+≤-+=∴x e x a x (另解:因为0>∀x ,不等式1)(≥x f 恒成立,即21)2(ln 21)2(ln 1ln 2ln 2ln 2+-+-=+-+-=--≤+xx x e x x x x e e x x xe a x x x x x 由21ln 12ln 122ln ≥--⇒++≥⇒+≥+xx xe x x ex e x xx x,当02ln =+x x 时取等号,2≤∴a )(3)由ex xe x e e x xf 11111)1(2+-+≥-,ex x x e x e e x x a x e x 111111ln 122+-+≥---⇒,e x e e x a x x x 11ln +-≥--⇒,exe e x x x x a 11ln +---≤⇒对任意0>x 成立,令函数exe e xx x x x g 11ln )(+---=,所以e x e e e x x x g )1(1ln )(/--+=, 当1>x 时,0)(/>x g ,当10<<x 时,0)(/<x g ,所以当1=x 时,函数)(x g 取得最小值ee e e e e e g 11)1(11111)1(---=+---=, eee e a 1)1(1---≤∴考点:利用导数研究函数的单调性与极值(最值).【方法点晴】本题主要考查了导数在函数中的综合应用,其中解答中涉及到利用导数研究函数的单调性及其应用、利用导数研究函数的极值与最值等知识点的综合考查,同时解答中注意对函数二次求导的应用和函数的构造思想,通过构造新函数,利用函数的性质解题的思想,着重考查了转化与化归思想以及推理与运算能力,试题有一定的难度,属于难题.2.已知函数()()12x xe f x ax a R e =--∈. (1)当32a =时,求函数()f x 的单调区间; (2)若函数()f x 在[]1,1-上为单调函数,求实数a 的取值范围. 3.设函数ax x e x f x-++=)1ln()(.(1)当a=2时,判断函数)(x f 在定义域内的单调性; (2)当0≥x 时,x x f cos )(≥恒成立,求实数a 的取值范围. 4.已知函数2()ln ()2a f x x x x x a a R =--+∈在其定义域内有两个不同的极值点. (1)求a 的取值范围;(2)设两个极值点分别为12,x x ,证明:212x x e ∙>.5.已知函数3()3||2f x x x a =+-+(a R ∈). (1)当0a =时,讨论()f x 的单调性; (2)求()f x 在区间[]0,2上的最小值.6.设2()ln (21)f x x x ax a x =-+-,a R ∈.(1)令()'()g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值.求实数a 的取值范围. 7(1)若函数()f x 在0x =处有极值,求函数()f x 的最大值;(2)①是否存在实数b ,使得关于x 的不等式()0g x <在()0+∞,上恒成立?若存在,求出b 的取值范围;若不存在,说明理由; ②证明:不等式()2111ln 1,212nk k n n k =-<-≤=+∑参考答案1.(1)ln 22e+;(2)2a ≤;(3)11(1)ee a e e≤---.【解析】试题分析:(1)由0=a 时,得出x xe x f xln )(2-=,则21()(21)x f x x e x'=+-,再求导()f x '',可得函数)(/x f 在),0(+∞上是增函数,从而得到函数()f x 的单调性,即可求解函数)(x f 在]1,21[上的最小值; (2)由(1)知函数)(/x f 在),0(+∞上是增函数,且00>∃x ,使得0()0f x '=,得01)12(0200=--+a x e x x ,即022000(2)1x a x x x e =+-,设022000()1l n 2x f x x x e =--,利用函数0()f x 的单调性,即可求解求a 的取值范围;(3)根据题意,转化为11ln x e xe a x x x e +-≤--对任意0>x 成立,令exe e x x x x x g 11ln )(+---=,所以()g x ',可得出()g x 的单调性,求解出()g x 的最小值,即可a 的取值范围.试题解析:(1)0=a 时,x xe x f xln )(2-=,xe x xf x 1)12()(2/-+=∴, 01)44()(22//>++=⇒x e x x f x ,所以函数)(/x f 在),0(+∞上是增函数, 又函数)(/x f 的值域为R ,故00>∃x ,使得01)12()(0200/=-+=x ex x f x , 又022)21(/>-=e f ,210<∴x ,所以当]1,21[∈x 时,0)(/>x f , 即函数)(x f 在区间]1,21[上递增,所以2ln 2)21()(min +==ef x f(2)a xe x xf x --+=1)12()(2/,由(1)知函数)(/x f 在),0(+∞上是增函数,且00>∃x ,使得0)(0/=x f进而函数)(x f 在区间),0(0x 上递减,在),(0+∞x 上递增,00200min ln )()(0ax x e x x f x f x --==,由0)(0/=x f 得:01)12(0200=--+a x e x x, 1)2(020200-+=⇒x e x x ax ,0220002ln 1)(x e x x x f --=∴,因为0>∀x ,不等式1)(≥x f 恒成立,02ln 12ln 10022002200≤+⇒≥--∴x x e x x e x x2021)12(0200=+≤-+=∴x e x a x (另解:因为0>∀x ,不等式1)(≥x f 恒成立,即21)2(ln 21)2(ln 1ln 2ln 2ln 2+-+-=+-+-=--≤+xx x e x x x x e e x x xe a x x x x x 由21ln 12ln 122ln ≥--⇒++≥⇒+≥+xx xe x x ex e x xx x,当02ln =+x x 时取等号,2≤∴a )(3)由e x xe x e e x xf 11111)1(2+-+≥-,ex x x e x e e xx a x e x 111111ln 122+-+≥---⇒,e x e e x a x x x 11ln +-≥--⇒,exe e x x x x a 11ln +---≤⇒对任意0>x 成立, 令函数exe e xx x x x g 11ln )(+---=,所以e x e e e x x x g )1(1ln )(/--+=, 当1>x 时,0)(/>x g ,当10<<x 时,0)(/<x g ,所以当1=x 时,函数)(x g 取得最小值ee e e e e e g 11)1(11111)1(---=+---=, eee e a 1)1(1---≤∴考点:利用导数研究函数的单调性与极值(最值). 【方法点晴】本题主要考查了导数在函数中的综合应用,其中解答中涉及到利用导数研究函数的单调性及其应用、利用导数研究函数的极值与最值等知识点的综合考查,同时解答中注意对函数二次求导的应用和函数的构造思想,通过构造新函数,利用函数的性质解题的思想,着重考查了转化与化归思想以及推理与运算能力,试题有一定的难度,属于难题. 2.(1) 单调递增区间为(),0-∞和()ln 2,+∞,单调递减为()0,ln 2; (2)(1,2e e ⎡⎫-∞++∞⎪⎢⎣⎭. 【解析】试题分析:(1)求函数的导数,并且通分,分解因式的化简,然后解()0>'x f 和()0<'x f 的解集;(2)若函数在[]1,1-上为单调函数,所以分单调递增和单调递减两种情况讨论,若单调递增,转化为12x x e a e ≤+在[]1,1-上恒成立,那么a 小于等于函数的最小值,若函数单调递减,转化为12x x e a e ≥+在[]1,1-上恒成立,a 大于等于函数的最大值. 试题解析:()f x 的定义域为x R ∈,()12x x e f x a e'=+-, (1)32a =,则()()()2113222x xx x x e e e f x e e--'=+-=, 令()0f x '>,解得:ln 20x x ><或, 令()0f x '<,解得:0ln 2x <<,∴()f x 的单调递增区间为(),0-∞和()ln 2,+∞,单调递减为()0,ln 2.(2)若()f x 在[]1,1-上单调递增,则()102x x e f x a e'=+-≥在[]1,1-上恒成立, ∴12x xe a e ≤+在[]1,1-上恒成立, 令xt e =同,则1,t e e ⎡⎤∈⎢⎥⎣⎦,112222xx et e t t +=+≥=, 当且仅当12t t =,1,t e e ⎡⎤=⎢⎥⎣⎦时取“=”,又1122e e e e +>+∴[]1,1x ∈-1122x x e e e e≤+≤+ ① ,∴a ≤若()f x 在[]1,1-上单调递减,则()102x x e f x a e'=+-≤在[]1,1-上恒成立, ∴12x xe a e ≥+在[]1,1-上恒成立,由①式知,12a e e≥+,综上,a 的取值范围是(1,2e e ⎡⎫-∞++∞⎪⎢⎣⎭. 考点:导数与函数的单调性3.(1) 在),1(+∞-上是增函数;(2) 2≤a . 【解析】试题分析:(1)首先求函数的导数,令()()x f x g '=,并且注意函数的定义域,再求函数导数的导数()()211+-='x e x g x,分0>x 和01<<-x 讨论()x g '的正负,同时得到函数()x g 的单调性,求得()x g 的最小值为0,即()0≥'x f 恒成立,得到函数的单调性;(2)由(1)可得当2≤a 时,不等式恒成立,当2>a 时,记x x f x cos )()(-=ϕ,根据导数求函数的最值,证明不等式不恒成立.试题解析:(1))(x f 的定义域为),1(+∞-,211)(-++='x e x f x, 记211)(-++=x e x g x,则2)1(1)(+-='x e x g x ,当x>0时,1)1(1,12<+>x e x,此时0)(>'x g , 当-1<x<0时,1)1(1,12>+<x e x,此时0)(<'x g , 所以)(x f '在(-1,0)上递减,在),0(+∞上递增,∴0)0()(='≥'f x f , ∴f(x )在),1(+∞-上是增函数.(2)a x e x f x-++='11)(,由(1)知)(x f '在),0(+∞上递增,所以当2≤a 时,02)0()(≥-='≥'a f x f ,所以f (x )在),0[+∞上递增,故x f x f cos 1)0()(≥=≥恒成立. 当a>2时,记x x f x cos )()(-=ϕ,则x a x e x xsin 11)(+-++='ϕ, 当x>1时,0141)(>-->'e x h , 显然当10<≤x 时,0)(>'x h ,从而)(x ϕ'在),0[+∞上单调递增.又0)(,,02)0(>'+∞→<-='x x a ϕϕ,则存在),0(0+∞∈x ,使得0)(0='x ϕ. 所以)(x ϕ在),0(0x 上递减,所以当),0(0x x ∈时,0)0()(=<ϕϕx ,即f (x )<cosx ,不符合题意. 综上,实数a 的取值范围是2≤a .考点:1.导数与单调性;2.导数的综合应用.【方法点睛】本题考查了导数与单调性的关系,以及证明不等式的问题,综合性较强,重点说说导数与函数单调性的证明,一种情况是求函数的导数后,能够解得()0>'x f 或()0<'x f 的解集,从而得到函数的单调递增和递减区间,令一种情况是求导后,不能直接求得()0>'x f 或()0<'x f 的解集,需要求函数的二阶导数,根据二阶导数大于0或小于0的解集,求得一阶导数的单调增减区间,同时求得一阶导数的最大值或是最小值,从而得到一阶导数的正负,求得函数的增或减区间. 4.(1)10a e<<;(2)证明见解析. 【解析】试题分析:(1)函数2()ln ()2a f x x x x x a a R =--+∈在其定义域内有两个不同的极值点等价于方程'()0f x =在(0,)+∞有两个不同根,即函数ln ()x g x x=与函数y a =的图象在(0,)+∞上有两个不同交点,讨论函数ln ()xg x x=单调性和极值根据图象即可求a 的取值范围;(2)作差得,1122ln ()x a x x x =-,即1212lnx x a x x =-.原不等式212x x e >等价于12ln ln 2x x +>12()2a x x ⇔+>1122122()lnx x x x x x -⇔>+,12x t x =,则1t >,只需证明不等式2(1)ln 1t t t ->+成立即可. 试题解析:(1)依题意,函数()f x 的定义域为(0,)+∞,所以方程'()0f x =在(0,)+∞有两个不同根.即,方程ln 0x ax -=在(0,)+∞有两个不同根. 转化为,函数ln ()xg x x=与函数y a =的图象在(0,)+∞上有两个不同交点. 又'21ln ()x g x x-=,即0x e <<时,'()0g x >,x e >时,'()0g x <, 所以()g x 在(0,)e 上单调增,在(,)e +∞上单调减,从而1()=()g x g e e=极大. 又()g x 有且只有一个零点是1,且在0x →时,()g x →-∞,在x →+∞时,()0g x →, 所以()g x 的草图如下,可见,要想函数ln ()xg x x=与函数y a =的图象在(0,)+∞上有两个不同交点,只需10a e<<. (2)由(1)可知12,x x 分别是方程ln 0x ax -=的两个根,即11ln x ax =,22ln x ax =,设12x x >,作差得,1122ln ()x a x x x =-,即1212lnx x a x x =-.原不等式212x x e >等价于12ln ln 2x x +>12()2a x x ⇔+>1122122()lnx x x x x x -⇔>+ 令12x t x =,则1t >,1122122()2(1)ln ln 1x x x t t x x x t -->⇔>++,设2(1)()ln 1t g t t t -=-+,1t >,2'2(1)()0(1)t g t t t -=>+,∴函数()g t 在(1,)+∞上单调递增, ∴()(1)0g t g >=, 即不等式2(1)ln 1t t t ->+成立, 故所证不等式212x x e >成立.考点:1、利用导数研究函数的单调性及极值;2、利用导数证明不等式.【方法点睛】本题主要考查利用导数研究函数的单调性及极值、利用导数证明不等式,属于难题.不等式证明问题是近年高考命题的热点,命题主要是和导数、绝对值不等式及柯西不等式相结合,导数部分一旦出该类型题往往难度较大,要准确解答首先观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简,或者进一步转化为不等式恒成立问题利用导数证明.5.(1)()f x 的增区间为(,1)-∞-,(0,)+∞,减区间为(1,0)-;(2)当0a ≤时,()f x 的最小值为32a -+;当01a ≤≤时,()f x 的最小值为32a +;当1a ≥时,()f x 的最小值为3a . 【解析】试题分析:(1)研究单调性,可求出导函数'()f x ,然后解不等式'()0f x >得单调增区间,解不等式'()0f x <得减区间,注意绝对值,要分类求解;(2)由于[0,2]x ∈,因此先分类0a ≤,2a ≥,02a <<,前两种情形,绝对值符号直接去掉,因此只要用导数'()f x 研究单调性可得最值,第三种情形同样要去绝对值符号,只是此时是分段函数,333()2,2,()3()2,0.x x a a x f x x x a x a ⎧+-+≤≤⎪=⎨--+≤≤⎪⎩,2233,2,'()33,0.x a x f x x x a ⎧+≤≤⎪=⎨-≤≤⎪⎩,可以看出这时又要分类:01a <<,12a ≤≤,得单调性再得最小值. 试题解析:(1)当0a =时,3()3||2f x x x =++. ①当0x ≥时,3()32f x x x =++,2'()330f x x =+>, ∴()f x 在(0,)+∞单调递增;②当0x <时,3()32f x x x =-+,2'()333(1)(1)f x x x x =-=-+.10x -<<时,'()0f x <,∴()f x 在(1,0)-单调递减; 1x <-时,'()0f x >,∴()f x 在(,1)-∞-单调递增.综上,()f x 的增区间为(,1)-∞-,(0,)+∞,减区间为(1,0)-.(2)①2a ≥时,3()3()2f x x a x =+-+,02x ≤≤,2'()333(1)(1)f x x x x =-=-+,min ()(1)3f x f a ==.②0a ≤时,3()3()2f x x x a =+-+,02x ≤≤,2'()330f x x =+>,()f x 在[]0,2单调递增,∴min ()(0)32f x f a ==-+.③02a <<时,而02x ≤≤,333()2,2,()3()2,0.x x a a x f x x x a x a ⎧+-+≤≤⎪=⎨--+≤≤⎪⎩∴2233,2,'()33,0.x a x f x x x a ⎧+≤≤⎪=⎨-≤≤⎪⎩(i )01a <<时,()f x 在[],2a 上单增,()f a 为最小值.2'()3(1)0f x x =-<在0x a ≤≤上恒成立,∴()f x 在[]0,a 上单调递减,∴3min ()()2f x f a a ==+.(ii )12a ≤≤时,()f x 在[],2a 上单调递增,3min ()()2f x f a a ==+.在0x a ≤≤时,2'()3(1)f x x =-, ∴min ()(1)3f x f a ==.综上可知,当0a ≤时,()f x 的最小值为32a -+;当01a ≤≤时,()f x 的最小值为32a +;当1a ≥时,()f x 的最小值为3a .考点:分段函数,用导数研究函数的单调性、最值.6.(1)当0a ≤时,函数()g x 单调递增区间为(0,)+∞,当0a >时,函数()g x 单调递增区间为1(0,)2a ,单调递减区间为1(,)2a +∞;(2)12a > 【解析】试题分析:(1)先求出()'()g x f x =的解析式,然后求函数的导数()g x ',利用函数单调性和导数之间的关系,即可求出()g x 的单调区间;(2)分别讨论a 的取值范围,根据函数极值的定义,进行验证可得结论.试题解析:(1)()ln 22g x x ax a =-+,(0,)x ∈+∞,则112'()2axg x a x x-=-=, 当0a ≤时,(0,)x ∈+∞时,'()0g x >,当0a >时,1(0,)2x a∈时,'()0g x >, 1(,)2x a∈+∞时,'()0g x <,所以当0a ≤时,函数()g x 单调递增区间为(0,)+∞; 当0a >时,函数()g x 单调递增区间为1(0,)2a ,单调递减区间为1(,)2a +∞.(5分)(2)由(1)知,'(1)0f =.①当0a ≤时,(0,1)x ∈时,'()0f x <,(1,)x ∈+∞时,'()0f x >, 所以()f x 在1x =处取得极小值,不合题意.②当102a <<时,112a >,由(1)知'()f x 在1(0,)2a内单调递增, 当(0,1)x ∈时,'()0f x <,1(1,)2x a∈时,'()0f x >,所以()f x 在1x =处取得极小值,不合题意. ③当12a =时,即112a=时,'()f x 在(0,1)内单调递增,在(1,)+∞内单调递减, 所以当(0,)x ∈+∞时,'()0f x ≤,()f x 单调递减,不合题意. ④当12a >时,即1012a <<,当1(,1)2x a∈时,'()0f x >,()f x 单调递增, 当(1,)x ∈+∞时,'()0f x <,()f x 单调递减,所以()f x 在1x =处取得极大值,合题意. 综上可知,实数a 的取值范围为12a >. 考点:利用导数研究函数的单调性;利用导数研究函数的极值.【方法点晴】本题主要考查了利用导数研究函数的单调性、利用导数研究函数的极值,体现了导数的综合应用,着重考查了函数的单调性、极值和导数的关系,要求熟练掌握利用导数研究函数的单调性、极值与最值,把问题等价转化等是解答的关键,综合性强,难度较大,平时注意解题方法的积累与总结,属于难题.7.(1)最大值为()00f =;(2)①b 的取值范围是1b ≥;②证明见解析. 【解析】试题分析:(1)由()f x 在0x =处有极值得'(0)0f =,从而求得a ,然后由'()f x 正负,研究()f x 的单调性,得极值,最值;(2)①这类问题,可假设存在,不等式()0g x <在()0+∞,上恒成立,考虑到(0)0g =,因此最好有(0,)x ∈+∞时,()(0)g x g <,则恒成立结论为真,由此研究()g x 单调性,求导1'()1g x b x =-+,注意到1011x <<+,因此分类1b ≥,0b ≤ ,01b <<分别研究'()g x 的正负,得()g x 的单调性,可得结论;②要证明此不等式,可能需要用到上面函数的结论,由上面的推理()()ln 101xx x x x<+<>+,取1x n =得不等式:111ln 11n n n ⎛⎫<+< ⎪+⎝⎭,令21ln 1nn k k x n k ==-+∑,则112x =,因此只要证得{}n x 是递减数列,不等式的右边就证得,为此作差()1222111ln 101111n n n n x x n n n n n n-⎛⎫-=-+<-=-< ⎪+-++⎝⎭, 不等式的左边,由()1211ln ln ln 1ln1ln 1nn k k n k k k -==⎛⎫=--+=+⎡⎤ ⎪⎣⎦⎝⎭∑∑,则有1122211111ln 1ln 1111nn n n k k k k k n x k k k k n --===⎡⎤⎛⎫⎛⎫=-+=-++ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎣⎦∑∑∑12111n k kk k -=⎛⎫>- ⎪+⎝⎭∑()12111n k k k -=⎛⎫ ⎪=- ⎪+⎝⎭∑()1111111n k k k n -=⎛⎫≥-=-+>- ⎪ ⎪+⎝⎭∑.这里用到了不等式的放缩法. 试题解析:(1,且函数()f x 在0x =处有极值,当()1,0x ∈-时,()()'0,f x f x >单调递增 当()0,x ∈+∞时,()()'0,f x f x <单调递减所以函数()f x 的最大值为()00f = (2(i )若1b ≥,则所以()()ln 1g x x bx =+-在[)0,+∞上为减函数 ∴()()()ln 100g x x bx g =+-<=在[)0,+∞上恒成立;(ii )若0b ≤,则[)0,x ∈+∞时,所以()()ln 1g x x bx =+-在[)0,+∞上为增函数 ∴()()()ln 100g x x bx g =+->=,不能使()0g x <在[)0,+∞上恒成立;(iii )若01b <<,则()'101g x b x =-=+时,11x b=- 当10,1x b ⎡⎫∈-⎪⎢⎣⎭时,()'0g x ≥ 所以()()ln 1g x x bx =+-在10,1b ⎡⎫-⎪⎢⎣⎭上为增函数, 此时()()()ln 100g x x bx g =+->= 所以不能使()0g x <在[)0,+∞上恒成立 综上所述,b 的取值范围是1b ≥ ②由以上得:()()ln 101xx x x x<+<>+ 取1x n =得:111ln 11n n n ⎛⎫<+< ⎪+⎝⎭,令21ln 1nn k k x n k ==-+∑ 则()112221111,ln 1021111n n n n x x x n n n n n n-⎛⎫=-=-+<-=-< ⎪+-++⎝⎭ 因此1112n n x x x -<<=又()1211ln ln ln 1ln1ln 1nn k k n k k k -==⎛⎫=--+=+⎡⎤ ⎪⎣⎦⎝⎭∑∑ 故1122211111ln 1ln 1111nn n n k k k k k n x k k k k n --===⎡⎤⎛⎫⎛⎫=-+=++ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎣⎦∑∑∑ ()()11122111111111111n n n k k k kk k k k n k k ---===⎛⎫⎛⎫⎛⎫ ⎪>-=-≥-=-+>- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑∑∑. 考点:用导数研究函数的极值、单调性、最值,不等式恒成立问题,用函数证明不等式.。