新人教版初中数学几何定理汇总(八年级及以下)
八年级数学复习必背几何定理定义公式

在八年级数学中,几何定理和定义是学习几何学的基础。
掌握这些定理和定义对解决几何问题至关重要。
下面是八年级数学复习必背的几何定理、定义和公式,供你参考。
一、几何定义1.点:表示位置,没有大小和方向。
2.直线:由无数个点连成的路径,有长度但无宽度和厚度。
任意两点确定一条直线,两条直线的交点是一个点。
3.线段:由两个点和它们之间的路径组成,有长度,有起点和终点。
4.射线:有一个起点,由这个起点出发,沿着相同的方向延伸出去。
射线上的点有无数个,其中一个是起点。
5.角:由两条射线共同点和与这两条射线相交但不在同一条线上的两个点组成。
我们用∠ABC表示角ABC,其中A是角的顶点,B、C分别是角的两边。
6.角分类:锐角(小于90°)、直角(等于90°)、钝角(大于90°)。
7.平行线:在同一个平面内,方向相同或者重合的直线。
8.垂直线:互不平行,且相交90°形成的线。
二、几何定理1.垂直线段定理:如果两条线段互相垂直,则它们的乘积等于两条线段的连线上的线段的乘积。
2.垂直线定理:如果两条线段互相垂直,则它们的斜率的乘积等于-13.同位角定理:如果两条平行线被一条截线所交,那么同位角是相等的。
4.内错角定理:如果两条平行线被一条截线所交,那么内错角互为补角。
5.三角形内角和定理:一个三角形的内角的和等于180°。
6.三角形外角定理:三角形的一个外角等于它对应的两个内角的和。
7.等腰三角形定理:等腰三角形的两底角相等,等腰三角形的两腰边相等。
8.相似三角形定理:如果两个三角形的对应角度相等,那么它们是相似的。
9.相似三角形比例定理:两个相似三角形的任意两条对应边的比值相等。
10.直角三角形勾股定理:直角三角形斜边的平方等于两个直角边平方的和。
11.正方形性质:四边相等,对角线相等且垂直,对边平行且垂直,对角线平分角。
12.等边三角形性质:三边相等,三个内角都是60°,三角形的高、中线和垂心重合。
(完整版)初中几何公式定理

初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1关于某条直线对称的两个图形是全等形13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1在角的平分线上的点到这个角的两边的距离相等23、定理2到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1直角三角形的两个锐角互余29、推论2三角形的一个外角等于和它不相邻的两个内角的和30、推论3三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1三个角都相等的三角形是等边三角形39、推论2有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2相似三角形周长的比等于相似比50、性质定理3相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1平行四边形的对角相等62、平行四边形性质定理2平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3平行四边形的对角线互相平分65、平行四边形判定定理1两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3对角线互相平分的四边形是平行四边形68、平行四边形判定定理4一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1矩形的四个角都是直角70、矩形性质定理2矩形的对角线相等71、矩形判定定理1有三个角是直角的四边形是矩形72、矩形判定定理2对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1菱形的四条边都相等74、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1四边都相等的四边形是菱形77、菱形判定定理2对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1关于中心对称的两个图形是全等的81、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形面只是一些小技巧,接下来我们读完题开始找思路。
初二几何定理归纳整理

初二几何定理归纳整理
5. 三角形内角和定理:三角形的内角和等于180度。
6. 平行线定理:如果一条直线与两条平行线相交,那么它与另一条直线的对应角相等。
7. 同位角定理:当两条直线被一条截断时,同位角相等。
8. 三角形中位线定理:三角形的三条中位线交于一点,且该点离各顶点的距离是中位线的 2/3。
初二几何定理归纳整理
9. 垂直平分线定理:垂直平分线将一条线段分成两个相等的部分,并且与线段垂直。
10. 圆的角是弧所夹的圆周角 的一半。
这些是初二阶段常见的几何定理,掌握它们可以帮助学生解决与三角形、直线、圆等几何 图形相关的问题。当然,在学习几何定理时,理解其背后的推理过程和证明方法也很重要。
初二几何定理归纳整理
初二阶段的几何定理主要包括以下内容:
1. 直角三角形定理:直角三角形中,两条直角边的平方和等于斜边的平方。
2. 等腰三角形定理:等腰三角形中,两底边相等,两底角相等。
3. 等边三角形定理:等边三角形中,三条边相等,三个角都是60度。
4. 相似三角形定理:如果两个三角形的对应角相等,则它们是相似的;如果两个三角形的 对应边成比例,则它们是相似的。
初二上下半学期必学几何定理

线段垂直平分线定理及其逆定理定理:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
垂直平分线可以看成到线段两个端点距离相等的点的集合,垂直平分线是线段的一条对称轴。
它是初中几何学科中非常重要的一部分内容。
垂直平分线将一条线段从中间分成左右相等的两条线段,并且与所分的线段垂直(成90°角)。
性质(1)垂直平分线垂直且平分其所在线段(2)垂直平分线上任意一点,到线段两端点的距离相等(3)三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.(4)垂直平分线的判定:必须同时满足(1)直线过线段中点;(2)直线⊥线段垂直平分线的逆定理逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
判定方法①利用定义:经过某一条线段的中点,并且垂直于这条线段的直线是线段的垂直平分线②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)。
与对称轴与对称轴若图形(这个图形可以是直线的、折线的、曲线的)关于某条直线对称,这条轴就称为对称轴。
以五角星为例,它有五条对称轴。
垂直平分线是存在某条线段时才会有这个概念。
它的定义是经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。
它有一定的局限性。
轴对称图形的对称轴是对称图形中任意两个对应点连线段的垂直平分线角平分线定理及其逆定理定理1:角平分线上的点到这个角两边的距离相等。
逆定理:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。
逆定理:如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。
角平分线长直角三角形斜边中线定理定理:直角三角形斜边中线定理是数学中关于直角三角形的一个定理,具体内容为:如果一个三角形是直角三角形,那么这个三角形斜边上的中线等于斜边的一半。
初中数学定理大全完整版

初中数学定理大全完整版一、形状定理1、平行线定理:平行线之间的距离总是相等的;2、垂直线定理:任意两条垂直(直角)线的交点到两条线的距离是一样的;3、平面角定理:两个线段相交时,连接交点和两条线段两端点的角之和为180°;4、直线交角定理:两条直线交于一点,则它们的夹角等于二者的夹角之和。
1、三角形垂直定理:三角形的最长边总是位于与其最短边所成的夹角的对角线上;2、三角形最佳定理:三角形的任意边之和大于另外两边的和;3、勾股定理:三角形的任意一边的平方等于其他两边的平方和;4、海伦定理(三角形面积定理):三角形的面积等于其他两条边乘以两边之间的距离除以2;5、正三角形三边定理:正三角形的三条边相等;7、三角形平行线定理:在任意三角形内,任何一条对角线上的对应边都是平行的。
三、图论定理1、桥接定理:在一个有环的图中,如果删去一条边便使得图变成连通图,则这条边称为桥;2、塔定理:有向图中,任何两个节点都有一条路径相连;3、欧拉定理:一个有向图G中,如果所有顶点的度之和等于该图边数的两倍,则称G是欧拉图,而且图G必然是可以从一个顶点出发,遍历所有边,而只经过每条边一次,而能最终回到原点的图。
四、坐标定理1、点斜式定理:求点斜式的方法是先除以斜率(斜率为小数时,先乘以分子的倒数,然后在除以分母),得出的结果等于两个点之间的横坐标差和纵坐标差的比例;2、两点式定理:由两点确定一条直线,则把这两点坐标代入直线方程可解出直线方程;3、三角形独特性定理:平面上存在唯一一个拥有三个顶点的三角形,它将这三顶点分割为三条等长线段;4、极坐标定理:极坐标下,任意一点都可以用一对数值来表示,它表示该点,绕原点运行某一方向的角距离,以及该角所指的点到原点的距离。
人教版初中数学几何定理大全

人教版初中数学几何定理大全1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理:三角形两边的和大于第三边16 推论:三角形两边的差小于第三边17 三角形内角和定理:三角形三个内角的和等于180°18 推论1 :直角三角形的两个锐角互余19 推论2:三角形的一个外角等于和它不相邻的两个内角的和20 推论3:三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) :有两边和它们的夹角对应相等的两个三角形全等23角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) :有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS):有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) :有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 :在角的平分线上的点到这个角的两边的距离相等28 定理2 :到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)31 推论1 :等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3:等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1:三个角都相等的三角形是等边三角形36 推论2:有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 :关于某条直线对称的两个图形是全等形43 定理2 :如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 :两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247勾股定理的逆定理:如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48定理:四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论:任意多边的外角和等于360°52平行四边形性质定理1:平行四边形的对角相等53平行四边形性质定理2:平行四边形的对边相等54推论:夹在两条平行线间的平行线段相等55平行四边形性质定理3:平行四边形的对角线互相平分56平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58平行四边形判定定理3:对角线互相平分的四边形是平行四边形59平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60矩形性质定理1 :矩形的四个角都是直角61矩形性质定理2 :矩形的对角线相等62矩形判定定理1 :有三个角是直角的四边形是矩形63矩形判定定理2 :对角线相等的平行四边形是矩形64菱形性质定理1 :菱形的四条边都相等65菱形性质定理2 :菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 :四边都相等的四边形是菱形68菱形判定定理2 :对角线互相垂直的平行四边形是菱形69正方形性质定理1 :正方形的四个角都是直角,四条边都相等70正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 :关于中心对称的两个图形是全等的72定理2 :关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理:等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 :经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 :经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)(b+d+…+n)=a/b86 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例87 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 :两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 :两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 :三边对应成比例,两三角形相似(SSS)95 定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。
初中数学几何定理汇总

初中数学几何定理汇总一、三角形相关定理1. 三角形内角和定理:三角形的内角和等于180°。
这就好比一个三角形的三个角是三个小伙伴,它们三个加起来就正好是180°,不多也不少。
不管这个三角形是大是小,是胖是瘦,这个内角和是不会变的。
2. 三角形的外角定理:三角形的一个外角等于不相邻的两个内角之和。
就像是三角形的一个外角这个大哥,它的力量等于两个不挨着它的内角小弟力量之和呢。
3. 等腰三角形定理:等腰三角形的两腰相等,两底角相等。
这就像双胞胎一样,两条腰长得一样长,两个底角也是一样大,很对称很和谐。
4. 等边三角形定理:等边三角形的三条边都相等,三个角都等于60°。
这个等边三角形就像是一个非常完美的小三角,每一条边都规规矩矩地一样长,每个角也都是60°,简直就是三角形里的模范生。
二、四边形相关定理1. 平行四边形定理:平行四边形的对边平行且相等,对角相等,邻角互补。
平行四边形就像是两个平行线之间的一个稳定结构,对边就像一对对好伙伴,平行而且长度一样,对角也是一样大,邻角加起来就等于180°。
2. 矩形定理:矩形的四个角都是直角。
矩形就像是一个方方正正的盒子的四个角,都是规规矩矩的直角。
而且矩形也是特殊的平行四边形,它除了四个角是直角,还满足平行四边形的那些特性。
3. 菱形定理:菱形的四条边都相等,对角线互相垂直且平分每组对角。
菱形就像是一个四边都很匀称的图形,四条边都一样长,而且它的对角线就像交叉的两条线,不但互相垂直,还能把对角分得规规矩矩的。
4. 正方形定理:正方形既是矩形又是菱形,所以它的四个角都是直角,四条边都相等,对角线互相垂直、平分且相等。
正方形就像是四边形里的超级明星,集合了矩形和菱形的优点。
三、圆相关定理1. 圆的切线定理:圆的切线垂直于经过切点的半径。
就像是圆的切线这个外来者,它一旦碰到圆,在切点那里就和半径这个圆的内部成员垂直了,很有规矩呢。
初中数学几何公式定理梳理大全老师都收藏了

初中数学几何公式定理梳理大全老师都收藏了1.圆的周长公式:C=2πr或C=πd(周长等于直径乘以π,或者直径的2倍乘以π)2.圆的面积公式:A=πr²(面积等于半径的平方乘以π)3.直角三角形勾股定理:c²=a²+b²或a²=c²-b²或b²=c²-a²(直角三角形的斜边的平方等于直角边的平方和)4.等腰三角形底角定理:等腰三角形的底角相等。
5.等腰三角形顶角定理:等腰三角形的顶角相等。
6.钝角三角形顶角定理:钝角三角形的顶角之和大于180°。
7.正多边形内角和公式:(n-2)×180°(正n边形的内角和等于(n-2)乘以180°)8.平行线与平行线的夹角定理:同位角相等、内错角相等、内外角互补。
9.平行线与横切线的夹角定理:对顶角相等或内补角相等。
10.平行线的重要性质:同位角相等、内错角相等、内外角互补。
11.圆心角定理:圆心角等于它所对的弧所对角的两倍。
12.弦切线定理:切线与弦的夹角等于切线所对的弧所对角的一半。
13.弧切线定理:切线与弧的夹角等于切线所对的弧所对角的一半。
14.中点连线定理:连接圆上两点的中点与圆心和半径垂直。
15.等角弧的性质:等角弧所对的弦相等,等角弧所对的弧相等。
16.相似三角形的必要条件:对应角相等。
17.相似三角形的充分条件:对应边成比例。
18.三角形的三边中位线定理:三边中位线交于一点,且这一点与三角形的顶点距离是各边中点与该边中点距离的二倍。
19.三角形的三角比:正弦定理、余弦定理、正切定理。
20.内接四边形的性质:对角线互相垂直且互相平分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学几何定理汇总
一部分、线与角
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
二部分、三角形的边与角的性质和全等三角形的判定
15、定理三角形两边的和大于第三边
16、推论三角形两边的差小于第三边
17、三角形内角和定理三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等三部分、角平分线定理、特殊三角形的性质、推论和判定
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等
角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
43、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角
三角形
四部分、轴对称
44、定理1 关于某条直线对称的两个图形是全等形
45、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
46、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴
上
47、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线
对称
五部分、四边形及特殊平行四边形性质和判定
48、定理四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-2)×180°
51、推论任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对
角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关
于这一点对称
74、等腰梯形性质定理等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半。