数值分析实验报告77712
数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析实验报告77712

《数值分析》实验报告学院:计算机科学与软件学院姓名:XXX班级:计算机XX班学号:XXXXXX页脚内容1页脚内容2实验一:舍入误差与数值稳定性 实验目的:1、 通过上机编程,复习巩固以前所学程序设计语言;2、 通过上机计算,了解舍入误差所引起的数值不稳定性。
3、通过上机计算,了解运算次序对计算结果的影响,从而尽量避免大数吃小数的现象。
实验内容:用两种不同的顺序计算644834.11000012≈∑=-n n,分析其误差的变化。
实验流程图:实验源程序:#include <stdio.h>#include <math.h>void main(){ int i;float s1=0,s2=0,d1,d2;页脚内容3for (i=1;i<=10000;i++)s1=s1+1.0f/(i*i);for (i=10000;i>=1;i--)s2=s2+1.0f/(i*i);d1=(float)(fabs(1.644834-s1));d2=(float)(fabs(1.644834-s2));printf("正向求和结果为%f\n 误差为%f\n\n",s1,d1);printf("反向求和结果为%f\n 误差为%f\n\n",s2,d2);if(d1<d2)printf("正向求和误差小于负向求和误差\n");else if(d1==d2)printf("正向求和误差等于负向求和误差\n"); elseprintf("正向求和误差大于负向求和误差\n");}实验结果:页脚内容4实验分析:第一次做数值实验,又一次使用C语言编程,没有了刚学习C语言的艰难,能够将实验步骤转换成流程图并编写出完整的实验代码,在经过多次调试、改正后得到正确的程序和结果。
这个实验较简单,计算误差时如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法是稳定的,否则称此算法是数值不稳定的,减少运算次数可以减小舍入误差。
数值分析实验报告

一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。
二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。
三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算拉格朗日插值多项式L(x)。
(3)利用L(x)计算待求点x0的函数值y0。
2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算牛顿插值多项式N(x)。
(3)利用N(x)计算待求点x0的函数值y0。
3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。
(2)采用高斯消元法求解线性方程组Ax=b。
4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。
(2)采用二分法求解方程f(x)=0的根。
5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)建立线性最小二乘模型y=F(x)。
(3)利用最小二乘法求解模型参数。
四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。
这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。
2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。
在实际应用中,可根据具体问题选择合适的方法。
3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。
对于初始值的选择,应尽量接近真实根。
4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。
数值分析原理实验报告

一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
数值分析实验报告

数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。
2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeiostreamusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;kn-1;k++){for(j=k,i=k;jn;j++){if(j==k)temp=fabs(a[j][k]);else if(tempfabs(a[j][k])){temp=fabs(a[j][k]);i=j;}}if(temp==0){cout"无解\n; return;}else{for(j=k;jn;j++){temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;in;i++) {l=a[i][k]/a[k][k];for(j=k;jn;j++)a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}if(a[n-1][n-1]==0){cout"无解\n;return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i=0;i--){temp=0;for(j=i+1;jn;j++)temp=temp+a[i][j]*x[j];x[i]=(b[i]-temp)/a[i][i];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}//平方根法void pfg(double **a,double *b,int n)int i,k,m;double x[8],y[8],temp;for(k=0;kn;k++){temp=0;for(m=0;mk;m++)temp=temp+pow(a[k][m],2);if(a[k][k]temp)return;a[k][k]=pow((a[k][k]-temp),1.0/2.0);for(i=k+1;in;i++){temp=0;for(m=0;mk;m++)temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k]; }temp=0;for(m=0;mk;m++)temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k=0;k--){temp=0;for(m=k+1;mn;m++)temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10]; for(i=0;in;i++){a0[i]=a[i][i];if(in-1)c[i]=a[i][i+1];if(i0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;in-1;i++){b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;in;i++)y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;in;i++){A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout"第一题(Gauss列主元消去法):"endlendl; cout"请输入阶数n:"endl;cinn;cout"\n请输入系数矩阵:\n\n";for(i=0;in;i++)for(j=0;jn;j++){篇三:数值分析实验报告(包含源程序) 课程实验报告课程实验报告。
数值分析实验报告总结

一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。
为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。
二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。
三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。
四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。
2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。
3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。
4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。
5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。
《数值分析》课程实验报告数值分析实验报告

《数值分析》课程实验报告数值分析实验报告《数值分析》课程实验报告姓名:学号:学院:机电学院日期:20__ 年 _ 月_ 日目录实验一函数插值方法 1 实验二函数逼近与曲线拟合 5 实验三数值积分与数值微分 7 实验四线方程组的直接解法 9 实验五解线性方程组的迭代法 15 实验六非线性方程求根 19 实验七矩阵特征值问题计算 21 实验八常微分方程初值问题数值解法 24 实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。
试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。
数据如下:(1) 0.4 0.55 0.65 0.80 0.95 1.05 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange多项式,和分段三次插值多项式,计算, 的值。
(提示:结果为, )(2) 1 2 3 4 5 6 7 0.368 0.135 0.050 0.018 0.007 0.002 0.001 试构造Lagrange多项式,计算的,值。
(提示:结果为, )二、要求 1、利用Lagrange插值公式编写出插值多项式程序;2、给出插值多项式或分段三次插值多项式的表达式;3、根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何;4、对此插值问题用Newton插值多项式其结果如何。
Newton 插值多项式如下:其中:三、目的和意义 1、学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;2、明确插值多项式和分段插值多项式各自的优缺点;3、熟悉插值方法的程序编制;4、如果绘出插值函数的曲线,观察其光滑性。
四、实验步骤(1) 0.4 0.55 0.65 0.80 0.951.05 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange多项式,和分段三次插值多项式,计算, 的值。
数值分析的实验报告

数值分析的实验报告实验目的本实验旨在通过数值分析方法,探讨数学问题的近似解法,并通过实际案例进行验证和分析。
具体目的包括: 1. 理解和掌握数值分析的基本原理和方法; 2. 学会使用计算机编程语言实现数值分析算法; 3. 分析数值分析算法的精确性和稳定性; 4. 根据实验结果对数值分析算法进行优化和改进。
实验步骤1. 问题描述首先,我们选择一个数学问题作为实验的对象。
在本次实验中,我们选取了求解非线性方程的问题。
具体而言,我们希望找到方程 f(x) = 0 的解。
2. 数值方法选择根据非线性方程求解的特点,我们选择了牛顿迭代法作为数值方法。
该方法通过不断迭代逼近方程的解,并具有较好的收敛性和精确性。
3. 程序设计与实现为了实现牛顿迭代法,我们使用了Python编程语言,并使用了相应的数值计算库。
具体的程序实现包括定义方程 f(x) 和其导数f’(x),以及实现牛顿迭代法的迭代过程。
4. 实验案例与结果分析我们选择了一个具体的方程,例如 x^3 - 2x - 5 = 0,并通过程序运行得到了方程的解。
通过比较实际解与数值解的差异,我们可以分析数值方法的精确性和稳定性。
5. 优化与改进基于实验结果的分析,我们可以对数值分析算法进行优化和改进。
例如,通过调整迭代的初始值、增加迭代次数或修改算法公式等方式,改进算法的收敛性和精确性。
实验结论通过本次实验,我们深入理解了数值分析的基本原理和方法,并通过具体案例验证了牛顿迭代法的有效性。
同时,我们也意识到数值分析算法的局限性,并提出了一些改进的建议。
在今后的数学问题求解中,我们可以运用数值分析的方法,通过计算机编程实现更精确的近似解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数值分析》实验报告学院:计算机科学与软件学院姓名:XXX班级:计算机XX班学号:XXXXXX实验一:舍入误差与数值稳定性实验目的:1、 通过上机编程,复习巩固以前所学程序设计语言;2、 通过上机计算,了解舍入误差所引起的数值不稳定性。
3、 通过上机计算,了解运算次序对计算结果的影响,从而尽量避免大数吃小数的现象。
实验内容:用两种不同的顺序计算644834.11000012≈∑=-n n ,分析其误差的变化。
实验流程图:实验源程序:#include <stdio.h>#include <math.h>void main(){ int i;float s1=0,s2=0,d1,d2;for (i=1;i<=10000;i++)s1=s1+1.0f/(i*i);for (i=10000;i>=1;i--)s2=s2+1.0f/(i*i);d1=(float)(fabs(1.644834-s1));d2=(float)(fabs(1.644834-s2));printf("正向求和结果为%f\n 误差为%f\n\n",s1,d1);printf("反向求和结果为%f\n 误差为%f\n\n",s2,d2);if(d1<d2)printf("正向求和误差小于负向求和误差\n");else if(d1==d2)printf("正向求和误差等于负向求和误差\n");elseprintf("正向求和误差大于负向求和误差\n");}实验结果:实验分析:第一次做数值实验,又一次使用C语言编程,没有了刚学习C语言的艰难,能够将实验步骤转换成流程图并编写出完整的实验代码,在经过多次调试、改正后得到正确的程序和结果。
这个实验较简单,计算误差时如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法是稳定的,否则称此算法是数值不稳定的,减少运算次数可以减小舍入误差。
在运算中,如果参加运算的数的数量级相差很大,而计算机位数有限,如不注意运算次序就可能出现大数“吃掉”小数的现象,进而影响计算结果的可靠性,所以计算过程中要注意运算次序,避免出现这种现象。
实验二:拉格朗日插值法和牛顿插值法实验目的:分别用拉格朗日差值和牛顿插值解决数学问题,并比较各方法的优略。
1、拉格朗日插值实验内容:xi-3.0-1.0 1.0 2.0 3.0yi1.0 1.52.0 2.0 1.0作二次插值,并求x1=-2,x2=0,x3=2.75时的函数近似值。
实验流程图:实验源程序:#include <stdio.h>float lagrange(int,float,float[],float[]); void main(){float a,x[50],y[50],l;int m,n;printf("题目:按下列数据\n");printf("x:-3.0 -1.0 1.0 2.0 3.0\n");printf("y:1.0 1.5 2.0 2.0 1.0\n");printf("作二次插值,并求x=-2,x=0,x=2.75时的函数近似值.\n\n");printf("输入插值次数:");scanf("%d",&n);printf("输入计算次数:");scanf("%d",&m);for(int i=0;i<=m;i++){for (int j=0;j<=n;j++){ printf("输入要计算的第%d个数的第%d个节点及其函数值:",i+1,j+1);scanf("%f,%f",&x[j],&y[j]);}printf("输入要计算的x的值:");scanf("%f",&a);l=lagrange(n,a,x,y);printf("%f\n",l);}}float lagrange(int n,float a,float x[],float y[]) {float l=0,w;int i,j;for (i=0;i<=n;i++){w=1;for(j=0;j<=n;j++){if(i!=j)w=w*((a-x[j])/(x[i]-x[j]));}l=l+w*y[i];}return l;}实验结果:2、牛顿插值实验内容:按下列数据xi0.300.420.500.580.660.72yi 1.044031.084621.118031.156031.19817 1.23223作五次插值,并求x1=0.46,x2=0.55,x3=0.60时的函数近似值。
实验源程序:#include<stdio.h>#define M 6float w(float X,int n,float x[]);float quotient(int k,int i,float f[][M],float x[],float y[]); float newton(float X,int n,float f[][M],float x[],float y[]); void main(){float x[M],y[M],f[M][M];x[0]=0.30f;y[0]=1.04403f;x[1]=0.42f;y[1]=1.08462f;x[2]=0.50f;y[2]=1.11803f;x[3]=0.58f;y[3]=1.15603f;x[4]=0.66f;y[4]=1.19817f;x[5]=0.72f;y[5]=1.23223f;printf("x:0.30 0.42 0.50 0.58 0.66 0.72\n");printf("y:1.04403 1.08462 1.11803 1.15603 1.19817 1.23223\n");printf("做五次插值,并求x=0.46,x=0.55,x=0.60时的函数近似值.\n\n");for(int i=0;i<M;i++)f[0][i]=y[i];float N[3];N[0]=newton(0.46f,5,f,x,y);N[1]=newton(0.55f,5,f,x,y);N[2]=newton(0.60f,5,f,x,y);printf("x=0.46时函数的近似值为 %f\n",N[0]);printf("x=0.55时函数的近似值为 %f\n",N[1]);printf("x=0.60时函数的近似值为 %f\n",N[2]);}float w(float X,int n,float x[]){float w=1.0;for (int i=0;i<n;i++)w=w*(X-x[i]);return w;}float quotient(int k,int i,float f[][M],float x[],float y[]){if(k==0)f[0][i]=y[i];elsef[k][i]=(quotient(k-1,i,f,x,y)-quotient(k-1,i-1,f,x,y))/ (x[i]-x[i-k]);return f[k][i];}float newton(float X,int n,float f[][M],float x[],floaty[]){float N;N=f[0][0];for (int i=1;i<=n;i++)N=N+w(X,i,x)*quotient(i,i,f,x,y);return N;}实验结果:实验分析:拉格朗日插值法和牛顿插值法用拉格朗日插值多项式计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。
用牛顿差商插值多项式中各阶差商用相应查分代替,就可得到各种形式的等距节点插值公式。
牛顿插值法比拉格朗日插值法节省计算量,且便于程序设计,计算增加节点时,计算只需要增加一项,而且牛顿插值更容易计算高次插值。
实验三:复化积分法实验目的:学会用复化积分法提高求积的精度,熟记并掌握复化梯形和复化辛卜生公式。
实验内容:分别用复化梯形公式和复化辛卜生公式计算f(x)=sin(x)/x 的积分,并与准确值比较判断精度。
实验流程图:实验源程序:#include <stdio.h>#include <math.h>void main(){int m,n,k,i;float Tn,Sn,d1,d2,a=0,b=0,c=0;float x[1000],y[1000],z[1000],w[1000];{printf("将复化梯形区间划分:");scanf("%d",&n);for(i=1;i<n;i++){x[i]=float(1.0/n*i);y[i]=(float)(sin(x[i])/x[i]);a=a+y[i];}Tn=(float)((1.0+sin(1.0)/1.0+2*a)/2.0/n); printf("复化梯形输出:%f\n",Tn);printf("将复化辛卜生区间划分为:");scanf("%d",&m);}for (k=1;k<m;k++){z[k]=float(1.0/m*k);z[k+1]=float(1.0/m*(k+1));z[k+1/2]=float(z[k]+z[k+1])/2;w[k]=(float)(sin(z[k])/z[k]);w[k+1/2]=(float)(sin(z[k+1/2])/((z[k]+z[k+1])/2)); b=b+w[k];c=c+w[k+1/2];}Sn=(float)((1.0+2*b+4*c+sin(1.0)/1.0)/6.0/m); printf("复化辛卜生输出:%f\n",Sn);{d1=(float)(fabs(0.9460831-Tn));d2=(float)(fabs(0.9460831-Sn));printf("复化梯形误差:%f\n",d1);printf("复化辛卜生误差:%f\n",d2);if(d1>d2)printf("复化梯形求法精度低于复化辛卜生求法\n"); else if (d1==d2)printf("复化梯形求法精度等于复化辛卜生求法\n"); else (d1<d2);printf("复化梯形求法精度高于复化辛卜生求法\n");}}实验结果:实验分析:许多实际问题常常需要计算积分才能求解,梯形公式、牛顿-柯特斯公式和辛卜生公式是常用的求积公式,为避免可选取适当多的节点,即选取相对高阶的牛顿-柯特斯公式,但由稳定性分析可知,高次插值会产生龙格现象,故采用分段低次插值,然后利用积分的区间可加性得积分,即所谓的分段低次合成的复化求积公式。