北师大版九年级上册第六章反比例函数练习题(无答案)
九年级数学上册 反比例函数全章学案(无答案)配套练习讲解(无答案) 北师大版

反比例函数概念1、写出函数关系式,找出共同点,(1)长方形的面积为122cm ,设一边为xcm,邻边为ycm ,则x 与y 的函数关系式为:y= . (2)京沪线铁路全长为1463,乘坐某次列车所用的时间t 与该次列车平均速度v 的函数关系为: .(3)已知工程队承包一项工程,写出工程效率v 与完成时间之间t 的函数关系式为: .上述三个函数是一次函数吗?2、记住反比例函数的概念:一般地,如果两个变量x,y 之间的关系可以表示成y=kx(k ≠0)的形式,那么我们称y 是x 的反比例函数。
引导学习——概念的巩固与应用3、下列函数中,哪些是反比例函数,其k 值为多少? ①5yx =②33y x =- ③ 25y x -= ④y =⑤132y =⨯ ⑥12y -=- ⑦12y x -= ⑧14xy = ⑨ y=5-x ⑩ 33y x-= 4、例题例1 已知()2212m m y m m x+-=+(1) 当m 为何值时,y 是x 的正比例函数? (2) 当m 为何值时,y 是x 的反比例函数? 解:例2已知y 是x 的反比例函数,当x=3时,y=4求:当x=1时,y 的值.四、检测:反比例函数练习题第一课时[A 组]1、下列函数中,哪些是反比例函数?( )(1)y=-3x ; (2)y=2x+1; (3) y=-x 2;(4)y=3(x-1)2+1;2、下列函数中,哪些是反比例函数(x 为自变量)?说出反比例函数的比例系数: (1)xy 1-= ;(2)xy=12 ;(3) xy=-13 (4)y=3x3、列出下列函数关系式,并指出它们是分别什么函数.说出比例系数①火车从安庆驶往约200千米的合肥,若火车的平均速度为60千米/时,求火车距离安庆的距离S(千米)与行驶的时间t(时)之间的函数关系式②某中学现有存煤20吨,如果平均每天烧煤x 吨,共烧了y 天,求y 与x 之间的函数关系式. 4、.已知一个长方体的体积是100立方厘米,它的长是ycm ,宽是5cm ,高是xcm . 写出用高表示长的函数式; 写出自变量x 的取值范围; 当x =3cm 时,求y 的值5、已知y 与x 成反比例,并且x =3时y =7, 求:(1)y 和x 之间的函数关系式;(2)当13x =时,求y 的值 (3)y =3时,x 的值。
北师大版九年级数学上册第六章反比例函数第2节反比例函数的图像和性质课堂练习

第六章反比例函数第2节反比例函数的图像和性质课堂练习学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.反比例函数y =1x(x <0)的图象位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于反比例函数3y x=,下列说法错误的是( ) A .图象经过点()1,3B .图象在第一、三象限C .0x >时,y 随x 的增大而增大D .x 0<时,y 随x 增大而减小3.若点A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2.则( )A .12y 0y <<B .12y 0y >>C .12y 0y >>D .12y 0y <<4.反比例函数y =mx的图象如图所示,以下结论:①常数m >0;①在每个象限内,y 随x 的增大而增大;①若A (﹣1,h ),B (2,k )在图象上,则h <k ;①若P (x ,y )在图象上,则P '(﹣x ,﹣y )也一定在图象上.其中正确的是( )A .①①B .①①C .①①①D .①①①5.如图,P (x ,y )是反比例函数3y x=的图象在第一象限分支上的一个动点,P A ①x 轴于点A ,PB ①y 轴于点B ,随着自变量x 的逐渐增大,矩形OAPB 的面积( )A .保持不变B .逐渐增大C .逐渐减小D .无法确定6.已知正比例函数1y k x=和反比例函数2kyx=,在同一直角坐标系下的图象如图所示,其中符合120k k⋅>的是()A.①①B.①①C.①①D.①①7.若反比例函数()110ay a xx-=><,图象上有两个点()()1122,,x y x y,,设()1212()m x x y y=--,则y mx m=-不经过第()象限.A.一B.二C.三D.四8.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x (x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则①ABC的面积为()A.3B.6C.9D.92评卷人得分二、填空题9.已知反比例函数6yx=,当x>3时,y的取值范围是_____.10.如图,直线y=kx与双曲线y=2x交于A,B两点,BC①y轴于点C,则△ABC的面积为_____.11.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=1x图象上的三个点,则y1、y2、y3的大小关系是_____.12.若点A(-2,a),B(1,b),C(4,c)都在反比例函数8yx=-的图象上,则a、b、c大小关系是________.13.若点A(﹣5,y1),B(1,y2),C(2,y3)在反比例函数21ayx+=(a为常数)的图象上,则y1,y2,y3的大小关系是_____.(用“<”连接)14.如图,点A是反比例函数y=kx图象上的一个动点,过点A作AB①x轴,AC①y 轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________.15.如图,点A在双曲线y=kx的第一象限的那一支上,AB①y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若①ADE的面积为32,则k的值为______.评卷人得分三、解答题16.如图,()A4,3是反比例函数kyx=在第一象限图象上一点,连接OA,过A作AB//x轴,截取AB OA(B=在A右侧),连接OB,交反比例函数kyx=的图象于点P.(1)求反比例函数kyx=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求OAP的面积.17.如图,反比例函数kyx=与一次函数y x b=-+的图象交于点A(1,3)和点B.(1)求k的值和点B的坐标.(2)结合图象,直接写出当不等式kx bx<-+成立时x的取值范围.(3)若点C是反比例函数kyx=第三象限图象上的一个动点,当CA CB=时,求点C的坐标.18.如图,Rt AOB ∆的直角边OB 在x 轴的正半轴上,反比例函数(0)k y x x=>的图象经过斜边OA的中点D ,与直角边AB 相交于点C . ①若点(4,6)A ,求点C 的坐标: ①若9S OCD ∆=,求k 的值.19.如图,已知一次函数y =kx +b 的图象与反比例函数8y x=-的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.20.已知:如图,∆ABC是等腰直角三角形,①B=90°,点B的坐标为(1,2).反比例函数kyx的图象经过点C,一次函数y=ax+b的图象经A,C两点.(1)求反比例函数和一次函数的关系式;(2)直接写出不等式组0<ax+b≤kx的解集.参考答案:1.C 【解析】 【分析】根据题目中的函数解析式和x 的取值范围,可以解答本题. 【详解】解:①反比例函数y =1x(x <0)中,k =1>0,①该函数图象在第三象限, 故选:C . 【点睛】本题考查反比例函数的图象,关键在于熟记反比例函数图象的性质. 2.C 【解析】 【分析】根据反比例函数的性质得出函数的增减性以及所在象限和经过的点的特点分别分析得出即可. 【详解】解:A ,因为133⨯=,所以图象经过点(1)3,,A 选项正确,故不选A ; B ,因为30k =>,图象在第一、三象限,B 选项正确,故不选B ;C ,因为30k =>,图象在第一、三象限,所以0x >时,y 随x 的增大而减小,C 选项错误,故选C ;D ,因为30k =>,图象在第一、三象限,所以0x <时,y 随x 的增大而减小,D 选项正确,故不选D . 故选:C . 【点睛】此题主要考查了反比例函数的性质,根据解析式确定函数的性质是解题的关键. 3.B 【解析】 【分析】根据题意和反比例函数的性质可以解答本题.①反比例函数3y -x=,①该函数图像在第二、四象限,在每个象限y 随x 的增大而增大, ①A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2,①12y 0y >>, 故选B. 【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答. 4.D 【解析】 【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可. 【详解】解:①反比例函数的图象可知,m >0,故①正确;当反比例函数的图象位于一、三象限时,在每一象限内,y 随x 的增大而减小,故①错误; 将A (-1,h ),B (2,k )代入y =mx得到h=-m ,2k=m , ①m >0,①h <k ,故①正确; 将P (x ,y )代入y =m x 得到m=xy ,将P′(-x ,-y )代入y =mx得到m=xy , 若P (x ,y )在图象上,则P′(-x ,-y )也在图象上 故①正确, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,熟练掌握反比例函数的图象和性质是解题的关键. 5.A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=12|k|,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 【详解】解:依题意有矩形OAPB 的面积=2×12|k|=3,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 故选:A . 【点睛】本题考查了反比例函数 y =kx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 6.B 【解析】 【分析】根据正比例函数和反比例函数的图象逐一判断即可. 【详解】解: 观察图像①可得120,0k k >>,所以120k k >,①符合题意; 观察图像①可得120,0k k <>,所以120k k <,①不符合题意; 观察图像①可得120,0k k ><,所以120k k <,①不符合题意; 观察图像①可得120,0k k <<,所以120k k >,①符合题意; 综上,其中符合120k k ⋅>的是①①, 故答案为:B . 【点睛】本题考查的是正比例函数和反比例函数的图像,当k >0时,正比例函数和反比例函数经过一、三象限,当k <0时,正比例函数和反比例函数经过二、四象限. 7.C【分析】利用反比例函数的性质判断出m 的正负,再根据一次函数的性质即可判断. 【详解】 解:①()110a y a x x-=><,, ①a-1>0, ①()110a y a x x-=><,图象在三象限,且y 随x 的增大而减小, ①图象上有两个点(x 1,y 1),(x 2,y 2),x 1与y 1同负,x 2与y 2同负, ①m=(x 1-x 2)(y 1-y 2)<0,①y=mx-m 的图象经过一,二、四象限,不经过三象限, 故选:C . 【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.D 【解析】 【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x-=和y 3x =中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC 的面积12⨯=AB ×P 的横坐标,求出即可.【详解】解:设P (a ,0),a >0,则A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x =-中得:y 6a=-,故A (a ,6a -);将x=a代入反比例函数y3x=中得:y3a=,故B(a,3a),①AB=AP+BP639a a a+==,则S△ABC12=AB•xP19922aa=⨯⨯=,故选D.【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k 的几何意义.9.0<y<2【解析】【分析】根据反比例函数的性质可以得到反比例函数y=6x,当x>3时,即可得到y的取值范围.【详解】①y=6x,6>0,①当x>0时,y随x的增大而减小,当x=3时,y=2,①当x>3时,y的取值范围是0<y<2,故答案为0<y<2【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.10.2【解析】【分析】根据直线y=kx与双曲线y=2x交于A,B两点,可得A、B关于原点对称,从而得到S△BOC=S△AOC,然后根据反比例函数的系数k的几何意义求出的S△BOC面积即可.【详解】①直线y=kx与双曲线y=2x交于A,B两点,①点A与点B关于原点对称,①S△BOC=S△AOC,而S△BOC=12×2=1,①S△ABC=2S△BOC=2.故答案为2.【点睛】反比例函数中比例系数k的几何意义是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.y2>y3>y1【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可.【详解】解:①1>0,反比例函数y=1x图象在一、三象限,并且在每一象限内y随x的增大而减小,因为-1<0,①A点在第三象限,①y1<0,①2>1>0,①B、C两点在第一象限,①y2>y3>0,①y2>y3>y1.故答案是:y2>y3>y1.【点睛】本题主要考查的是反比例函数图象上点的坐标特点,解决本题的关键是要熟练掌握反比例函数图象性质.12.a>c>b【解析】【分析】根据题意,分别求出a 、b 、c 的值,然后进行判断,即可得到答案.【详解】解:①点A 、B 、C 都在反比例函数8y x =-的图象上,则 当2x =-时,则842a =-=-; 当1x =时,则881b =-=-; 当4x =时,则824c =-=-; ①a c b >>;故答案为:a c b >>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.y 1<y 3<y 2.【解析】【分析】先计算出自变量为﹣5、1、2对应的函数值,从而得到y 1,y 2,y 3的大小关系. 【详解】当x =﹣5时,y 1=﹣15(a 2+1); 当x =1时,y 2=a 2+1;当x =2时,y 3=12(a 2+1), 所以y 1<y 3<y 2.故答案为:y 1<y 3<y 2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.-4【解析】【详解】试题分析:由于点A是反比例函数y=kx上一点,矩形ABOC的面积S=|k|=4,则k的值为-4.考点:反比例函数15.83【解析】【分析】如下图,连接CD,由AE=3EC,①ADE的面积为32,得到①CDE的面积为12,则①ADC 的面积为2,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=S△ABD+S△ADC+S△ODC即可得出ab的值进而得出结论.【详解】如下图,连CD①AE=3EC,①ADE的面积为32,①①CDE的面积为12,①①ADC的面积为2,设A点坐标为(a,b),则AB=a,OC=2AB=2a,①点D为OB的中点,①BD=OD=12b,①S梯形OBAC=S△ABD+S△ADC+S△ODC,①12(a+2a)×b=12a×12b+2+12×2a×12b,①ab=83,把A(a,b)代入双曲线y=kx得,k =ab =83. 故答案为:83. 【点睛】本题考查利用几何图形的面积求解反比例函数的解析式,解题关键是将几何图形的面积和点的坐标结合起来,然后利用待定系数法求得解析式.16.(1)12y x =(2)(9,3);13y x = (3)5 【解析】【分析】(1)直接代入A 点坐标课的k 的值,进而可得函数解析式;(2)过点A 作AC①x 轴于点C ,利用勾股定理计算出AO 的长,进而可得AB 长,然后可得B 点坐标.设OB 所在直线解析式为y=mx (m≠0)利用待定系数法可求出BO 的解析式;(3)首先联立两个函数解析式,求出P 点坐标,过点P 作PD①x 轴,延长DP 交AB 于点E ,连接AP ,再确定E 点坐标,最后求面积即可.【详解】解:()1将点()A 4,3代入()k y k 0x=≠, 得:12k =,则反比例函数解析式为:12y x =; () 2如图,过点A 作AC x ⊥轴于点C ,则OC 4=、AC 3=,22OA 435∴=+=,AB//x 轴,且AB OA 5==,∴点B的坐标为()9,3;设OB所在直线解析式为()y mx m0=≠,将点()B9,3代入得13=m,OB∴所在直线解析式为1y x3=;()3联立解析式:1y x312yx⎧=⎪⎪⎨⎪=⎪⎩,解得:x6,y2=⎧⎨=⎩可得点P坐标为()6,2,过点P作PD x⊥轴,延长DP交AB于点E,连接AP,则点E坐标为()6,3,AE2∴=,PE1=,PD2=,则OAP的面积()11126362215222=⨯+⨯-⨯⨯-⨯⨯=.【点睛】此题主要考查了待定系数法求反比例函数和正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.17.(1)3k=,B(3,1);(2)1x3<<或x0<;(3)C(33--,)【解析】【分析】(1)分别把()1,3A代入一次函数与反比例函数,可得,k b的值,联立两个解析式,解方程组可得B的坐标;(2)由k x<x b -+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,从而可得答案;(3)由,CA CB = 则C 在AB 的垂直平分线上,利用直线AB 与坐标轴构成的三角形是等腰直角三角形,证明AB 的垂直平分线经过原点,再求解垂直平分线的解析式,联立两个解析式解方程组即可得到答案.【详解】解:(1)把()1,3A 代入y x b =-+,13,b ∴-+=4,b ∴=所以:一次函数为:4,y x =-+把()1,3A 代入k y x=, 133,k ∴=⨯= 3,y x∴= 3,4y x y x ⎧=⎪∴⎨⎪=-+⎩ 34,x x∴=-+ 2430,x x ∴-+=121,3,x x ∴== 把11x =代入4,y x =-+13,y ∴=把23x =代入4,y x =-+21,y ∴=121213,,31x x y y ==⎧⎧∴⎨⎨==⎩⎩ 经检验:方程的解符合题意,()3,1.B ∴(2)由kx<x b-+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,结合图像可得:1x3<<或0x<.(3),CA CB=C∴在AB的垂直平分线上,记AB的中点为D,()()1,3,3,1,A B∴()2,2,D∴记AB与,x y轴的交点分别为,F EAB为4,y x=-+()()4,0,0,4,F E∴4,OE OF∴==OD∴为AB的垂直平分线,设OD为,y mx=把()2,2D代入:22,m=1,m∴=AB∴的垂直平分线为:,y x=,3y xyx=⎧⎪∴⎨=⎪⎩解得:121233,,33x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩ 经检验:方程的解符合题意,C 在第三象限,()3,3.C ∴--【点睛】本题考查的是利用待定系数法求解一次函数与反比例函数中的字母参数,同时考查利用图像判断一次函数值与反比例函数值的大小,还考查线段的垂直平分线的性质,函数的交点坐标问题,一元二次方程的解法,掌握以上知识是解题的关键.18.①(4,32);①k=12 【解析】【分析】①根据点D 是OA 的中点即可求出D 点坐标,再将D 的坐标代入解析式求出解析式,从而得到C 的坐标;①连接OC, 设A(a,b),先用代数式表示出三角形OAB,OBC,OCD 的面积,再根据条件列出方程求k 的值即可.【详解】解:①①D 是OA 的中点,点A 的坐标为(4,6),①D (42,62),即(2,3) ①k=2×3=6①解析式为6y x= ①A 的坐标为(4,6),AB①x 轴①把x=4代入6y x=得y=32 ①C 的坐标为(4,32) ①连接OC,设A(a,b),则D(2a , 2b ) 可得k=4ab ,ab=4k ①解析式为4ab y x= ①B(a,0),C(a, 4b ) ①11222OAB SOB AB ab k === 1122OBC S OB BC k =•= 11()22OCD OAC OAB OBC S S S S ∴==- ①11(2)922k k -= 解得:k=12【点睛】本题考查了一次函数的性质,要正确理解参数k 的几何意义,能用代数式表达三角形OCD 的面积是解题的关键.19.(1)y =-x +2;(2)6【解析】【分析】(1)把点A 的横坐标代入8y x=-,可得4y =,即可求出A 点的坐标,把B 点的纵坐标代入8y x=-,可得4x =,即可求出B 点的坐标,把A B 、两点的坐标代入一次函数的解析式即可求解;(2)首先求出直线AB 与x 轴的交点坐标M ,然后根据AOB AOM BOM S S S ∆∆∆=+进行求解即可;【详解】解:(1)把2A x =-代入8y x=-中,得4A y = ① 点()2,4A -把2B y =-代入8y x=-中,得4B x = ① 点()4,2B -把AB 、两点的坐标代入y kx b =+中,得 42,24.k b k b ⎧⎨-⎩=-+=+ 解得1,2.k b ⎧⎨⎩=-= ① 所求一次函数的解析式为2y x =-+(2)当0y =时,2x =, ①2y x =-+与x 轴的交点为()2,0M ,即2OM =①AOB AOM BOM S S S ∆∆∆=+ B A y OM y OM ⋅⋅⋅⋅2121+=11242222⨯⨯⨯⨯=+=6【点睛】本题主要考查反比例函数与一次函数的综合,熟练掌握一次函数的解析式求法以及图中的面积求法是求解本题的关键.20.(1)反比例函数关系式为y =6x,一次函数函数关系式为y =x-1;(2)1<x ≤3 【解析】【分析】①根据等腰三角形的性质求出A,C 点的坐标,即可求出反比例和一次函数关系式 ①观察图像即可找出x 的解集【详解】解:(1)①∆ABC 是等腰直角三角形且点B 的坐标为(1,2)①AB =BC =2①点C 的坐标为(3,2),点A 的坐标为(1,0)把点C 的坐标代入y =k x,解得k =6 ①反比例函数关系式为y =6x 把点C(3,2),点A(1,0)代入一次函数y=ax+b320a b a b +=⎧⎨+=⎩解得11a b =⎧⎨=-⎩①一次函数函数关系式为y =x-1(2)由函数图像及A ,C 两点坐标可得不等式组的解集为:1<x ≤3【点睛】本题解题的关键是根据等腰直角三角形的性质求出A,C 点的坐标,写x 的范围时可以先用笔画出符合要求的线段不易出错。
新北师大版九年级上册反比例函数测试题

新北师大版九年级上册反比例函数测试题一、单选题1、如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1(x1,y1)、P2(x2,y2)在反比例函数y=(x>0)的图象上,则y1+y2=()A.1 B.﹣1 C. D.+12、已知点A、B分别在反比例函数(x>0),(x>0)的图象上,且OA⊥OB,则的值为()A. B.2 C. D.33、如下图,MN⊥PQ,垂足为点O,点A、C在直线MN上运动,点B、D在直线PQ上运动.顺次连结点A、B、C、D,围成四边形ABCD.当四边形ABCD的面积为6时,设AC长为x,BD 长为y,则下图能表示y与x关系的图象是()4、已知点A、B分别在反比例函数(x>0),(x>0)的图象上,且OA⊥OB,则的值为()A. B.2 C. D.35、.根据图5中①所示的程序,得到了y与x的函数图象,如图5中②,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P、Q,连接OP、OQ,则以下结论:①x<0时,y=②△OPQ的面积为定值③x>0时,y随x的增大而增大④MQ=2PM⑤∠POQ可以等于90°其中正确结论是( )A.①②④B.②④⑤C.③④⑤D.②③⑤6、如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 。
C 分别在x 轴、y 轴上,反比例函数的图象与正方形的两边AB 、BC 分别交于点M 、N ,ND⊥x轴,垂足为D ,连接OM 、ON 、MN 。
下列结论:①△OCN≌△OAM ;②ON=MN; ③四边形DAMN 与△MON 面积相等;④若∠MON=450,MN=2,则点C 的坐标为。
其中正确的个数是【 】A .1 B .2 C .3 D .47、函数与的图象在同一平面直角坐标系内的交点的个数是( )A .1个B .2个C .3个D .0 8、图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( ) A .当x=3时,EC <EM B .当y=9时,EC >EMC .当x 增大时,EC·CF 的值增大。
北师大版九年级数学上册《6.1反比例函数》同步测试题及答案

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案一、单选题1.下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,⑤xy=11,⑥y=kx,⑦y=5x2,⑧yx=1.其中y是x的反比例函数的有()A.1个B.2个C.3个D.4个2.下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数;B.等腰三角形周长一定时,它的腰长与它底边的长;C.一个因数(不为零)不变时,另一个因数与它们的积;D.货物的总价A一定时,货物的单价a与货物的数量x.3.当x=−3时,反比例函数y=−12x的函数值为()A.−14B.4C.−4D.144.下列各点在反比例函数y=−8x的图象上的是()A.(−2,−4)B.(2,4)C.(13,24)D.(−12,16)5.若一个反比例函数的图象经过A(2,−4)、B(m,−2)两点,则m的值为()A.−4B.4C.8D.−86.如果点A(a,−b)在反比例函数y=2x的图象上,则代数式ab−4的值为()A.0B.−2C.2D.−67.已知点A(3,m)和点B(n,2)关于x轴对称,则下列各点不在反比例函数y=mnx的图象上的点是()A.(3,−2)B.(−3,2)C.(−1,−6)D.(−1,6)8.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在双曲线y=6x上的概率为()A.19B.23C.118D.16二、填空题9.已知反比例函数y=−8x的图像经过(−2,m),则m=10.已知反比例函数y=8x的图象经过点A(m,−2),则A关于原点对称点A′坐标为.11.已知y与x-2成反比例,且比例系数为k≠0,若x=3时,y=4,则k=.12.已知y−3与x+2成反比例,且x=2时y=7,则当y=1时,x的值为13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=4x的图象上.若x1⋅x2=−2,则y1⋅y2的值为.14.点A(x1,y1),B(x2,y2)在反比例函数y=kx(k≠0)的图象上,若x1+x2=0,则y1+y2=.15.已知点P(a,b)是反比例函数y=1x 图像上异于点(-1,-1)的一个动点,则21+a+21+b=.16.如图,平面直角坐标系中,若反比例函数y=kx(k≠0)的图象过点A和点B,则a的值为.三、解答题17.已知y=(a−2)x a2−a−1,当a为何值时,y为x的正比例函数?当a为何值时,y为x的反比例函数?18.写出下列问题中的函数关系式,并指出其比例系数.(1)当圆锥的体积是150cm³时,它的高ℎ(cm)与底面积S(cm²)的函数关系式;(2)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系式;(3)某实验中学八(2)班同学为校运动会制作小红花1000朵,完成的天数y与该班同学每天制作的数量x 之间的函数关系式;(4)某商场推出分期付款购买电脑的活动,一台电脑售价1.2万元,首期付款4千元后,分x次付清,每次付款相同. 每次的付款数y(元)与付款次数x的函数关系式.19.已知反比例函数y=−12x.(1)说出这个函数的比例系数和自变量的取值范围.(2)求当x=−3时函数的值.(3)求当y=−√3时自变量x的值.20.已知函数y=y1+y2,其中y1与x成正比例,y2与x−3成反比例,当x=2时y=16;当x=4时,y=20.求:(1)y关于x的函数解析式及定义域;(2)当x=5时的函数值.21.已知y−3与x+1成反比例关系,且当x=2时y=1.(1)求y与x的函数表达式.)是否在该函数图象上,并说明理由.(2)试判断点B(3,−1222.在面积为定值的一组矩形中,当矩形的一边长为7.5cm时,它的另一边长为8cm.(1)设矩形相邻的两边长分别为x(cm),y(cm),求y关于x的函数表达式.这个函数是反比例函数吗?如果是,指出比例系数.(2)若其中一个矩形的一条边长为5cm,求这个矩形与之相邻的另一边长.23.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案:题号 1 2 3 4 5 6 7 8答案 C D B D B D C A(k≠0),xy=k(k≠0),y=kx−1(k≠0).1.解:反比例的三种形式分别为:y=kx①中x的次数是1,是一次函数,不是反比例函数;②,③是反比例函数;④中分母是x+1,故不是反比例函数;⑤是反比例函数;⑥中没有k≠0,故不是反比例函数;⑦分母是x2,故不是反比例函数;⑧中x的次数是1,是一次函数,不是反比例函数.故有三个是反比例函数.故选C.2.解:A、商一定时(不为零),被除数和除数成正比例关系,故A错误;B、等腰三角形周长一定时,它的腰长与它底边的长成一次函数关系;故B错误;C 、一个因数(不为零)不变时,另一个因数与它们的积成正比例关系;故C 错误;D 、货物的总价A 一定时,货物的单价a 与货物的数量x 成反比例关系;故D 正确. 故选D3.解:当x =−3时 故选:B .4.解:A.当x =−2时y =−8−2=4,故该点不在反比例函数y =−8x图象上;B. 当x =2时y =−82=−4,故该点不在反比例函数y =−8x 图象上; C. 当x =13时y =−813=−24,故该点不在反比例函数y =−8x 图象上;D. 当x =−12时y =−8−12=16,故该点在反比例函数y =−8x 图象上;故选:D .5.解:设反比例函数的表达式为y =kx(k ≠0)∵反比例函数的图象经过A(2,−4)、B(m ,−2)两点 ∵k =2×(−4)=−2m 解得:m =4 故选:B .6.解:∵点A(a ,−b)在反比例函数y =2x 的图象上 ∵−b =2a ∵ab =−2∵ab −4=−2−4=−6 故选D .7.解:∵点A (3,m )和点B (n,2)关于x 轴对称 ∵{m =−2n =3∵反比例函数解析式为y =mn x=−6x∵在反比例函数图象上的点一定满足横纵坐标的乘积为−6 ∵四个选项中只有C 选项符合题意 故选C .8.解:表格列示所有投掷情况如下小明小莉12345611,11,21,31,41,51,622,12,22,32,42,52,633,13,23,33,43,53,644,14,24,34,44,54,655,15,25,35,45,55,666,16,26,36,46,56,6点P若落在y=6x上,则xy=6.如上表,两人掷的组合情况共有6×6=36种,其中满足要求的有4种:2,3;3,2;1,6;6,1,故概率为436=19;故选:A9.解:把(−2,m)代入y=−8x即m=−8−2=4故答案为:4.10.解:∵反比例函数y=8x的图象经过点A(m,−2)∵−2m=8解得m=−4∴A(−4,−2)则A关于原点对称点A′(4,2)故答案为:(4,2).11.解:由题意知k=y(x-2)∵x=3时,y=4∵k=4×(3-2)=4.故答案为:412.解:∵y −3与x +2成反比例 ∵可设:y −3=k x+2(k ≠0)又∵x =2,y =7 ∵7−3=k 2+2解之得:k =16 ∵得:y −3=16x+2,即:y =16x+2+3∵当y =1时得:1=16x+2+3 解之得:x =−10 故答案为:−10.13.解:∵点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =4x 的图象上∴x 1y 1=4,x 2y 2=4 ∴x 1y 1x 2y 2=16且x 1⋅x 2=−2 ∴y 1⋅y 2=−8. 故答案为:−8.14.解:∵点A(x 1,y 1),B(x 2,y 2)在反比例函数y =k x (k ≠0)的图象上 ∵y 1=k x 1,y 2=k x 2∵y 1+y 2=kx 1+kx 2=k(x 1+x 2)x 1x 2.∵x 1+x 2=0 ∵k(x 1+x 2)x 1x 2=0,即y 1+y 2=0.故答案为:0.15.解:∵点P(a,b)是反比例函数y =1x 图象上异于点(−1,−1)的一个动点∴ab =1∴ 21+a +21+b =2(1+b)(1+a)(1+b)+2(1+a)(1+a)(1+b)=2(1+b+1+a)1+b+a+ab=2(2+a+b)2+a+b=2.故答案为2.16.解:依题意,将点A (1,−3)代入y =kx ,得出k =−3∵反比例数解析式为y =−3x当x =−2时y =32即a =32 故答案为:32.17.解:当y 为x 的正比例函数时{a −2≠0a 2−a −1=1解得:a =−1.所以:当a =−1时,y 为x 的正比例函数. 当y 为x 的反比例函数时{a −2≠0a 2−a −1=−1解得:a =0或a =1.所以:当a =0或a =1时,y 为x 的反比例函数. 18.解:(1)∵hS=450,∵ℎ=450S,∵比例系数为450.(2)∵Fs=W ,∵F =W s,∵比例系数为W . (3)∵xy=1000,∵y =1000x,∵比例系数为1000.(4)∵xy=12000-4000,∵y =8000x,∵比例系数为8000.19.(1)解:∵y =−12x∵k =−12,x ≠0;(2)解:把x =−3,代入y =−12x 得:y =−12−3=4; ∵当x =−3时函数的值为:4;(3)解:把y =−√3,代入y =−12x 得:−√3=−12x ,解得:x =4√3;∵当y =−√3时x 的值为:4√3.20.(1)解:∵ y 1与x 成正比例,y 2与x −3成反比例 ∴设y 1=ax(a ≠0)∴y =y 1+y 2=ax +bx −3∵当x =2时y =16;当x =4时∴{2a +b2−3=164a +b4−3=20解得:a =6∴y =6x −4x −3∵x −3≠0 ∴x ≠3∴y =6x −4x −3(x ≠3) (2)解:由(1)可知y =6x −4x−3,则当x =5时y =6×5−45−3=28. 21.(1)解:设y −3=k x+1∵当x =2时y =1 ∵1−3=k2+1 ∵k =−6 ∵y =−6x+1+3; (2)不在;理由如下: 当x =3时y =−63+1+3=32∵B (3,−12)不在该函数图象上.22.(1)解:设矩形的面积为Scm 2,则S =7.5×8=60 即xy =60,y =60x即y 关于x 的函数解析式是y =60x,这个函数是反比例函数,系数为60;(2)解:当x =5时y =60x=12故这个矩形与之相邻的另一边长为12cm . 23.解:(1)根据题意,得wt =1600 所以w =1600t(t >4);(2)当w=100时1600t=100,解得t=16.即服装厂需要16天能够完成任务.(3)当t=16−6=10时w=1600t =160010=160(件).160−100=60(件)即服装厂每天要多做60件夏凉小衫才能完成任务.。
北师大版九年级数学上册 第六章 专题 4 利用反比例函数系数k的几何意义求面积

北师大版九年级上册第六章专题 4 利用反比例函数系数k的几何意义求面积姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,以原点为圆心的圆与反比例函数的图象交于、、、四点,已知点的横坐标为1,则点的横坐标()A.B.C.D.2 . 如图,已知点是反比例函数在第一象限图像上的一个动点,连接,以为长,为宽作矩形,且点在第四象限,随着点的运动,点也随之运动,但点始终在反比例函数的图像上,则的值为()A.B.C.D.3 . 如图,A点在反比例函数y=(x<0)的图象上,A点坐标为(-4,2),点B是y=(x∠0)的图象上的任意一点,BC=OB,则△BCO面积为()A.4B.6C.8D.12二、填空题4 . 如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C(3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为_____.5 . 点A是函数y=﹣(x<0)图象上的一点,连结AO并延长交函数y=﹣(x>0)的图象于点B,点C 是x轴上一点,且AC=AO,则△ABC的面积为_____.三、解答题6 . 如图,直线分别交轴,轴于点,点是直线与双曲线在第一象限内的交点,轴,垂足为点,的面积为4.(1)求点的坐标;(2)求双曲线的解析式及直线与双曲线另一交点的坐标.7 . 如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC 中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DA.连接AE、BE,若S△ABE=7,则k的值为()B.﹣12C.﹣10D.﹣9E.﹣68 . 如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.9 . 如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为.填空:______;证明:;当四边形ABCD的面积和的面积相等时,求点P的坐标.参考答案一、单选题1、2、3、二、填空题1、2、三、解答题1、2、3、4、。
北师大版九年级数学第六章《反比例函数》单元复习练习题(含答案)

北师大版九年级数学第六章《反比例函数》单元复习练习题(含答案)一、单选题 1.反比例函数()30y x x=-<的图象如图所示,则△ABC 的面积为( )A .12B .32C .3D .62.反比例函数6y x=-的图像大致是( )A .B .C .D .3.列车从甲地驶往乙地,行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到( )km/h .A .180B .240C .280D .3004.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣225.关于函数2y x=-,下列说法中正确的是( )A .图像位于第一、三象限B .图像与坐标轴没有交点C .图像是一条直线D .y 的值随x 的值增大而减小6.某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( ) A .50y x =+B .50y x =C .50y x=D .50=x y 7.如图,一次函数(y kx b k =+、b 为常数,0)k ≠与反比例函数4y x=的图象交于A (1,m ),B (n ,2)两点,与坐标轴分别交于M ,N 两点.则△AOB 的面积为( )A .3B .6C .8D .128.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( ) A .(2,3)B .(-2,3)C .(3,0)D .(-3,0)9.对于反比例函数y =﹣5x,下列说法错误的是( )A .图象经过点(1,﹣5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大 10.若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( ) A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)11.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y 与该校参加竞赛人数x 的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )A .甲B .乙C .丙D .丁12.如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x (x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .4二、填空题13.若1(1,)M y -、21(,)2N y -两点都在函数ky x=的图像上,且1y <2y ,则k 的取值范围是______.14.已知点(),A m n 在双曲线k y x =上,点(),B m n -在直线23y x k =-上,则21n m+的值为______.15.如图所示,矩形ABCD 顶点A 、D 在y 轴上,顶点C 在第一象限,x 轴为该矩形的一条对称轴,且矩形ABCD 的面积为6.若反比例函数ky x=的图象经过点C ,则k 的值为_________.16.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.17.如图,边长为4的正方形ABCD 的对称中心是坐标原点O ,//AB x 轴,//BC y 轴,反比例函数2y x =与2y x=-的图像均与正方形ABCD 的边相交,则图中阴影部分的面积之和是________.18.如图,若反比例函数1ky x=与一次函数2y ax b =+交于A 、B 两点,当12y y <时,则x 的取值范围是_________.19.如图,点A 在反比例函数y =xk(x >0)的图象上,过点A 作AB ⊥x 轴于点B ,若△OAB的面积为3,则k =_______.20.如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.三、解答题21.如图,在平面直角坐标系中,反比例函数y kx=(x >0)的图象经过点A (2,6),将点A 向右平移2个单位,再向下平移a 个单位得到点B ,点B 恰好落在反比例函数y kx=(x >0)的图象上,过A ,B 两点的直线与y 轴交于点C .(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.22.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OB在x轴的正半轴上,点A的坐标为(6,4),斜边OA的中点D在反比例函数ykx=(x>0)的图象上,AB交该图象于点C,连接OC.(1)求k的值;(2)求△OAC的面积.23.如图是反比例函数y=52mx-的图象的一支.根据图象解决下列问题:(1)求m的取值范围;(2)若点A(m-3,b1)和点B(m-4,b2)是该反比例函数图象上的两点,请你判断b1与b2的大小关系,并说明理由.24.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?25.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.26.如图,一次函数1y k x b =+与反比例函数2(0)k y x x=>的图象交于(1,6)A ,(3,)B n 两点. (1)求反比例函数的解析式和n 的值; (2)根据图象直接写出不等式21k k x b x+<的x 的取值范围; (3)求AOB 的面积.27.如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围.28.如图,一次函数5y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象相交于(1,)A m -,B 两点.(1)求反比例函数的表达式;(2)将一次函数5y x =+的图象沿y 轴向下平移b 个单位(0)b >,使平移后的图象与反比例函数ky x=的图象有且只有一个交点,求b 的值.29.如图,一次函数1522y x =-+的图像与反比例函数k y x=(k >0)的图像交于A ,B 两点,过点A 做x 轴的垂线,垂足为M ,△AOM 面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P,使PA+PB 的值最小,并求出其最小值和P 点坐标.参考答案1.B2.C3.B4.D5.B6.C7.A8.B9.C10.C11.C12.C 13.k <0 14.-3 15.3 16.3 17.818.10,2x x <<>-19.6 20.421.解:(1)把点(2,6)A 代入ky x =,2612k =⨯=,∴反比例函数的解析式为12y x=,将点A 向右平移2个单位,4x ∴=, 当4x =时,1234y ==, (4,3)B ∴,设直线AB 的解析式为y mx n =+,由题意可得6234m nm n =+⎧⎨=+⎩,解得329m n ⎧=-⎪⎨⎪=⎩, 392y x ∴=-+,当0x =时,9y =,(0,9)C ∴;(2)由(1)知954CD =-=,1111||||444242222ABD BCD ACD B A S S S CD x CD x ∆∆∆∴=-=⋅-⋅=⨯⨯-⨯⨯=.22.(1)解:点A 的坐标为(6,4),点D 为OA 的中点, ∴点D 的坐标为(3,2),点D 在反比例函数ky x=的图象上, 326k ∴=⨯=;(2)解:由题意得,点C 的横坐标为6, ∴点C 的纵坐标为:616=, 413AC ∴=-=,OAC ∴∆的面积16392=⨯⨯=.23.(1)解:由图象可知,520k m =->, 解得52m <,∴m 的取值范围为52m <. (2)解:12<b b .理由如下:∵52m <,∴430m m -<-<,由反比例函数的图象与性质可知,当0x <时,y 随着x 的增大而减小,∴12<b b .24.(1)当0≤x ≤8时,设y =k 1x +b , 将(0,20),(8,100)的坐标分别代入y =k 1x +b 得,1208100b k b =⎧⎨+=⎩ 解得k 1=10,b =20.∴当0≤x ≤8时,y =10x +20.当8<x ≤a 时,设y =2k x, 将(8,100)的坐标代入y =2k x , 得k 2=800∴当8<x ≤a 时,y =800x. 综上,当0≤x ≤8时,y =10x +20;当8<x ≤a 时,y =800x. (2)将y =20代入y =800x , 解得x =40,即a =40;(3)当y =40时,x =80040=20. ∴要想喝到不低于40℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.25.(1)将点A (4,3)代入y =k x,得:k =12, 则反比例函数解析式为y =12x; (2)如图,过点A 作AC ⊥x 轴于点C ,则OC =4、AC =3,∴OA 2243+,∵AB ∥x 轴,且AB =OA =5, ∴点B 的坐标为(9,3);(3)∵点B 坐标为(9,3),∴OB 所在直线解析式为y =13x , 由1312y x y x ⎧=⎪⎪⎨⎪=⎪⎩可得点P 坐标为(6,2),(负值舍去), 过点P 作PD ⊥x 轴,延长DP 交AB 于点E ,则点E 坐标为(6,3),∴AE =2、PE =1、PD =2,则△OAP 的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=5.26.解:(1)(1,6)A 在2k y x=的图象上, 26k ∴=, ∴反比例函数的解析式是6y x=. 又∵(3,)B n 在2k y x=的图象上,623n ∴==; (2)由图像可知:当01x <<或3x >时,21k k x b x +<; (3)(1,6)A ,(3,2)B 在函数1y k x b =+的图象上,∴11632k b k b +=⎧⎨+=⎩, 解得:128k b =-⎧⎨=⎩, 则一次函数的解析式是28y x =-+,设直线28y x =-+与x 轴相交于点C ,则C 的坐标是(4,0).∴AOB AOC BOC S S S =-△△△1122A B OC y OC y =⋅-⋅ 11464222=⨯⨯-⨯⨯ 8=.27.解:(1)把(6,1)A 代入反比例函数2m y x =得: m=6,∴反比例函数的解析式为26y x=, ∵(,3)B a -点在反比例函数2m y x =图像上, ∴-3a=6,解得a=-2,∴B (-2,-3),∵一次函数y 1=kx+b 的图象经过A 和B ,∴1632k b k b =+⎧⎨-=-+⎩,解得:122k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为1122y x =-; (2)∵(6,1)A ,(2,3)B --,一次函数的解析式为1122y x =-, 令y=0,解得:x=4,即一次函数图像与x 轴交点为(4,0),∴S △AOB =()141382⨯⨯+=, 故答案为:8;(3)由图象可知:12y y >时,即一次函数图像在反比例函数图像上方,x 的取值范围是:-2<x <0或x >6.28.(1)由题意,将点(1,)A m -代入一次函数5y x =+得:154m =-+=(1,4)A -∴将点(1,4)A -代入k y x=得:41k =-,解得4k =- 则反比例函数的表达式为4y x=-; (2)将一次函数5y x =+的图象沿y 轴向下平移b 个单位得到的一次函数的解析式为5y x b =+- 联立54y x b y x =+-⎧⎪⎨=-⎪⎩整理得:2(5)40x b x +-+=一次函数5y x b =+-的图象与反比例函数4y x=-的图象有且只有一个交点 ∴关于x 的一元二次方程2(5)40x b x +-+=只有一个实数根∴此方程的根的判别式2(5)440b ∆=--⨯=解得121,9b b ==则b 的值为1或9.29.(1)反比例函数(0)k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1,∴11 2k=,k >,2k∴=,故反比例函数的解析式为:2yx =;(2)作点A关于y轴的对称点'A,连接'A B,交y轴于点P,则PA PB+最小.由15222y xyx⎧=-+⎪⎪⎨⎪=⎪⎩,解得12xy=⎧⎨=⎩,或412xy=⎧⎪⎨=⎪⎩,()1,2A∴,14,2B⎛⎫ ⎪⎝⎭,()'1,2A∴-,最小值'A B=设直线'A B的解析式为y mx n=+,则2142m nm n-+=⎧⎪⎨+=⎪⎩,解得3101710mn⎧=-⎪⎪⎨⎪=⎪⎩,∴直线'A B的解析式为3171010y x=-+,x∴=时,1710y=,P∴点坐标为17 0,10⎛⎫ ⎪⎝⎭.。
北师大版九年级数学上册第六章 反比例函数练习题
第六章 反比例函数1.点P (-3,1)在双曲线y =kx 上,则k 的值是( )A .-3B .3C .-13 D.132.如图6-Y -1,已知点A 在反比例函数y =kx 的图象上,AC ⊥x 轴,垂足为C ,且△AOC的面积为4,则此反比例函数的表达式为( )A .y =4xB .y =2xC .y =8xD .y =-8x6-Y -1 6-Y -23.反比例函数y =-3x (x <0)的图象如图6-Y -2所示,则矩形OAPB 的面积是( )A .3B .-3 C.32 D .-324.反比例函数y =3x 图象上三个点的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 2<y 3<y 1D .y 1<y 3<y 25.一次函数y =ax +b 与反比例函数y =a -bx ,其中ab <0,a ,b 为常数,它们在同一坐标系中的图象可以是( )图6-Y -36.如图6-Y -4,在直角坐标系中,点A 在函数y =4x (x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =4x (x >0)的图象交于点D ,连接AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )A .2B .2 3C .4D .4 36-Y -4 6-Y -57.如图6-Y -5,在平面直角坐标系中,平行四边形OABC 的顶点A 的坐标为(-4,0),顶点B 在第二象限,∠BAO =60°,BC 交y 轴于点D ,DB ∶DC =3∶1.若函数y =kx (k>0,x >0)的图象经过点C ,则k 的值为( )A.33 B.32 C.2 33D. 3 8.如图6-Y -6,A 是反比例函数y =1x (x >0)图象上的一个动点,连接OA ,过点O 作OB ⊥OA ,并且使OB =2OA ,连接AB ,当点A 在反比例函数图象上移动时,点B 也在某一反比例函数y =kx的图象上移动,则k 的值为( )A .-4B .4C .-2D .26-Y -6 6-Y -79.如图6-Y -7,已知一次函数y =kx -3(k ≠0)的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数y =12x(x >0)的图象交于点C ,且AB =AC ,则k 的值为__________.图6-Y -810.如图6-Y -8,点E ,F 在函数y =2x 的图象上,直线EF 分别与x 轴、y 轴交于点A ,B ,且BE ∶BF =1∶3,则△EOF 的面积是________.11.如图6-Y -9,正方形ABCD 的边长为2,AD 边在x 轴负半轴上,反比例函数y =kx(x <0)的图象经过点B 和CD 边的中点E ,则k 的值为________.6-Y -9 6-Y -1012.如图6-Y -10,在平面直角坐标系xOy 中,四边形ODEF 和四边形ABCD 都是正方形,点F 在y 轴的正半轴上,点C 在边DE 上,反比例函数y =4x 的图象过点B ,E ,则AB 的长为________.13.如图6-Y -11,已知反比例函数y 1=kx 的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和点B (m ,-2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数值大于反比例函数值的x 的取值范围.图6-Y -1114.如图6-Y -12,直线y =2x +6与反比例函数y =kx (k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .(1)求m 的值和反比例函数的表达式;(2)直线y =n 沿y 轴方向平移,当n 为何值时,△BMN 的面积为254?图6-Y -1215.如图6-Y -13,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数y =kx(x >0)的图象经过菱形对角线的交点A ,且与边BC 交于点F ,点A 的坐标为(4,2).(1)求反比例函数的表达式; (2)求点F 的坐标.图6-Y-131.A2.C [解析] ∵S △AOC =4,∴k =2S △AOC =8, ∴y =8x.3.A [解析] ∵点P 在反比例函数y =-3x (x <0)的图象上,∴可设P (x ,-3x ),∴OA =-x ,P A =-3x ,∴S 矩形OAPB =OA ·P A =-x ·(-3x )=3.故选A.4.B [解析] 反比例函数y =3x中,k =3>0,∴此函数图象的两个分支分别位于第一、三象限,且在每一象限内y 随x 的增大而减小. ∵x 1<x 2<0<x 3,∴点(x 1,y 1),(x 2,y 2)在第三象限,点(x 3,y 3)在第一象限, ∴y 2<y 1<0<y 3.5.C [解析] C 选项中,由一次函数图象过第一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0,∴a -b >0,∴反比例函数y =a -b x 的图象过第一、三象限,∴此选项正确.同理,A ,B ,D 选项错误.6.C [解析] 设A (a ,4a ),可求出D (2a ,2a ),∵AB ⊥CD ,∴S 四边形ACBD =12AB ·CD =12×2a ×4a=4.7.D [解析] ∵四边形ABCD 是平行四边形,点A 的坐标为(-4,0),∴BC =4.∵DB ∶DC =3∶1, ∴B (-3,OD ),C (1,OD ). ∵∠BAO =60°,∴∠COD =30°, ∴OD =3,∴C (1,3),∴k = 3.8.A [解析] 分别过点A ,B 作x 轴的垂线,垂足为C ,D . ∵A 是反比例函数y =1x (x >0)图象上的一个动点,∴可设A (x ,1x ),∴OC =x ,AC =1x .∵OB ⊥OA ,∴∠BOD +∠AOC =∠AOC +∠OAC =90°, ∴∠BOD =∠OAC . 又∵∠BDO =∠OCA , ∴△AOC ∽△OBD . ∵OB =2OA , ∴AC OD =OC BD =OA OB =12, ∴OD =2AC =2x ,BD =2OC =2x ,∴B (-2x,2x ).∵点B 在反比例函数y =kx 的图象上,∴k =-2x ·2x =-4.故选A.9.32[解析] 过点C 作CD ⊥x 轴于点D ,则OB ∥CD .在△AOB 和△ADC 中,∠OAB =∠DAC ,∠AOB =∠ADC =90°,AB =AC , ∴△AOB ≌△ADC , ∴OB =CD .由直线y =kx -3(k ≠0)可知B (0,-3), ∴OB =3,∴CD =3. 把y =3代入y =12x (x >0),解得x =4,∴C (4,3).将其代入y =kx -3(k ≠0),得3=4k -3, 解得k =32.故答案为32.10.83 [解析] 过点E 作EP ⊥y 轴于点P ,EC ⊥x 轴于点C ,过点F 作FD ⊥x 轴于点D ,FH ⊥y 轴于点H ,如图所示:∵EP ⊥y 轴,FH ⊥y 轴,∴EP ∥FH , ∴△BPE ∽△BHF , ∴PE HF =BE BF =13,即HF =3PE . 设点E 的坐标为(t ,2t ),则点F 的坐标为(3t ,23t ).∵S △EOF +S △OFD =S △OEC +S 梯形ECDF , 而S △OFD =S △OEC =12×2=1,∴S △EOF =S 梯形ECDF =12(23t +2t )(3t -t )=83.故答案为83.11.-4 [解析] ∵正方形ABCD 的边长为2,∴AB =AD =2,设B (k2,2),∵E 是CD 边的中点,∴E (k2-2,1),∴k2-2=k ,解得k =-4. 12.5-1 [解析] 设OD =a ,AD =b ,则点E (a ,a ),点B (a +b ,b ). ∵反比例函数y =4x 的图象过点B ,E ,∴⎩⎨⎧a ·a =4,(a +b )·b =4,解得⎩⎨⎧a =2,b =5-1,⎩⎨⎧a =2,b =-5-1(舍去),⎩⎨⎧a =-2,b =1+5(舍去),⎩⎨⎧a =-2,b =1-5(舍去). ∴AB =AD =b =5-1.13.解: (1)∵点A (1,4)在反比例函数的图象上,∴把A (1,4)代入反比例函数表达式y 1=k x 得4=k1,解得k =4,∴反比例函数的表达式为y 1=4x .∵点B (m ,-2)在反比例函数的图象上,∴把B (m ,-2)代入反比例函数表达式,得-2=4m ,解得m =-2,即B (-2,-2).把A (1,4)和B (-2,-2)代入一次函数表达式y 2=ax +b ,得⎩⎨⎧a +b =4,-2a +b =-2,解得⎩⎨⎧a =2,b =2, ∴一次函数的表达式为y 2=2x +2. (2)根据图象得:-2<x <0或x >1.14.解:(1)∵直线y =2x +6经过点A (1,m ), ∴m =2×1+6=8,∴A (1,8). ∵反比例函数的图象经过点A (1,8), ∴8=k1,∴k =8,∴反比例函数的表达式为y =8x .(2)由题意得M (8n ,n ),N (n -62,n ).∵0<n <6,∴n -62<0,∴S △BMN =12×(⎪⎪⎪⎪n -62+⎪⎪⎪⎪8n )×n =12×(-n -62+8n )×n =-14(n -3)2+254, ∴当n =3时,△BMN 的面积为254. 15.解:(1)∵反比例函数y =k x的图象经过点A ,点A 的坐标为(4,2), ∴k =2×4=8,∴反比例函数的表达式为y =8x. (2)过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N .由题意可知CN =2AM =4,ON =2OM =8,∴点C 的坐标为(8,4).设OB =x ,则BC =x ,BN =8-x .在Rt △CNB 中,x 2-(8-x )2=42,解得x =5,∴点B 的坐标为(5,0).设直线BC 的函数表达式为y =ax +b ,∵直线BC 过点B (5,0),C (8,4),∴⎩⎨⎧5a +b =0,8a +b =4,解得⎩⎨⎧a =43,b =-203, ∴直线BC 的函数表达式为y =43x -203.根据题意得方程组⎩⎨⎧y =43x -203,y =8x ,解此方程组得⎩⎪⎨⎪⎧x =-1,y =-8或⎩⎪⎨⎪⎧x =6,y =43. ∵点F 在第一象限,∴点F 的坐标为(6,43).。
北师大版九年级数学上册第六章《反比例函数的图像和性质》课时练习题(含答案)
北师大版九年级数学上册第六章《2.反比例函数的图像和性质》课时练习题(含答案)一、单选题1.反比例函数6y x=-的图像大致是( )A .B .C .D .2.反比例函数()30y x x=-<的图象如图所示,则△ABC 的面积为( )A .12B .32C .3D .63.若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x=的图像上,则123,,x x x 的大小关系是( ) A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<4.反比例函数的图像如图所示,则这个反比例函数的表达式可能是( )A .4y x =-B .3y x=-C .83y x=D .52y x=-5.一次函数y ax a =-与反比例函数(0)ay a x=≠在同一坐标系中的图象可能是( )A .B .C .D .6.若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x << B .231x x x <<C .132x x x <<D .312x x x <<7.已知反比例函数y kx=(k ≠0)的图象如图所示,则一次函数y =kx +2的图象经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限8.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC //BD //y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32二、填空题9.若1(1,)M y -、21(,)2N y -两点都在函数ky x=的图像上,且1y <2y ,则k 的取值范围是______.10.已知反比例函数2a y x-=的图象在第二、第四象限,则a 的取值范围是______. 11.在平面直角坐标系中,一次函数2y x =与反比例函数()0ky k x=≠的图象交于()11,A x y ,()22,B x y 两点,则12y y +的值是____________.12.已知函数25(1)ny n x -=+是反比例函数,且图象位于第一、三象限,则n =________.13.如图,点A 是反比例函数1(0)k y x x=<图象上一点,AC x ⊥轴于点C 且与反比例函数2(0)k y x x=<的图象交于点B ,3AB BC = ,连接OA ,OB ,若OAB 的面积为6,则12k k +=_________.14.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数y =3x (x >0),y =﹣6x(x >0)的图像交于A 点和B 点,若C 为y 轴任意一点.连接AB 、BC ,则△ABC 的面积为_____.三、解答题15.九年级某数学兴趣小组在学习了反比例函数的图像与性质后,进一步研究了函数2y x=的图像与性质,其探究过程如下:(1)绘制函数图像列表:下表是x 与y 的几组对应值,其中m =_________. x…3-2-1-12-121 2 3 …y (23)12 4 4 2 1 m …描点:根据表中各组对应值(),x y ,在平面直角坐标系中描出各点,请你描出剩下的点; 连线:用平滑的曲线顺次连接各点,已经画出了部分图像,请你把图像补充完整; (2)观察函数图像;下列关于该函数图像的性质表述正确的是:__________;(填写代号) ①函数值y 随x 的增大而增大;②函数图像关于y 轴对称;③函数值y 都大于0. (3)运用函数性质:若点()()()1230.5,,1.5,,2.5,-y y y ,则1y 、2y 、3y 大小关系是__________.16.已知反比例函数y =4kx-,分别根据下列条件求出字母k 的取值范围. (1)函数图象位于第一、三象限;(2)在每个象限内,y 随着x 的增大而增大.17.已知反比例函数1k y x-=(k 为常数,1k ≠);(1)若点()1,2A 在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而增大,求k 的取值范围.18.如图,在平面直角坐标系中,四边形OABC 为矩形,点B 在函数y 1=4x (x >0)的图象上,边AB 与函数y 2=2x(x >0)的图象交于点D .求四边形ODBC 的面积.19.已知反比例函数ky x=(k 为常数,k≠0)的图象经过点A (2,3). (1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.20.已知,在平面直角坐标系中,有反比例函数y =3x的函数图像:(1)如图1,点A是该函数图像第一象限上的点,且横坐标为a(a>0),延长AO使得AO=A'O,判断点A'是否为该函数图像第三象限上的点,并说明理由;(2)如图2,点B、C均为该函数图像第一象限中的点,连接BC,点D为线段BC的中点,请仅用一把无刻度的直尺作出点D关于点O的对称点D'.(不写作图过程,保留作图痕迹)参考答案1.C2.B3.B4.D5.D6.C7.C8.B9.k<010.2a<11.012.213.20-14.9 215.(1)解:把x=3代入函数2yx =,得:23m y==;如图(2)解:由函数图像可知,当x <0时,函数值y 随x 的增大而增大;当x >0时,函数值y 随x 的增大而减小;函数图像关于y 轴对称;函数值y 都大于0, ∴下列关于该函数图像的性质表述正确的是②③; (3)解:分别把x =-0.5、x =1.5、x =2.5代入函数2y x=, 得1y =4,2y =43,3y =45,∴123y y y >>.16.(1)∵双曲线在第一、三象限,∴4-k >0,k <4; (2)∵在每个象限内,y 随x 的增大而增大,∴4-k <0,k >4. 17.(1)∵点()1,2A 在这个函数的图象上, ∴121k -=, 解得3k =. 故答案是3k =. (2) 在函数1k y x-=图象的每一分支上,y 随x 的增大而增大, ∴10k -<, ∴1k <. 故答案是:1k <.18.解:∵点D是函数y2=2x(x>0)图象上的一点,∴△AOD的面积为1212⨯=,∵点B在函数y1=4x(x>0)的图象上,四边形ABCO为矩形,∴矩形ABCO的面积为4,∴阴影部分ODBC的面积=矩形ABCO的面积-△AOD的面积=4-1=3,19.解:(1)∵反比例函数kyx=(k为常数,k≠0)的图象经过点A(2,3),∴把点A的坐标代入解析式,得k32=,解得,k=6.∴这个函数的解析式为:6yx=.(2)∵反比例函数解析式6yx =,∴6=xy.分别把点B、C的坐标代入,得(-1)×6=-6≠6,则点B不在该函数图象上;3×2=6,则点C在函数图象上.(3)∵k>0,∴当x<0时,y随x的增大而减小.∵当x=-3时,y=-2,当x=-1时,y=-6,∴当-3<x<-1时,-6<y<-2.20.(1)点A'是该函数图像第三象限上的点,理由如下:过点A作AM⊥x轴于点M,过点A'作A N x'⊥轴于点N,点A 是反比例函数y =3x的图像第一象限上的点,且横坐标为a (a >0),3y a∴=,即3(,)A a a ,3,OM a AM a∴==, ,,AOM A ON AMO A NO OA OA '''∠=∠∠=∠=, ()AOM A ON AAS '∴≅,3,OM ON a AM A N a'∴====, 3(,)A a a '∴--,3()3a a-⋅-=,∴点A '是该函数图像第三象限上的点;(2)连接BO 并延长,交反比例函数第三象限的图像于点B ',连接CO 并延长,交反比例函数第三象限的图像于点C ',连接B C '',连接DO 并延长,交B C ''于点D , 此时,点D 即为所求.。
++6.1+反比例函数+练习题+2024—-2025学年北师大版九年级数学上册
第六章 6.1 反比例函数一、单项选择题1.下列函数中,为反比例函数的是( )A .y =-x 3B .y =-1xC .y =8-3xD .y =-x 2+1 2.下列问题情景中的两个变量成反比例函数的是( )A .汽车沿一条公路从A 地驶往B 地所需的时间t 与平均速度vB .圆的周长l 与圆的半径rC .圆的面积S 与圆的的半径rD .在电阻不变的情况下,电流强度I 与电压U3.已知y 是x 的反比例函数,且当x =2时y =3,则该反比例函数的表达式是( )A .y =6xB .y =16xC .y =6xD .y =6x-1 4.如果y 是z 的反比例函数,z 又是x 的反比例函数,则y 是x 的( )A .正比例函数B .反比例函数C .一次函数D .正或反比例函数5.将x =23 代入反比例函数y =-1x中,所得函数值记为y 1,又将x =y 1+1代入函数中,所得函数值记为y 2,再将x =y 2+1代入函数中,所得函数值记为y 3……如此继续下去,则y 2023的值为( )A .2B .-13C .23D .-32二、填空题6.在反比例函数y =-32x 中,自变量x 的取值范围为_______,比例系数为______ .7.已知函数y =-6x,当x =-2时,y 的值是____. 8.根据下表中反比例函数的自变量x 与函数y 的对应值,可得p 的值为____. x-2 1 y 3 p9.若函数y =m -4x是关于x 的反比例函数,则m 满足的条件是________. 10.若函数y =x 5-3a 是关于x 的反比例函数,则a 的值为_______.11.近视眼镜的度数y(度)与镜片焦距x(m)成反比例(即y =k x(k ≠0)),已知200度近视眼镜的镜片焦距为0.5m ,则y 与x 之间的函数关系式是___________.三、解答题12.已知函数y =(5m -3)x 2-n +(n +m).(1)当m ,n 为何值时,为一次函数?(2)当m ,n 为何值时,为正比例函数?(3)当m ,n 为何值时,为反比例函数?13.已知y -1与x -3成反比例,且x =4时,y =2.(1)求y 与x 之间的表达式,并判断这个函数是否为反比例函数;(2)当x =5时,求y 的值.14.已知反比例函数y=-.(1)求这个函数的比例系数k;(2)求当x=-10时y的值.答案一、1-5 BACAD二、6. x≠0 -327. 38. -69. m≠410. 211. y =100x三、12. 解:(1)n =1且m ≠35(2)n =1,m =-1(3)n =3,m =-313. 解:(1)∵y -1与x -3成反比例,∴设其表达式为y -1=kx -3(k≠0),将x =4,y =2代入得k =1,∴y =1x -3 +1,∴y 不是x 的反比例函数(2)当x =5时,y =3214. 解: (1)将反比例函数y =-化为一般形式,得y =,∴比例系数k=.(2)当x=-10时,y=-=, ∴当x=-10时,y的值为.。
第六章反比例函数及反比例函数k的几何意义专题训练北师大版2024—2025学年九年级上册
第六章反比例函数及反比例函数k的几何意义专题训练北师大版2024—2025学年九年级上册反比例函数比例系数k的几何意义(1)意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:例1.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M,若△POM的面积等于3,则k的值等于()A.﹣6B.6C.﹣3D.3变式1.如图,在▱AOBC中,对角线AB、OC交于点E,双曲线经过A、E两点,若▱AOBC的面积为18,则k的值是()A.5B.6C.7D.8变式2.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4变式3.如图,点P是反比例函数图象上的一点,PF⊥x轴于F点,且Rt△POF面积为4.则k的值为()A.8B.﹣8C.﹣4D.4变式4.如图,点M是反比例函数y=(x<0)图象上一点,MN⊥y 轴于点N.若P为x轴上的一个动点,则△MNP的面积为()A.2B.4C.6D.无法确定变式5.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连接OP,OQ,当点P在曲线C上运动,且点P在Q上方时,△POQ面积的最大值为()A.2B.3C.4D.6变式6.如图,已知点A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为3,则k的值为()A.3B.﹣3C.6D.﹣6变式7.关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△P AB中,PB∥y轴,AB∥x轴,PB 与AB相交于点B.若△P AB的面积大于12,则关于x的方程(a ﹣1)x2﹣x+=0的根的情况是()A.2个不相等的实数根B.2个相等的实数根C.1个实数根D.无实数根变式8.如图,两个反比例函数y1=和y2=在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为()A.4B.2C.1D.6变式9.如图,若反比例函数的图象经过点A,AB⊥x轴于点B,C点是y轴上一点,且△ABC的面积4,则k的值为()A.﹣8B.﹣4C.4D.8变式10.如图,反比例函数的图象经过矩形OABC的边AB的中点D,若矩形OABC的面积为6,则k的值为()A.﹣3B.3C.﹣6D.6变式11.如图,点A是反比例函数的图象上的一点,过点A作AB ⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC 的面积为3,则k的值是()A.3B.﹣6C.6D.﹣3变式12.下面四个图中反比例函数的表达式均为,则阴影部分的图形的面积为3的有()A.1个B.2个C.3个D.4个变式13.如图,将一块含30°角的三角板AOB按如图所示摆放在平面直角坐标系中,∠B=60°,∠BAO=90°,△AOB的面积为4,BO与x轴的夹角为30°,若反比例函数的图象经过点A,则k的值为()A.3B.C.6D.9变式14.如图1,在△OAB中,∠AOB=45°,点B的坐标为,点A在反比例函数的图象上,设△OAB的面积为S1;如图2,在△ABC中,AB=AC,BC在x轴上,且OB:BC=1:2,点A在反比例函数的图象上,设△ABC的面积为S2,则S1+S2的值为()A.B.5C.D.变式15.如图,已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线过OB的中点E,且与边BC交于点D,若△DOE的面积为7.5,则k的值是()A.5B.10C.15D.变式16.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为8.若点P(a,4)也在此函数的图象上,则a的值是()A.2B.﹣2C.4D.﹣4变式17.如图,在平面直角坐标系xOy中,点A、B分别在y、x 轴上,BC⊥x轴,点M、N分别在线段BC、AC上,BM=CM,NC=2AN,反比例函数y=(x>0)的图象经过M、N两点,P为x轴正半轴上一点,且OP:BP=1:4,△APN的面积为3,则k的值为()A.B.C.D.变式18.如图,在平面直角坐标系中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD在x轴上,反比例函数的图象过点A并交AD于点G,连接DF.若BE:AE=1:2,AG:GD=3:2,且△FCD的面积为,则k的值是()A.B.3C.D.5变式19.如图,平面直角坐标系中,矩形OABC的边与函数y=(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定例2.如图,矩形OABC的顶点A,C分别在x轴、y轴的正半轴上,它的对角线OB与函数的图象相交于点D,且,若矩形OABC的面积为24,则k的值是.变式1.如图,已知在平面直角坐标系xOy中,点P是▱ABCO对角线OB的中点,反比例函数的图象经过点A,点P.若▱ABCO的面积为30,且y轴将▱ABCO的面积分为1:3,则k的值为.变式2.如图,在平面直角坐标系xOy中,点A,B都在反比例函数y=(x>0)的图象上,延长AB交y轴于点C,过点A作AD⊥y轴于点D,连接BD并延长,交x轴于点E,连接CE.若AB=2BC,△BCE的面积是4.5,则k的值为.变式3.如图,在平面直角坐标系xOy中,等腰Rt△OAB,∠B=90°,点A在x轴正半轴上,点B在第一象限内,反比例函数y=的图象与AB交于点C,连接OC,若BC=2AC,△OBC的面积为6,则k的值为.变式4.如图,在平面直角坐标系中,C,A分别为x轴、y轴正半轴上的点,以OA,OC为边,在第一象限内作矩形OABC,且S矩形OABC=8,将矩形OABC翻折,使点B与原点O重合,折痕为MN,点C的对应点C'落在第四象限,过M点的反比例函数y=(k ≠0)的图象恰好过MN的中点,则点C'的坐标为.变式5.如图,在平面直角坐标系中,点A、C在y轴上,且,点B(﹣2,0)在x轴上,将△ABC绕点A逆时针旋转90°后得到△AB'C′,线段AB′与双曲线交于点D,连接B′C、C′C,当点D为AB′中点,且S△B'CC′=6时,则k的值是.变式6.如图,在△AOB中,OC平分∠AOB,=,反比例函数y=(k<0)图象经过点A、C两点,点B在x轴上,若△AOB的面积为9,则k的值为.变式7.如图,点A,B,C,D是菱形的四个顶点,其中点A,D在反比例函数y=(m>0,x>0)的图象上,点B,C在反比例函数y=(n<0)的图象上,且点B,C关于原点成中心对称,点A,C的横坐标相等,则的值为;过点A作AE∥x轴交反比例函数y=(n<0)的图象于点E,连结ED并延长交x轴于点F,连结OD.若S△DOF=7,则m的值为.变式8.如图,A(a,b)、B(﹣a,﹣b)是反比例函数y=的图象上的两点,分别过点A、B作y轴的平行线,与反比例函数y=的图象交于点C、D,若四边形ACBD的面积是8,则m、n之间的关系是.变式9.如图,平面直角坐标系xOy中,Rt△ABO的斜边BO在x轴正半轴上,OB=5,反比例函数y=(x>0)的图象过点A,与AB边交于点C,且AC=3BC,则a的值为,射线OA,射线OC分别交反比例函数y=(b>a>0)的图象于点D,E,连接DE,DC,若△DEC的面积为45,则b的值为.变式10.如图,点A、B在反比例函数y=(x>0)的图象上,延长AB交x轴于C点,若△AOC的面积是12,且点B是AC的中点,则k=.变式11.如图,菱形ABCD中,∠ABC=120°,顶点A,C在双曲线上,顶点B,D在双曲线上,且BD经过点O.若k1+k2=2,则菱形ABCD面积的最小值是.变式12.如图,在平面直角坐标系xOy中,正方形ABCD的顶点A、C恰好落在双曲线上,且点O在AC上,AD交x轴于点E.①当A点坐标为(1,m)时,D点的坐标为;②当CE平分∠ACD时,正方形ABCD的面积为.例3.如图,O为坐标原点,点A(﹣1,5)和点B(m,﹣1)均在反比例函数图象上(1)求m,k的值;(2)当x满足什么条件时,﹣x+4>﹣;(3)P为y轴上一点,若△ABP的面积是△ABO面积的2倍,直接写出点P的坐标.变式1.已知点A(a,ma+2)、B(b,mb+2)是反比例函数y=图象上的两个点,且a>0,b<0,m>0.(1)求证:a+b=﹣;(2)若OA2+OB2=2a2+2b2,求m的值;(3)若S△OAB=3S△OCD,求km的值.变式2.如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页,共6页
初中数学北师大版九年级上册第六章练习题(无答案)
副标题
一、选择题(本大题共18小题,共54.0分)
1. 下列函数:①y =5
x−3;②y =2
x +1;③y =3
x 2;④y =7
x 中,反比例函数的个数是( ). A. 1 B. 2 C. 3 D. 4 2. 要使函数y =(a −2)x b−1是反比例函数,则a 、b 应满足 ( )
A. a ≠2,b =0
B. a ≠2,b =2
C. a =2,b =0
D. a =2,b =2 3. 若函数y =x 2m+1为反比例函数,则m 的值是( )
A. 1
B. 0
C. 0.5
D. −1 4. 下列说法中,正确的是( )
A. 矩形的面积公式S =ab 中,当S 是常量时,a 与b 成反比例关系
B. 圆的面积公式S =πr 2,S 与r 成正比例关系
C. 函数y =1
x−1中,y 与x 成反比例关系 D. 函数y =1
x −1中,y 与x 成正比例关系
5. 下列函数中,属于反比例函数的是( )
A. 两个变量的和等于5
B. 两个变量的差等于5
C. 两个变量的积等于5
D. 两个变量的商等于5
6. 定义:
[a,b]为反比例函数y =a
bx (ab ≠0,a ,b 为实数)的“关联数”.反比例函数y =k 1
x
的“关联数”为[m,m +2],反比例函数y =k 2x
的“关联数”为[m +1,m +3],
若m >0,则( ) A. k 1=k 2 B. k 1>k 2 C. k 1<k 2 D. 无法比较
7. 已知变量y 与x 成反比例,当x =3时,y =−6,则该反比例函数的表达式为( )
A. y =18
x
B. y =−18
x
C. y =2
x
D. y =−2
x
8. 设某矩形的面积为S ,相邻的两条边长分别为x 和y.那么当S 一定时,给出以下四
个结论:①x 是y 的正比例函数;②y 是x 的正比例函数;③x 是y 的反比例函数;④y 是x 的反比例函数.其中正确的为( )
A. ①②
B. ②③
C. ③④
D. ①④ 9. 下列y 关于x 的函数中,属于反比例函数的是( )
A. y =−3x
B. y =x
3 C. y =3
x+1 D. y =3
x 10. 下列函数中,y 是x 的反比例函数的是( )
A. y =k
x
B. y =1x+1
C. y =1x 2
D. y =3x。