PLC控制步进电机分度的设计与实现

合集下载

PLC控制步进电机正实现正反转速度控制定位

PLC控制步进电机正实现正反转速度控制定位

PLC控制步进电机正实现正反转速度控制定位 1.步进电机正反转如何实现2.如何控制步进电机速度(即,如何计算脉冲频率):实际步进电机控制很简单,应用都是傻瓜了,厂家做好步进电机的驱动器,步进电机如何工作由驱动器来控制,我们不需要对步进电机做深入的了解,只要知道步进电机驱动器的应用方法即可。

当然简单的步进电机工作特性,还是必须知道的,下面我会介绍!细分的作用:两相步进电机,基本步距角1.8度,即:200个脉冲电机转一圈,称之为整步。

可以在步进电机的驱动器上设定细分数,其作用是:设置为2细分(也称为半步)时,则步距角为0.9度,400个脉冲转一圈。

设置为4细分时,则步距角为0.45度,800个脉冲转一圈。

设置为8细分时,则步距角为0.225度,1600个脉冲转一圈。

细分数越高,上位机发一个脉冲走的长度越小,精度越高!这个很好理解,一个脉冲走10毫米,10%误差时,一个脉冲误差1毫米,一个脉冲走1毫米,同样是10%误差时,一个脉冲误差0.1毫米。

当然,我们不可能把细分数设的很大,达到每个脉冲行走的长度特别小的目的。

您记住两相步进电机200个脉冲转一圈就行了!细分越大,步进电机转一圈的脉冲数越大!如果想让步进机以每分钟600转的速度,行走400毫米,我们如何计算上位机需要发出的脉冲数及脉冲频率?如何控制步进电机速度(即,如何计算脉冲频率):假定设置为四细分数,电机转一圈所需要的脉冲数即为800个,要实现步进电机600转/分的转速,上位机应该发送的脉冲频率计算方法:频率的概念是一秒钟的时间发送的脉冲个数所以,先计算步进电机每秒钟的转数600/60=10转/秒再计算10转/秒需要的脉冲数10 X 800 = 8000个即脉冲频率为 8000 ,也就是8K结论,为了实现步进电机600转/分的转速,上位机应该保持8K的脉冲输出频率现在您明白了吧?为了计算脉冲频率必须知道的两个前提条件是:1、知道步进电机转一圈需要的脉冲数;2、知道步进电机的转速,转速单位是:转/如何计算步进电机所需要的脉冲数:假定设置为四细分数,电机转一圈所需要的脉冲数即为800个,要实现步进电机行走400毫米的距离,上位机应该发送的脉冲个数计算方法:如果步进电机输出轴与丝杠(螺距:10mm )直连,或是通过皮带轮传动,轮周长10mm. 即,步进电机转一圈,机械的行走长度为10mm。

步进电机的PLC控制系统设计方案

步进电机的PLC控制系统设计方案

一、引言随着微电子技术和计算机技术的发展,可编程序控制器有了突飞猛进的发展,其功能已远远超出了逻辑控制、顺序控制的范围,它与计算机有效结合,可进行模拟量控制,具有远程通信功能等。

有人将其称为现代工业控制的三大支柱<即PLC,机器人,CAD/CAM)之一。

目前可编程序控制器<Programmable Controller)简称PLC已广泛应用于冶金、矿业、机械、轻工等领域,为工业自动化提供了有力的工具。

二、PLC的基本结构PLC采用了典型的计算机结构,主要包括CPU、RAM、ROM和输入/输出接口电路等。

如果把PLC看作一个系统,该系统由输入变量-PLC-输出变量组成,外部的各种开关信号、模拟信号、传感器检测的信号均作为PLC的输入变量,它们经PLC外部端子输入到内部寄存器中,经PLC内部逻辑运算或其它各种运算、处理后送到输出端子,它们是PLC的输出变量,由这些输出变量对外围设备进行各种控制。

三、控制方法及研究1、FP1的特殊功能简介(1> 脉冲输出FP1的输出端Y7可输出脉冲,脉冲频率可通过软件编程进行调节,其输出频率范围为360Hz~5kHz。

(2> 高速计数器<HSC)FP1内部有高速计数器,可同时输入两路脉冲,最高计数频率为10kHz,计数范围-8388608~+8388607。

(3> 输入延时滤波FP1的输入端采用输入延时滤波,可防止因开关机械抖动带来的不可靠性,其延时时间可根据需要进行调节,调节范围为1ms~128ms。

(4> 中断功能FP1的中断有两种类型,一种是外部硬中断,一种是内部定时中断。

2、步进电机的速度控制FP1有一条SPD0指令,该指令配合HSC和Y7的脉冲输出功能可实现速度及位置控制。

速度控制梯形图见图1,控制方式参数见图2,脉冲输出频率设定曲线见图3。

图1 速度控制梯形图图2 控制方式参数图3 脉冲输出频率设定曲线 3、控制系统的程序运行图4 控制系统原理图图4是控制系统的原理接线图,图4中Y7输出的脉冲作为步进电机的时钟脉冲,经驱动器产生节拍脉冲,控制步进电机运转。

用PLC控制步进电机的原理和方法及控制编辑器

用PLC控制步进电机的原理和方法及控制编辑器

用PLC控制步进电机的原理和方法1、概述在组合机床自动线中,一般根据不同的加工精度要求设置三种滑台(1)液压滑台,用于切削量大,加工精度要求较低的粗加工工序中;(2)机械滑台,用于切削量中等,具有一定加工精度要求的半精加工工序中;(3)数控滑台,用于切削量小,加工精度要求很高的精加工工序中。

可编程控制器(简称PLC)以其通用性强、可靠性高、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场接口安装方便等一系列优点,被广泛应用于工业自动控制中。

特别是在组合机床自动生产线的控制及CNC机床的S、T、M功能控制更显示出其卓越的性能。

PLC控制的步进电机开环伺服机构应用于组合机床自动生产线上的数控滑台控制,可省去该单元的数控系统使该单元的控制系统成本降低70~90%,甚至只占用自动线控制单元PLC的3~5个I/O接口及<1KB的内存。

特别是大型自动线中可以使控制系统的成本显著下降。

2、PLC控制的数控滑台结构一般组合机床自动线中的数控滑台采用步进电机驱动的开环伺服机构。

采用PLC控制的数控滑台由可编程控制器、环行脉冲分配器、步进电机驱动器、步进电机和伺服传动机构等部分组成,伺服传动机构中的齿轮Z1、Z2应该采取消隙措施,避免产生反向死区或使加工精度下降;而丝杠传动副则应该根据该单元的加工精度要求,确定是否选用滚珠丝杠副。

采用滚珠丝杠副,具有传动效率高、系统刚度好、传动精度高、使用寿命长的优点,但成本较高且不能自锁。

3、数控滑台的PLC控制方法数控滑台的控制因素主要有三个:3.1行程控制一般液压滑台和机械滑台的行程控制是利用位置或压力传感器(行程开关/死挡铁)来实现;而数控滑台的行程则采用数字控制来实现。

由数控滑台的结构可知,滑台的行程正比于步进电机的总转角,因此只要控制步进电机的总转角即可。

由步进电机的工作原理和特性可知步进电机的总转角正比于所输入的控制脉冲个数;因此可以根据伺服机构的位移量确定PLC输出的脉冲个数:n=DL/d(1)式中DL——伺服机构的位移量(mm)d——伺服机构的脉冲当量(mm/脉冲)3.2进给速度控制伺服机构的进给速度取决于步进电机的转速,而步进电机的转速取决于输入的脉冲频率;因此可以根据该工序要求的进给速度,确定其PLC输出的脉冲频率:f=Vf/60d(Hz)(2)式中Vf——伺服机构的进给速度(mm/min)可编程逻辑控制器(Programmable Logic Controller,简称PLC),一种具有微处理机的数字电子设备,用于自动化控制的数字逻辑控制器,可以将控制指令随时加载内存内储存与执行。

plc步进电机控制方法攻略程序+图纸

plc步进电机控制方法攻略程序+图纸

PLC控制步进电机应用实例基于PLC的步进电机运动控制一、步进电机工作原理1. 步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单2. 步进电机的运转原理及结构电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,即A 与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A‘与齿5相对齐,(A‘就是A,齿5就是齿1)3. 旋转如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。

如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。

如按A,C,B,A……通电,电机就反转。

由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。

而方向由导电顺序决定。

步进电机的静态指标术语拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。

PLC 控制步进电机分度的设计与实现

PLC 控制步进电机分度的设计与实现

PLC 控制步进电机分度的设计与实现1、引言大型轴承内、外套上的分度、打孔是轴承中的关键工序,它的工艺水平和质量的高低直接影响轴承的质量、寿命和制造成本。

目前轴承行业大型轴承内、外套的分度方式普遍采用人工分度方式,其分度精度低、累积误差大、工作效率低、工人劳动强度大,对轴承性能的提高造成很大的影响。

我们所研制的大型数控分度头,采用PLC 可编程控制器,控制步进电机驱动蜗轮蜗杆对执行工件进行自动分度,结构简单、制造费用低,较好地解决了生产中的实际问题。

2、总体设计方案步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

其重要特点是只有周期性的误差而无累积误差。

步进电机的运行要有步进电机驱动器这一电子装置进行驱动,这种装置就是把控制系统发出的脉冲信号转化为步进电机的角位移,或者说:控制系统每发一个脉冲信号,通过驱动器就使步进电机旋转一步距角。

所以步进电机的转速与脉冲信号的频率成正比。

因此,控制步进脉冲信号的频率,可以对电机精确调速;控制步进脉冲的个数,可以对电机精确定位。

在我们所设计的数控分度头中,就是利用这一线性关系,用PLC 进行电气控制、编写分度算法程序,控制脉冲信号的频率和脉冲数,步进电机驱动蜗轮蜗杆对执行工件进行精确分度,并可实现调整、手动分度、自动分度等多种电气控制。

电气控制方案为PLC+步进电机及可细分驱动器+数显尺。

PLC 选用DVP20EH00T,AC220 伏供电20 点200HZ 晶体管输出类型;根据分度精度要求考虑,选用可细分驱动器及步进电机,考虑分度时对工件的扭矩M=FR=fNR ,计算出最大扭矩为27Nm。

按矩频特性选取步进电机,选130BYG350A 型。

基于PLC的步进电机运动控制系统设计

基于PLC的步进电机运动控制系统设计

机电工程系基于PLC的步进电机运动控制系统设计专业:测控技术与仪器指导教师:xxx姓名:xxx _______________(2011年5月9日)目录一、步进电机工作原理 (1)1.步进电机简介 (1)2。

步进电机的运转原理及结构 (1)3。

旋转 (1)4。

步进电动机的特征 (2)1)运转需要的三要素:控制器、驱动器、步进电动机 (2)2)运转量与脉冲数的比例关系 (2)3)运转速度与脉冲速度的比例关系 (3)二、西门子S7—200 CPU 224 XP CN (3)三、三相异步电动机DF3A驱动器 (3)1.产品特点 (3)2。

主要技术参数 (3)四、PLC与步进电机驱动器接口原理图 (5)五、PLC控制实例的流程图及梯形图 (6)1。

控制要求 (6)2.流程图 (6)3.梯形图 (7)六、参考文献 (9)七、控制系统设计总结 (9)基于PLC的步进电机运动控制系统设计一、步进电机工作原理1.步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角.这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单2.步进电机的运转原理及结构电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开.0、1/3て、2/3て,即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A’与齿5相对齐,(A’就是A,齿5就是齿1)3.旋转如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。

基于plc控制的步进电机控制系统设计论文

基于PLC的步进电机控制系统设计机械电子专业 XXX指导教师 XXX摘要:以德国西门子公司小型可编程逻辑控制器S7—200为中央处理单元,以步进电机作为控制对象。

介绍了PLC的概念原理以与控制的优点,步进电机的概念与工作原理,现状以与发展方向。

PLC 与步进电动机一起结合起来有很高的研究价值与意义。

本文在介绍步进电机控制特点的基础上,重点研究了步进电机的控制策略。

设计了控制系统的硬件方案,并编写了相应的控制流程,测试了实际控制效果,并提出相应的整改措施,达到更加合理高效的目标。

对于使用步进驱动器的步进控制系统,控制器对步进电机的控制关键在于控制脉冲信号的产生。

介绍了使用该控制器产生控制脉冲信号的多种不同实现方法,进而实现对步进电机不同控制方法。

关键词:可编程逻辑控制器;步进电机;控制策略;控制流程The Research Of Stepper Control Method Motor Based OnPLC Student majoring inMachinery and electronics specialtyXXXTutorXXXAbstract:With small Germany Siemens S7-200 programmable logic controller of the central processing unit, with stepping motor as control object. This paper introduces the concept of PLC principle and advantage of the control, the concept and working principle of stepper motor, the current situation and development direction. PLC combined with stepper motor has a high research value and significance. In this paper, based on the introduction to the characteristics of the stepper motor control, step motor control strategies are researched. Design the hardware of the control system scheme, and write the corresponding control process, test the actual control effect, and puts forward the corresponding rectification measures, achieve more reasonable and efficient. For using stepper drive stepper control system, the controller of stepper motor control is the key to control the generation of pulse signal. This paper introduces the control using the controller a variety of different implementation methods of the pulse signal, then the method to realize different control the stepper motor.1 / 23Keywords:Programmable logic controller; Stepping motor; The control strategy; Control the process引言伴随着经济的快速发展,科技的日新月异,产品更新换代周期缩短,生产效率有了更高的要求,特别是计算机技术的广泛的推广和普与,信息产业发挥了它无与伦比的优越性和高效性,其中可编程逻辑器件就有了更多的用武之地。

PLC控制步进电机的系统设计(毕业设计)

摘要本文主要阐述了三相三拍步进电动机结构和步进电机原理,以及对步进电机的调速和正反转的研究。

采用PLC基本逻辑指令和常用指令的方法对步进电机调速很正反转控制。

步进电机是一种将脉冲信号转换成直线位移或角位移的执行元件。

步进电机的输出位移量与输入脉冲个数成正比,其速度与单位时间内输入的脉冲数(即脉冲频率)成正比,其转向与脉冲分配到步进电机的各相绕组的相序有关。

所以只要控制指令脉冲的数量、频率及电机绕组通电的相序,便可控制步进电机的输出位移量、速度和方向。

步进电机具有较好的控制性能,其启动、停车、反转及其它任何运行方式的改变都可在少数脉冲内完成,且可获得较高的控制精度,因而得到了广泛的应用。

SummaryThis paper describes the structure of three-phase three-beat stepper motors and stepper motor principle,and the stepper motor speed control and reversing research. Using PLC basic logic instructions and common method of instruction is reversing the stepper motor speed control.Stepper motor is a pulse signal into a linear displacement or angular displacement of the actuator.The output of the stepper motor displacement is proportional to the number of input pulses,the speed and unit time input pulses (ie pulse frequency)is proportional to its steering and pulse distribution phase stepper motor winding phase sequence of the.So long as the control command pulse number, frequency and phase sequence of the motor windings are energized,the output can be controlled stepper motor displacement, velocity and direction.Stepper motor has good control performance, and its start,stop,reverse and other changes in the way of any operation can be completed within a few pulses, and the availability of high control accuracy,and have been widely used。

毕业设计(论文)—基于plc的步进电机控制系统设计

毕业设计(论文)—基于plc的步进电机控制系统设计基于PLC步进电机控制系统摘要:随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。

研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。

步进电机是将电脉冲信号变换成机械角位移的一种装置,每个脉冲使转轴步进一个步距角增量,输出角位移与输入脉冲数成正比,转速与输入脉冲成正比,转速与输入脉冲频率成正比。

步进电机的控制方式简单,属于开环控制,且无累积定位误差,有较高的定位精度,而PLC作为一种工业控制微机,是实现电机一体化的有力工具,因此基于PLC的步进电机控制技术已广泛用于数字定位控制中。

本控制系统的设计,由硬件设计和软件设计两部分组成。

其中,硬件设计主要包括步进电机的工作原理、步进电机的驱动电路设计、PLC的输入输出特性、PLC的外围电路设计以及PLC与步进电机的连接与匹配等问题的实现。

软件设计包括主程序以及各个模块的控制程序,最终实现对步进电机转动方向及转动速度的控制。

本系统具有智能性、实用性及可靠性的特点。

关键词:步进电机、PLC、转速控制、方向控制Stepping motor control system based on PLC Abstract:With the development of microelectronics and computer technology, the stepper motor is increasing demanded, which is widely used in printers, electric toys and other consumer products, and CNC machine tools, industrial robots, medical equipment and other electrical machinery products, and is applied in the national economy in various fields. Researching of stepper motor control system to improve the control accuracy and response speed, energy conservation is so important.Stepper motor is a device which will transform electrical pulses into mechanical angular displacement so that Shaft of each pulse to a step angle stepping increment, SO output angular displacement is proportional to the input pulses, speed is proportional to the input pulse speed and speed is proportional to input pulse frequency. Stepper motor control is simple, is open-loop control, and no accumulation of positioning error, a high positioning accuracy,and the PLC as an industrial control computer, is a powerful tool for the integration of the motor, Therefore, the stepper motor control based on PLC technology has been widely used for digital positioning control.The control system consists of hardware and software design of two parts. Among them, the hardware design includes the working principle of stepper motor, stepper motor drive circuit design, PLC input and output characteristics, PLC and PLC external circuit connection with the stepper motor and matching Problem. Software design, including the main program and each module of the control program, ultimately realizes on the stepper motor rotation direction and rotation speed control This system has the intelligence, practicality and reliability features.Keywords: Stepper motor, PLC, speed control, direction control目录1、绪论 (1)1.2问题的提出 (3)1.3设计目的及系统功能 (4)2、PLC控制步进电机系统简介 (5)2.1PLC控制系统 (5)2.1.1 PLC概述 (5)2.1.2 PLC系统的其它设备 (9)2.1.3 PLC的通信联网 (9)2.1.4 PLC控制系统的设计基本原则 (9)2.1.5 PLC软件系统及常用编程语言 (10)2.1.6 PLC的特点 (10)2.1.7 PLC的应用领域 (12)2.1.8 PLC未来展望 (13)2.2步进电机 (13)2.2.1 步进电机概述 (13)2.2.2 步进电机的特性 (14)2.2.3 与直流电机的比较 (14)2.2.4 步进电机的种类 (17)2.2.5 反应式步进电机的控制 (17)2.3本设计所用步进电机 (21)3、硬件电路设计 (23)3.1硬件设计思路 (23)3.2总体设计框图 (23)3.3外围电路设计及分析 (24)3.3.1 键盘控制电路 (24)3.3.2步进电动机驱动电路 (26)2.6.3 LED数码显示电路 (31)3.4步进电机控制系统电路图 (34)4、软件设计 (36)4.1可编程控制器软件设计原理 (36)4.1.1可编程序控制器的工作原理 (36)4.1.2 扫描周期 (37)4.2 PLC的选型 (38)4.2.1 输入输出(I/O)点数的估算 (38)4.2.2 存储器容量的估算 (38)4.2.3 控制功能的选择 (38)4.2.4 机型的选择 (40)4.3FX可编程序控制器简介 (42)2N4.4PLC控制程序设计 (42)4.4.1 PLC控制系统的设计基本原则 (42)4.4.2 PLC编程步骤 (42)4.4.3 PLC提供的编程语言 (42)4.5.1启动停止控制环节 (45)4.5.2 PLC实用驱动电源控制环节 (45)结论 (50)致谢 (51)参考文献 (52)附录 (53)1、绪论1.1技术概述在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序)·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。

由于水平有限,本实例采用非专业述语论述,请勿引用。

·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择!·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。

·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。

当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。

·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。

·程序如下图:(此程序只为说明用,实用需改善。

)·说明:·在原点时将D8140的值清零(本程序中没有做此功能)·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。

当正转动作到A点时,D8140的值是3000。

此时闭合X1,机械反转动作到B点,也就是-3000的位置。

D8140的值就是-3000。

·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。

·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI):·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。

D8140的值为0·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子装置进行驱 动 , 种装 置就 是把 控制 系统 发 出 的 这
脉 冲信号转化 为步 进 电机 的角 位 移 , 者 说 :控制 系 或 统每发一个脉 冲信 号 , 通过 驱 动器就 使 步进 电机旋 转

松开 、 上升、 、 、 分度 下降 卡紧再松开的顺序控制 。
步距 角 。所 以步进 电机 的转速与脉 冲信 号 的频 率成 正 比。因此 , 控制步进脉 冲信号 的频率 , 以对 电机精 可 确调速 ; 控制步进脉 冲的个数 , 以对 电机精确定位 。 可 在我们所设计 的数 控分 度 头 中 , 就是 利用 这 一线
步进 电机 及配套细分 驱动器 M 3 10 S一 H 3 M。P C的 I L /
O配 置如表 1 :
表 1 IO分 配 表 /
地址 作 用 地址 作用
『. 00
1. 01
调整/ 分度
急停
Q . oo
Q . o1
脉 ቤተ መጻሕፍቲ ባይዱ数
花 盘上 升
低, 较好地 解决 了生产 中的实际问题 。
中图 分 类 号 :M5 16 T 7 . 1 文献 标 识 码 : B 文 章 编 号 :04— 4 0 2 0 )3— 0 0— 2 10 0 2 (0 8 0 0 4 0
0 引言
大型轴 承内 、 外套 上的分度 、 L 打孑 是轴承 中的关键 工序 , 它的工艺水平和质量 的高低 直接 影响轴 承 的质 量、 寿命和制造成 本 。 目前轴承行业 大型轴承 内 、 外套 的分度方式 普遍采 用人 工 分度 方式 , 分度 精 度低 、 其 累积误差大 、 工作效率低 、 劳动强 度大 , 对轴承性 能 的
1 总体 设 计 方 案
步进 电机是将 电脉 冲信号转变为角位 移或线位 移
的开环控制元件 。在非超 载的情况下 , 电机的转速 、 停
Q. 05 Q. 07
调 整启 动/ 结束 Q . 06
止 的位 置只取决 于脉 冲信号 的频 率 和脉 冲数 , 而不 受 负载 变化 的影响 , 即给 电机 加一个脉 冲信号 , 电机 则转 过一 个步距 角 。其重要特 点是只有周期性 的误差 而无
维普资讯
机床 电器 20 . 0 83
计 算机 ・ L P C应用——P c控制步进 电机分度 的设计与实现 L
P C控 制 步进 电机 分 度 的设 计 与 实现 L
陈 果 ( 阳 L C轴承有 限公 司 ,7 0 9 洛 Y 4 13 )
摘要 : 本文简要介绍利用 P C控制步进 电饥对执行元件进行 自动分度算法 , L 可实现 30 内转角误差 为 0 保证 了精确分度 , 6。 , 并给出分度算 法梯形 图。 关键词 :L P C步进 电饥 ; 分度 ; 分度算法 ; 梯形 图
4 一 0
维普资讯
计算机 ・ L P C应用—
P C控制步进 电机分度 的设计 与实现 L
机床 电器 2 0 . 083
电机先按 D 4+1 脉 冲分度 , 数按 D 个 余 2~D 5累积 , 当 累积数大于 D 时 , 8 步进 电机则按 D 4个脉 冲分度 一次 ,

制脉 冲信号 的频 率和 脉 冲数 , 步进 电机驱 动 蜗轮 蜗杆
对执 行 工件进 行精 确分 度 , 可实 现调整 、 动分度 、 并 手
半, 步进 电机先按 D 4个脉冲分度 , 步进 电机每转过一
个分度角 , 余数 D 5累积一次 , 当累积数大于 D 8时 , 步进
自动 分度等多种 电气控制 。 电气控 制方案 为 P C+步进 电机及可 细分 驱动器 L
1. 02 1. 03 1. 04 1. 05 1. 06 1. 07
『. 0 0 1 0 1 一1.3
步进 转 位
Q . O2
花盘下 降 故 障指 示 方向
花盘 卡 紧/ 松开 Q . O3 花盘 上 升/ 降 Q . 下 o4 自动分 度 驱 动器 信号
孔 数设 置
+ 显 尺 。P C选 用 D P 0 H 0 A 20 数 L V 2 E 0 T, C 2 V供 电 2 0

电机则按 D 4+1 个脉 冲分度一 次 , 时累积数减 去 D 此 4 +1 脉冲的余数 即 D 2~D , 5然后 再按 D 4个脉 冲分 度,
依次类推直至 分度完 毕 ; 若余 数大 于孑 数 的一 半 , L 步进
提高造成 很 大 的影 响 。我们 所 研 制 的 大型 数 控 分度 头, 采用 P C可编程控 制器 , L 控制 步进 电机 驱 动蜗 轮 蜗杆对执行 工件 进行 自动分 度 ,结构 简 单 、 造 费 用 制
点 2 0 z晶体 管输 出类 型 ; 0H 根据 分 度 精度 要 求 考 虑 , 选用可细分 驱动器 及步 进 电机 , 考虑 分度 时对 工件 的 扭矩 M =F d R , 算 出最 大扭 矩 为 2 m。按 矩 R= v 计 7N 频特性 选取步 进 电机 , 10 Y 30 选 3 B G 5 A型 三相 混合 式
性关系 , P C进行 电气控 制 、 写分度 算法程 序 , 用 L 编 控
2 分 度 算 法
设总孑数 为 D , L 2 总脉冲数 D , o 分度脉冲可计算 为 : D / 2= 4 + 5 余数 ) 0D D D( 。若 D 0时 , 5= 步进 电机每转
动一次 , 电机转 角控 制脉 冲均 为 D 。若 D ≠0时 , 4 5 将 D 5与孔数 的一半 ( 2 2=D ) D/ 8 进行 比较 , 若小 于孔数 的
累积 误差 。步进 电机 的运行 要有步进 电机驱 动器 这一
该数控分度头是通过径 向安装数显尺来控制径 向分 度尺寸 ; P C控制 步进 电机轴向分度。操作人员启动 由 L
电源 、 输入分度数 后 , 调整/ 分度开关 置于分度位置 即可 实现手动或 自动分度。在 自动分度 中可实现分度机构 的
相关文档
最新文档