三角函数教案
三角函数的概念教学设计一等奖4篇

第1篇三角函数的概念教学设计一等奖三角函数一. 教学内容:三角函数【结构】二、要求(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、< 1271864542"> 的意义。
三、热点分析1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.4. 立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度.四、复习建议本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。
三角函数的图像与性质教案

三角函数的图像与性质优秀教案一、教学目标:1. 理解三角函数的定义,掌握正弦函数、余弦函数、正切函数的图像与性质。
2. 能够运用三角函数的图像与性质解决实际问题。
3. 提高学生的数学思维能力,培养学生的数学审美观念。
二、教学内容:1. 三角函数的定义与基本性质2. 正弦函数的图像与性质3. 余弦函数的图像与性质4. 正切函数的图像与性质5. 三角函数图像与性质的综合应用三、教学重点与难点:1. 重点:三角函数的定义,正弦函数、余弦函数、正切函数的图像与性质。
2. 难点:三角函数图像与性质的综合应用。
四、教学方法:1. 采用问题驱动法,引导学生探索三角函数的图像与性质。
2. 利用多媒体课件,展示三角函数的图像,增强学生的直观感受。
3. 结合实际例子,让学生学会运用三角函数的图像与性质解决实际问题。
4. 开展小组讨论,培养学生的合作与交流能力。
五、教学过程:1. 导入:通过复习初中阶段学习的三角函数知识,引导学生进入本节课的学习。
2. 三角函数的定义与基本性质:讲解三角函数的定义,引导学生掌握三角函数的基本性质。
3. 正弦函数的图像与性质:利用多媒体课件展示正弦函数的图像,讲解正弦函数的性质。
4. 余弦函数的图像与性质:利用多媒体课件展示余弦函数的图像,讲解余弦函数的性质。
5. 正切函数的图像与性质:利用多媒体课件展示正切函数的图像,讲解正切函数的性质。
6. 三角函数图像与性质的综合应用:结合实际例子,讲解如何运用三角函数的图像与性质解决实际问题。
7. 课堂小结:对本节课的内容进行总结,强调重点知识点。
8. 课后作业:布置相关练习题,巩固所学知识。
9. 课后反思:教师对本节课的教学进行反思,总结经验教训。
10. 教学评价:对学生的学习情况进行评价,了解学生对三角函数图像与性质的掌握程度。
六、教学策略与资源:1. 教学策略:采用问题引导式教学,鼓励学生主动发现问题、解决问题。
利用数学软件或在线工具,让学生亲自动手绘制三角函数图像,加深对函数性质的理解。
三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。
三角函数的图象与性质教案

三角函数的图象与性质教案一、教学目标1. 理解三角函数的定义和基本性质。
2. 学会绘制和分析三角函数的图象。
3. 掌握三角函数的周期性、奇偶性、单调性等性质。
4. 能够应用三角函数的性质解决问题。
二、教学内容1. 三角函数的定义和基本性质。
2. 三角函数的图象绘制方法。
3. 三角函数的周期性性质。
4. 三角函数的奇偶性性质。
5. 三角函数的单调性性质。
三、教学重点与难点1. 三角函数的定义和基本性质的理解。
2. 三角函数图象的绘制和分析。
3. 三角函数周期性、奇偶性、单调性的理解和应用。
四、教学方法1. 采用多媒体教学,展示三角函数的图象和性质。
2. 利用数学软件或图形计算器进行图象绘制和分析。
3. 引导学生通过观察、分析和归纳三角函数的性质。
4. 利用例题和练习题巩固所学知识。
五、教学安排1. 第一课时:三角函数的定义和基本性质。
2. 第二课时:三角函数的图象绘制方法。
3. 第三课时:三角函数的周期性性质。
4. 第四课时:三角函数的奇偶性性质。
5. 第五课时:三角函数的单调性性质。
六、教学目标1. 理解正弦函数、余弦函数的周期性。
2. 学会应用周期性解决实际问题。
3. 掌握正弦函数、余弦函数的相位变换。
七、教学内容1. 正弦函数、余弦函数的周期性。
2. 周期性在实际问题中的应用。
3. 正弦函数、余弦函数的相位变换。
八、教学重点与难点1. 周期性的理解和应用。
2. 相位变换的理解和应用。
九、教学方法1. 通过实例讲解周期性在实际问题中的应用。
2. 利用数学软件或图形计算器进行相位变换的演示。
3. 引导学生通过观察、分析和归纳正弦函数、余弦函数的周期性和相位变换。
十、教学安排1. 第六课时:正弦函数、余弦函数的周期性。
2. 第七课时:周期性在实际问题中的应用。
3. 第八课时:正弦函数、余弦函数的相位变换。
十一、教学目标1. 理解正切函数的图象和性质。
2. 学会应用正切函数解决实际问题。
3. 掌握正切函数的周期性和奇偶性。
三角函数的定义教案

三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。
下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。
众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。
再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。
所以,我们这节课要研究的主要内容就是周期现象与周期函数。
(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。
请你举出生活中存在周期现象的例子。
(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。
三角函数教案优秀3篇

三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。
情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。
2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
任意角的三角函数教案
任意角的三角函数教案关键信息项1、教学目标理解任意角三角函数的定义。
掌握三角函数在各象限的符号。
能运用三角函数的定义解决相关问题。
2、教学重难点重点:任意角三角函数的定义。
难点:三角函数在各象限的符号判断及应用。
3、教学方法讲授法练习法讨论法4、教学工具多媒体课件黑板、粉笔导入新课讲授课堂练习课堂总结作业布置11 教学目标111 知识与技能目标通过本节课的学习,学生能够理解任意角三角函数(正弦、余弦、正切)的定义,明确其定义域和值域,并能熟练运用定义求解相关问题。
112 过程与方法目标经历从锐角三角函数推广到任意角三角函数的过程,培养学生的数学抽象和逻辑推理能力。
113 情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索、敢于创新的精神,感受数学的严谨性和逻辑性。
12 教学重难点任意角三角函数的定义是本节课的重点。
学生需要明确在平面直角坐标系中,对于任意角α,其终边上任取一点 P(x,y),点 P 到原点的距离 r =√(x²+ y²) ,则正弦函数sinα = y/r,余弦函数cosα = x/r,正切函数tanα = y/x (x ≠ 0)。
122 教学难点三角函数在各象限的符号判断及应用是本节课的难点。
由于角的终边位置不同,三角函数值的符号也不同,需要学生牢记“一全正,二正弦,三正切,四余弦”的口诀,并能灵活运用。
13 教学方法131 讲授法通过教师的详细讲解,让学生理解任意角三角函数的定义、性质和应用。
132 练习法安排适量的课堂练习和课后作业,让学生巩固所学知识,提高解题能力。
133 讨论法组织学生进行小组讨论,共同解决问题,培养学生的合作精神和思维能力。
14 教学工具141 多媒体课件利用多媒体课件展示图形、动画等,帮助学生直观地理解任意角三角函数的概念。
142 黑板、粉笔用于教师板书重点内容和解题过程,方便学生记录和复习。
15 教学过程151 导入通过回顾锐角三角函数的定义,引导学生思考如何将其推广到任意角。
三角函数教案(共10课时)
第一课时:任意角与弧度制教学目标知识目标:理解任意角的概念(包括正角、负角、零角) 与区间角的概念,会用终边相同的角的形式表示某些位置的角;了解弧度的意义,并能正确的进行弧度与角度的换算;能用弧长公式解决相关的实际问题。
能力目标:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.德育目标:1.提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学方法:讲授,练习,探究启发 课 时:1课时 教学过程 【课前预习】1.与α角终边相同的角的集合,连同α角在内(而且只有这样的角),可以记为 ; 1弧度=( )0,1°= 弧度;弧长公式: ,扇形面积公式: ;2.下列说法正确的是 ( ) A .第二象限的角是钝角 B .第三象限的角必大于第二象限的角 C .-8500是第二象限的角 D .00095,264,984-是终边相同的角3.(世纪金榜P52 第一题)若01125与α(00360α≤≤)终边相同,则α为( ) A .045 B .0135 C .0315- D .04054.在直角坐标系中,若角α与β终边互为反向延长线,α与β之间的关系是 ( )A .αβ=B .2()k k R απβ=+∈C .απβ=+D .(21)()k k R απβ=++∈ 5. (世纪金榜P52 基础知识)终边在x 轴上的角的集合为 , 终边在y 轴上的角的集合为 , 终边在坐标轴上的角的集合为 , 第三象限的角的集合是 。
6.(世纪金榜P53 例1)若α是第二象限的角,则2α是第 象限的角。
7.(世纪金榜P53 例2)一个扇形ABC 的圆心角060α=,10r =,则它的弧长是 ,该段弧所在的弓形面积 。
【典型例题】例1:若θ角的终边与85π角的终边相同,则在[]0,2π上终边与4π的角终边相同的角为 。
三角函数的图像与性质教案
三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。
2. 学会绘制和分析三角函数的图像。
3. 掌握三角函数的性质,并能应用于实际问题。
二、教学重点:1. 三角函数的定义和图像。
2. 三角函数的性质。
三、教学难点:1. 三角函数图像的绘制和分析。
2. 理解和应用三角函数的性质。
四、教学准备:1. 教学课件或黑板。
2. 三角函数图像的示例。
3. 练习题和解答。
五、教学过程:1. 引入:通过生活中的实例,如温度、声音等,引入三角函数的概念,激发学生的兴趣。
2. 讲解:讲解三角函数的定义和基本概念,引导学生理解三角函数的周期性和奇偶性。
3. 演示:使用课件或黑板,展示三角函数的图像,让学生观察和分析图像的形状和特点。
4. 练习:让学生绘制一些简单的三角函数图像,并分析其性质。
5. 讲解:讲解三角函数的性质,如单调性、奇偶性、周期性等,引导学生理解和应用。
6. 练习:让学生解决一些实际问题,运用三角函数的性质进行计算和分析。
7. 总结:对本节课的内容进行总结,强调三角函数的图像和性质的重要性。
8. 作业:布置一些练习题,让学生巩固所学内容。
六、教学反思:本节课通过实例引入三角函数的概念,激发学生的兴趣。
通过讲解和演示,让学生理解和掌握三角函数的图像和性质。
通过练习和实际问题解决,让学生应用所学知识。
整个教学过程中,注意引导学生主动参与,培养学生的动手能力和思维能力。
作业的布置有助于巩固所学内容。
总体来说,本节课达到了预期的教学目标。
六、教学目标:1. 能够运用三角函数的性质解决简单的三角方程和不等式问题。
2. 理解正弦、余弦和正切函数的图像是如何由基础函数通过平移、伸缩等变换得到的。
3. 能够分析实际问题,选择合适的三角函数模型进行求解。
七、教学重点:1. 三角函数图像的变换规律。
2. 三角方程和不等式的求解方法。
八、教学难点:1. 理解三角函数图像的变换规律及其对函数性质的影响。
2. 解决实际问题中三角函数的应用。
三角函数教学教案
三角函数教学教案一、教学目标:1. 让学生理解三角函数的概念,掌握三角函数的基本性质和图像。
2. 培养学生运用三角函数解决实际问题的能力。
3. 提高学生对数学知识的兴趣和积极性。
二、教学内容:1. 三角函数的概念和定义2. 三角函数的图像和性质3. 特殊角的三角函数值4. 三角函数的运算5. 三角函数在实际问题中的应用三、教学重点与难点:1. 重点:三角函数的概念、图像和性质,特殊角的三角函数值,三角函数的运算。
2. 难点:三角函数图像的分析和运用,实际问题的解决。
四、教学方法:1. 采用问题驱动法,引导学生探索和发现三角函数的规律。
2. 利用多媒体课件,展示三角函数的图像和实际应用场景。
3. 开展小组讨论,培养学生的合作能力和口头表达能力。
4. 注重个体差异,给予学生个性化的指导和关爱。
五、教学过程:1. 导入新课:通过展示生活中常见的三角函数应用场景,激发学生的学习兴趣。
2. 知识讲解:讲解三角函数的概念、定义和图像,引导学生理解并掌握三角函数的基本性质。
3. 特殊角的三角函数值:让学生自主探究特殊角的三角函数值,培养学生的自主学习能力。
4. 三角函数的运算:通过例题讲解和练习,使学生掌握三角函数的运算方法。
5. 应用拓展:布置课后作业,让学生运用所学知识解决实际问题。
6. 课堂小结:对本节课的内容进行总结,强调重点和难点。
7. 课后反思:教师根据学生的反馈,调整教学方法,为下一节课做好准备。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,了解学生的学习状态和兴趣。
2. 作业评价:通过学生提交的作业,检查学生对课堂所学知识的掌握程度和应用能力。
3. 测试评价:定期进行小型测试,评估学生对三角函数知识的系统掌握情况。
4. 学生自评与互评:鼓励学生进行自我评价和同伴评价,促进学生自我反思和相互学习。
七、教学资源:1. 教材:选用适合学生水平的三角函数教材,提供系统的学习材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数4-1.1.1任意角(1)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义教学难点:“旋转”定义角课标要求:了解任意角的概念教学过程:一、引入同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。
三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。
二、新课1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
逆时针方向旋转到终止位置OB,就形成角α。
旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。
师:在体操比赛中我们经常听到这样的术语:“转体720o”(即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300.师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周……,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。
本节课将在已掌握~角的范围基础上,重新给出角的定义,并研究这些角的分类及记法.2.角的概念的推广:(1)定义:一条射线OA由原来的位置OA,绕着它的端点O按一定方向旋转到另一位置OB,就形成了角α。
其中射线OA叫角α的始边,射线OB叫角α的终边,O叫角α的顶点。
3.正角、负角、零角概念师:为了区别起见,我们把按逆时针方向旋转所形成的角叫正角,如图2中的角为正角,它等于300与7500;我们把按逆时针方向旋转所形成的角叫正角,那么同学们猜猜看,负角怎么规定呢?零角呢?生:按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。
师:如图3,以OA为始边的角α=-1500,β=-6600。
特别地,当一条射线没有作任何旋转时,我们也认为这是形成了一个角,并把这个角称为零角。
师:好,角的概念经过这样的推广之后,就应该包括正角、负角、零角。
这里还有一点要说明:为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可简记为α.4.象限角师:在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念。
同学们已经经过预习,请一位同学回答什么叫:象限角?生:角的顶点与原点重合,角的始边与x轴的非负半轴重合。
那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。
师:很好,从刚才这位同学的回答可以知道,她已经基本理解了“象限角”的概念了。
下面请大家将书上象限角的定义划好,同时思考这么三个问题:1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?3.是不是任意角都可以归结为是象限角,为什么?处理:学生思考片刻后回答,教师适时予以纠正。
答:1.不行,始边包括端点(原点);2.端点在原点上;3.不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。
师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的预习才是有效果的。
师生讨论:好,按照象限角定义,图中的300,3900,-3300角,都是第一象限角;3000,-600角,都是第四象限角;5850角是第三象限角。
师:很好,不过老师还有几事不明,要请教大家:(1)锐角是第一象限角吗?第一象限角是锐角吗?为什么?生:锐角是第一象限角,第一象限角不一定是锐角;师:(2)锐角就是小于900的角吗?生:小于900的角可能是零角或负角,故它不一定是锐角;师:(3)锐角就是00~900的角吗?生:锐角:{θ|00<θ<900};00~900的角:{θ|00≤θ<900}.学生练习(口答)已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?(1)4200;(2)-750;(3)8550;(4)-5100.答:(1)第一象限角;(2)第四象限角;(3)第二象限角;(4)第三象限角.5.终边相同的角的表示法师:观察下列角你有什么发现? 390︒-330︒30︒1470︒-1770︒生:终边重合.师:请同学们思考为什么?能否再举三个与300角同终边的角?生:图中发现3900,-3300与300相差3600的整数倍,例如,3900=3600+300,-3300=-3600+300;与300角同终边的角还有7500,-6900等。
师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差3600的整数倍。
例如:7500=2³3600+300;-6900=-2³3600+300。
那么除了这些角之外,与300角终边相同的角还有: 3³3600+300 -3³3600+300 4³3600+300 -4³3600+300……,……,由此,我们可以用S={β|β=k ³3600+300,k ∈Z}来表示所有与300角终边相同的角的集合。
师:那好,对于任意一个角α,与它终边相同的角的集合应如何表示?生:S={β|β=α+k ³3600,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
6.例题讲评例1 设第一象限的角}=锐角},的角} 小于{G {F 90{o ==E ,,那么有( D ).A .B .C .()D .例2用集合表示:(1)各象限的角组成的集合. (2)终边落在轴右侧的角的集合.解:(1) 第一象限角:{α|k360o π<α<k360o +90o ,k ∈Z }第二象限角:{α|k360o +90o <α<k360o +180o ,k ∈Z } 第三象限角:{α|k360o+180o<α<k360o+270o,k ∈Z } 第四象限角:{α|k360o +270o <α<k360o +360o ,k ∈Z }(2)在~中,轴右侧的角可记为,同样把该范围“旋转”后,得,,故轴右侧角的集合为.说明:一个角按顺、逆时针旋转()后与原来角终边重合,同样一个“区间”内的角,按顺逆时针旋转()角后,所得“区间”仍与原区间重叠.例3 (1)如图,终边落在位置时的角的集合是__{α|α=k360o+120o ,k∈Z };终边落在位置,且在内的角的集合是_{-45o,225o}_;终边落在阴影部分(含边界)的角的集合是_{α|k360o-45o<α<k360o+120o ,k∈Z}.练习:(1)请用集合表示下列各角.①~间的角②第一象限角③锐角④小于角.解答(1)①;②;③;④(2)分别写出:①终边落在轴负半轴上的角的集合;②终边落在轴上的角的集合;③终边落在第一、三象限角平分线上的角的集合;④终边落在四象限角平分线上的角的集合.解答(2)①;②;③;④.说明:第一象限角未必是锐角,小于的角不一定是锐角,~间的角,根据课本约定它包括,但不包含.例4在~间,找出与下列各角终边相同的角,并判定它们是第几象限角(1);(2);(3).解:(1)∵∴与角终边相同的角是角,它是第三象限的角;(2)∵∴与终边相同的角是,它是第四象限的角; (3)所以与角终边相同的角是,它是第二象限角.总结:草式写在草稿纸上,正的角度除以,按通常除去进行;负的角度除以,商是负数,它的绝对值应比被除数为其相反数时相应的商大1,以使余数为正值. 练习: (1)一角为,其终边按逆时针方向旋转三周后的角度数为__.(2)集合M ={α=k o90 ,k ∈Z}中,各角的终边都在(C )A .轴正半轴上,B .轴正半轴上,C .轴或轴上,D .轴正半轴或轴正半轴上(3)设,C={α|α= k180o+45o,k∈Z},则相等的角集合为_B=D,C=E__.三.本课小结本节课我们学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限,本节课的重点是学习终边相同的角的表示法。
判断一个角是第几象限角,只要把改写成,,那么在第几象限,就是第几象限角,若角与角适合关系:,,则、终边相同;若角与适合关系:,,则、终边互为反向延长线.判断一个角所有象限或不同角之间的终边关系,可首先把它们化为:,这种模式(),然后只要考查的相关问题即可.另外,数形结合思想、运动变化观点都是学习本课内容的重要思想方法.四.作业:4-1.1.1任意角(2)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义教学难点:“旋转”定义角课标要求:了解任意角的概念教学过程:一、复习师:上节课我们学习了角的概念的推广,推广后的角分为正角、负角和零角;另外还学习了象限角的概念,下面请一位同学叙述一下它们的定义。
生:略师:上节课我们还学习了所有与α角终边相同的角的集合的表示法,[板书]S={β|β=α+k³3600,k∈Z}这节课我们将进一步学习并运用角的概念的推广,解决一些简单问题。
二、例题选讲例1写出与下列各角终边相同的角的集合S,并把S中适合不等式-3600≤β<7200的元素β写出来:(1)600;(2)-210;(3)363014,解:(1)S={β|β=600+k³3600,k∈Z}S中适合-3600≤β<7200的元素是600+(-1)³3600=-3000 600+0³3600=600 600+1³3600=4200.(2)S={β|β=-210+k³3600,k∈Z} S中适合-3600≤β<7200的元素是-210+0³3600=-210 -210+1³3600=3390 -210+2³3600=6990说明:-210不是00到3600的角,但仍可用上述方法来构成与-210角终边相同的角的集合。