三角函数的定义教案

合集下载

三角函数的定义及应用教学教案

三角函数的定义及应用教学教案

三角函数的定义及应用教学教案第一章:引言1.1 教学目标让学生了解三角函数在数学和科学领域的重要性。

引导学生理解三角函数的基本概念。

1.2 教学内容三角函数的定义与历史背景。

三角函数在不同领域的应用。

1.3 教学方法采用讲授法,介绍三角函数的定义和应用。

利用实例和实际问题,激发学生的学习兴趣。

1.4 教学评估课堂讨论:让学生分享对三角函数的理解和应用。

作业布置:要求学生完成相关练习题,巩固知识点。

第二章:正弦函数的定义及性质2.1 教学目标让学生掌握正弦函数的定义和性质。

培养学生运用正弦函数解决实际问题的能力。

2.2 教学内容正弦函数的定义和表达式。

正弦函数的周期性和对称性。

正弦函数的增减性和奇偶性。

2.3 教学方法采用讲解法,引导学生理解正弦函数的定义和性质。

利用图形和实例,让学生直观地感受正弦函数的特点。

2.4 教学评估课堂提问:检查学生对正弦函数定义和性质的理解。

作业布置:要求学生完成相关练习题,巩固知识点。

第三章:余弦函数的定义及性质3.1 教学目标让学生掌握余弦函数的定义和性质。

培养学生运用余弦函数解决实际问题的能力。

3.2 教学内容余弦函数的定义和表达式。

余弦函数的周期性和对称性。

余弦函数的增减性和奇偶性。

3.3 教学方法采用讲解法,引导学生理解余弦函数的定义和性质。

利用图形和实例,让学生直观地感受余弦函数的特点。

3.4 教学评估课堂提问:检查学生对余弦函数定义和性质的理解。

作业布置:要求学生完成相关练习题,巩固知识点。

第四章:正切函数的定义及性质4.1 教学目标让学生掌握正切函数的定义和性质。

培养学生运用正切函数解决实际问题的能力。

4.2 教学内容正切函数的定义和表达式。

正切函数的周期性和对称性。

正切函数的增减性和奇偶性。

4.3 教学方法采用讲解法,引导学生理解正切函数的定义和性质。

利用图形和实例,让学生直观地感受正切函数的特点。

4.4 教学评估课堂提问:检查学生对正切函数定义和性质的理解。

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

三角函数的定义教案

三角函数的定义教案

三角函数的定义教案教学目标:1. 理解三角函数的定义;2. 掌握常用三角函数的性质和图像;3. 能够利用三角函数的定义解决与角度和三角函数值有关的问题。

教学内容:1. 三角函数的定义;2. 三角函数的性质和图像;3. 解题方法和技巧。

教学步骤:第一步:引入教师引入三角函数的概念,提问学生是否听说过三角函数,它有哪些常用的函数。

第二步:三角函数的定义教师介绍正弦、余弦和正切三个常用的三角函数,并给出它们的定义:正弦函数(sin):在直角三角形中,对于一个角θ,它的正弦值等于对边与斜边的比值,即sinθ = 对边/斜边;余弦函数(cos):在直角三角形中,对于一个角θ,它的余弦值等于邻边与斜边的比值,即cosθ = 邻边/斜边;正切函数(tan):在直角三角形中,对于一个角θ,它的正切值等于对边与邻边的比值,即tanθ = 对边/邻边。

第三步:三角函数的性质和图像教师介绍三角函数的性质和图像,例如:- 正弦函数的值域是[-1,1],在区间[0,2π]上呈周期性变化;- 余弦函数的值域也是[-1,1],在区间[0,2π]上呈周期性变化,与正弦函数的图像相位差90°;- 正切函数在某些角度上无定义,它在区间[-π/2,π/2]上呈周期性变化。

教师还可以通过实际的例子和问题,让学生对三角函数的图像和性质有更加深入的理解和认识。

第四步:解题方法和技巧教师通过一些实际问题的例子,引导学生掌握三角函数的解题方法和技巧,如:- 利用三角函数的定义和性质,求解角度;- 利用三角函数的图像和性质,求解三角函数的值;- 利用三角函数的关系,求解三角函数的等式或不等式。

第五步:小结和拓展教师对本节课的内容进行小结,并根据学生的掌握情况进行适当的拓展,如引入反三角函数的概念,讨论三角函数的其他性质等。

第六步:练习和讨论教师布置练习题,让学生在课后进行练习,并在下节课上进行讨论和解答。

同时,鼓励学生自主学习,查找和整理关于三角函数的更多相关资料。

三角函数的定义教案

三角函数的定义教案

三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。

下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。

2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。

3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。

教学重难点重点:感受周期现象的存在,会判断是否为周期现象。

难点:周期函数概念的理解,以及简单的应用。

教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。

众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。

再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。

所以,我们这节课要研究的主要内容就是周期现象与周期函数。

(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。

请你举出生活中存在周期现象的例子。

(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。

三角函数概念及应用教案

三角函数概念及应用教案

三角函数概念及应用教案一、教学目标。

1. 知识目标。

了解三角函数的概念和性质,掌握三角函数的基本公式和图像特征。

2. 能力目标。

能够运用三角函数解决实际问题,理解三角函数在几何、物理等领域的应用。

3. 情感目标。

培养学生对数学的兴趣,激发学生学习数学的热情,提高学生的数学思维能力和解决实际问题的能力。

二、教学重点和难点。

1. 教学重点。

三角函数的定义和性质,三角函数的图像特征,三角函数在实际问题中的应用。

2. 教学难点。

学生对三角函数的概念和性质的理解,以及如何运用三角函数解决实际问题。

三、教学过程。

1. 导入。

通过引入一个实际问题,如求解一个三角形的边长或角度,引出三角函数的概念和应用,并激发学生的学习兴趣。

2. 概念讲解。

介绍三角函数的定义和性质,包括正弦函数、余弦函数、正切函数等的定义公式和性质,以及它们的周期性、奇偶性和对称性等特点。

3. 图像特征。

分别讲解正弦函数、余弦函数、正切函数的图像特征,包括振幅、周期、相位差等,并通过实例讲解如何根据函数的图像特征求解实际问题。

4. 应用实例。

通过一些实际问题,如建筑物的倾斜角度、航空航天中的导航问题、声波的传播等,引导学生理解三角函数在实际问题中的应用,并通过实例讲解如何运用三角函数解决这些问题。

5. 练习。

给学生提供一些练习题,让他们运用所学的知识解决实际问题,巩固所学内容。

6. 总结。

对本节课所学的内容进行总结,强调三角函数在实际问题中的应用,并鼓励学生多多思考,多多实践,提高解决实际问题的能力。

四、教学手段。

1. 板书。

教师通过板书讲解三角函数的定义、性质和图像特征,方便学生理解和记忆。

2. 多媒体。

利用多媒体设备,播放相关的动画、视频等,直观地展示三角函数的图像特征,激发学生的学习兴趣。

3. 实物。

通过一些实物模型或实际物体,如三角形、建筑物、声波等,让学生直观地感受三角函数在实际问题中的应用。

五、教学反思。

通过本节课的教学,学生对三角函数的概念和性质有了更深入的理解,对三角函数在实际问题中的应用也有了一定的认识。

高中数学教案《三角函数的概念》

高中数学教案《三角函数的概念》

教学计划:《三角函数的概念》一、教学目标1.知识与技能:o学生能够准确理解三角函数(正弦、余弦、正切)的基本定义,并能识别其在直角三角形中的表示。

o学生能够掌握三角函数值与角度之间的对应关系,理解三角函数是周期函数的特点。

o学生能够运用三角函数的基本性质进行简单的计算与推导。

2.过程与方法:o通过观察、比较和归纳,引导学生从实际情境中抽象出三角函数的概念。

o借助图像直观展示三角函数的周期性,培养学生的数形结合能力。

o通过小组讨论和合作学习,促进学生之间的交流与合作,共同探索三角函数的性质。

3.情感态度与价值观:o激发学生对数学学习的兴趣,感受数学与生活的紧密联系。

o培养学生的探究精神和创新思维,鼓励他们勇于提出问题并尝试解决。

o引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。

二、教学重点和难点●重点:三角函数(正弦、余弦、正切)的定义、图像及基本性质。

●难点:理解三角函数值与角度之间的对应关系,以及三角函数周期性的概念。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过展示如钟摆运动、海浪波动等自然界中的周期性现象,引导学生思考这些现象背后的数学规律,从而引出三角函数的概念。

●复习旧知:回顾直角三角形的相关知识,如勾股定理、锐角与钝角的定义,为学习三角函数做好铺垫。

●明确目标:简要介绍本节课的学习目标,即掌握三角函数的基本概念、图像及基本性质。

2. 讲授新知(15分钟)●定义讲解:详细讲解正弦、余弦、正切三种三角函数在直角三角形中的定义,强调它们与边长的比例关系。

●图像展示:利用多媒体设备展示三种三角函数的图像,引导学生观察图像特征,如正弦、余弦函数的周期性,正切函数的间断性等。

●性质归纳:结合图像,引导学生归纳出三角函数的基本性质,如定义域、值域、奇偶性、单调性等。

3. 互动探究(10分钟)●小组讨论:将学生分成若干小组,每组分配一个探究任务,如“探究正弦函数在哪些区间内是增函数?”、“尝试用三角函数表示一个圆上某点的坐标”。

新人教版九年级数学三角函数教案5篇最新

新人教版九年级数学三角函数教案5篇最新三角形中的恒等式是我们经常在考试中遇到的题型,教师需要好的教案范围去教导学生,今天小编在这里整理了一些新人教版九年级数学三角函数教案5篇最新,我们一起来看看吧!新人教版九年级数学三角函数教案1教学目的1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。

2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。

重点、难点、关键1,重点:正弦的概念。

2,难点:正弦的概念。

3,关键:相似三角形对应边成比例的性质。

教学过程一、复习提问1、什么叫直角三角形?2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?二、新授1,让学生阅读教科书第一页上的插图和引例,然后回答问题:(1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达)(2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形)(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。

)(4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。

)但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。

2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。

类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A 的对边BC的长。

初中数学教案三角函数的概念与计算方法

初中数学教案三角函数的概念与计算方法在解决初中数学教学中,三角函数的教学难点上,教师需要运用准确的概念与计算方法,使学生对三角函数有深入的理解。

本教案将重点介绍三角函数的概念以及相关计算方法,并通过不同形式的练习来巩固学生的掌握程度。

一、三角函数的概念1. 三角函数的定义三角函数是描述角度与边长之间关系的一组函数,主要包括正弦函数、余弦函数和正切函数。

其中,正弦函数(记作sin)表示一个角的对边与斜边的比值;余弦函数(记作cos)表示一个角的邻边与斜边的比值;正切函数(记作tan)表示一个角的对边与邻边的比值。

2. 三角函数的值域正弦函数和余弦函数的值域均为闭区间[-1, 1];正切函数的值域为全体实数。

二、三角函数的计算方法1. 弧度制与角度制的转换角度制是一种常用的角度计量单位,而弧度制是以弧长为单位的角度计量方法。

弧度制与角度制的转换公式为:弧度数 = 角度数× π/180;角度数 = 弧度数× 180/π。

2. 三角函数的计算方法(1) 根据已知边长求三角函数值:- 已知对边和斜边,可使用正弦函数求解:sinA = 对边/斜边。

- 已知邻边和斜边,可使用余弦函数求解:cosA = 邻边/斜边。

- 已知对边和邻边,可使用正切函数求解:tanA = 对边/邻边。

(2) 根据已知三角函数值求边长:- 已知正弦值和斜边,可求得对边:对边 = 正弦值 ×斜边。

- 已知余弦值和斜边,可求得邻边:邻边 = 余弦值 ×斜边。

- 已知正切值和邻边,可求得对边:对边 = 正切值 ×邻边。

三、教学实施1. 导入通过问题引入,如:"当一个人站在阳台上,从眼睛到楼底的距离为1.8米,他的视线与楼底的水平线的夹角是多少?"2. 概念讲解简要介绍三角函数的定义和基本概念,引导学生理解三角函数与角度以及边长之间的关系。

3. 计算方法演示通过示例演示,按照已知条件求解未知边长或已知边长求解三角函数值的计算方法。

三角函数的定义 教案

三角函数的定义教案一、知识要点1. 什么是三角函数三角函数,顾名思义,是与三角形相关的函数。

在初中和高中的数学和物理课程中,我们经常使用三角函数来描述和解决各种问题,如测量角度、计算三角形的周长和面积、分析周期性现象等等。

(1) 正弦函数:定义域为实数集合,值域为[-1,1]。

其定义式为:y=sin(x)。

二、教学过程1. 正弦函数的定义及简单应用(1) 导入:告诉学生三角函数是什么,引导学生回想初中时学习的正余弦函数的相关知识。

(2) 定义:正弦函数是指一个角的正弦值与该角的对边长度之比所确定的函数,通常用sin表示。

(3) 理解:图形辅助理解正弦函数的定义。

绘制一条半径为1的半圆,以圆心为原点建立平面直角坐标系,横坐标轴代表角度,纵坐标轴表示正弦值。

通过在半圆上移动一个点P,观察P 点的正弦值的变化,从而建立正弦函数的概念。

(4) 案例:分别计算在直角三角形中,已知角A=30°,对边长度为2时,斜边长度和邻边长度的值。

解:∠A=30°,则正弦值为sin30°=1/2。

斜边长度为:c=2/sin30°=4。

邻边长度为:b=√c²-a²=√4²-2²=√12。

对边长度为:a=b·tan60°=b·√3。

由a²+b²=c²,代入得b=√c²-a²=√3。

图形辅助理解正切函数的定义。

绘制直角三角形,以角A为例,角A的正切值是指该角的对边长度与邻边长度之比。

画出该角的对边和邻边,通过计算对边和邻边的长度,求出角A的正切值,从而建立正切函数的概念。

解:∠A=45°,对边长度为x,邻边长度为x·√3。

余切值为cot45°=1。

三角函数的概念教案

三角函数的概念【第1课时】三角函数的概念【教学目标】【核心素养】1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.(重点、难点)2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.(易错点)3.掌握公式——并会应用.1.通过三角函数的概念,培养数学抽象素养.2.借助公式的运算,提升数学运算素养.【教学过程】一、新知初探1.单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,α∈R 它的终边与单位圆交于点P (x ,y ),那么:(2)结论①y 叫做α的正弦函数,记作sin α,即sin α=y ;②x 叫做α的余弦函数,记作cos α,即cos α=x ;③y x 叫做α的正切,记作tan α,即tan α=yx(x ≠0).(3)总结yx=tan α(x ≠0)是以角为自变量,以单位圆上点的纵坐标或横坐标的比值为函数值的函数,正切函数我们将正弦函数、余弦函数、正切函数统称为三角函数.3.正弦、余弦、正切函数在弧度制下的定义域三角函数定义域sin αR cos αRtanα|x≠kπ+π2,k∈Z 4.正弦、余弦、正切函数值在各象限内的符号(1)图示:(2)口诀:“一全正,二正弦,三正切,四余弦”.5.公式一二、初试身手1.sin(-315°)的值是()A.-22B.-12C.22D.12答案:C解析:sin(-315°)=sin(-360°+45°)=sin45°=2 2.2.已知sinα>0,cosα<0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案:B解析:由正弦、余弦函数值在各象限内的符号知,角α是第二象限角.3.sin253=________.答案:3 2解析:sin 253=sinπ3=32.4.角α终边与单位圆相交于点cosα+sinα的值为________.答案:3+1 2解析:cosα=x=32,sinα=y=12,故cosα+sinα=3+1 2.三、合作探究三角函数的定义及应用类型1探究问题1.一般地,设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则sinα,cosα,tanα为何值?提示:sinα=yr,cosα=xr,tanα=yx(x≠0).2.sinα,cosα,tanα的值是否随P点在终边上的位置的改变而改变?提示:sinα,cosα,tanα的值只与α的终边位置有关,不随P点在终边上的位置的改变而改变.例1:(1)已知角θ的终边上有一点P(x,3)(x≠0),且cosθ=1010x,则sinθ+tanθ的值为________.(2)已知角α的终边落在直线3x+y=0上,求sinα,cosα,tanα的值.思路点拨:(1)依据余弦函数定义列方程求x→依据正弦、正切函数定义求sinθ+tanθ(2)判断角α的终边位置→分类讨论求sinα,cosα,tanα(1)310+3010或310-3010因为r=x2+9,cosθ=x r,所以1010x=xx2+9.又x≠0,所以x=±1,所以r=10.又y=3>0,所以θ是第一或第二象限角.当θ为第一象限角时,sinθ=31010,tanθ=3,则sinθ+tanθ=310+3010.当θ为第二象限角时,sinθ=31010,tanθ=-3,则sin θ+tan θ=310-3010.(2)解:直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r =(-1)2+(3)2=2,所以sin α=32,cos α=-12,tan α=-3;在第四象限取直线上的点(1,-3),则r =12+(-3)2=2,所以sin α=-32,cos α=12,tan α=-3.母题探究1.将本例(2)的条件“3x +y =0”改为“y =2x ”其他条件不变,结果又如何?解:当角的终边在第一象限时,在角的终边上取点P (1,2),由r =|OP |=12+22=5,得sin α=25=255,cos α=15=55,tan α=21=2.当角的终边在第三象限时,在角的终边上取点Q (-1,-2),由r =|OQ |=(-1)2+(-2)2=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2.2.将本例(2)的条件“落在直线3x +y =0上”改为“过点P (-3a ,4a )(a ≠0)”,求2sin α+cos α.解:因为r =(-3a )2+(4a )2=5|a |,①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,所以2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限,sin α=4a -5a =-45,cos α=-3a -5a =35,所以2sin α+cos α=-85+35=-1.规律方法由角α终边上任意一点的坐标求其三角函数值的步骤:(1)已知角α的终边在直线上时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.②在α的终边上任选一点P(x,y),P到原点的距离为r(r>0).则sinα=yr,cosα=xr.已知α的终边求α的三角函数时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,一定注意对字母正、负的辨别,若正、负未定,则需分类讨论.三角函数值符号的运用类型2例2:(1)已知点P(tanα,cosα)在第四象限,则角α终边在()A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号:①sin145°cos(-210°);②sin3cos4tan5.思路点拨:(1)先判断tanα,cosα的符号,再判断角α终边在第几象限.(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最后判断乘积的符号.答案:(1)C解析:因为点P α>0,α<0,由此可判断角α终边在第三象限.(2)解:①∵145°是第二象限角,∴sin145°>0,∵-210°=-360°+150°,∴-210°是第二象限角,∴cos(-210°)<0,∴sin145°cos(-210°)<0.②∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0.规律方法判断三角函数值在各象限符号的攻略:1.基础:准确确定三角函数值中各角所在象限;2.关键:准确记忆三角函数在各象限的符号;3.注意:用弧度制给出的角常常不写单位,不要误认为角度导致象限判断错误.提醒:注意巧用口诀记忆三角函数值在各象限符号.跟踪训练1.已知角α的终边过点(3a-9,a+2)且cosα≤0,sinα>0,则实数a的取值范围是________.答案:-2<a≤3解析:因为cosα≤0,sinα>0,所以角α的终边在第二象限或y轴非负半轴上,因为α终边过(3a-9,a+2),-9≤0,+2>0,所以-2<a≤3.2.设角α是第三象限角,且|sinα2|=-sinα2,则角α2是第________象限角.答案:四解析:角α是第三象限角,则角α2是第二、四象限角,∵|sinα2|=-sinα2,∴角α2诱导公式一的应用类型3例3:求值:(1)tan405°-sin450°+cos750°;(2)sin7π3cos13π3.解:(1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan45°-sin90°+cos30°=1-1+32=32.(2)原式=44=sinπ3cosπ6+tanπ4cosπ3=32×32+1×12=54.规律方法利用诱导公式一进行化简求值的步骤1.定形:将已知的任意角写成2kπ+α的形式,其中α∈[0,2π,k∈Z].2.转化:根据诱导公式,转化为求角α的某个三角函数值.3.求值:若角为特殊角,可直接求出该角的三角函数值.跟踪训练3.化简下列各式:(1)a2sin(-1350°)+b2tan405°-2ab cos(-1080°);(2)cos 125π·tan4π.解:(1)原式=a2sin(-4×360°+90°)+b2tan(360°+45°)-2ab cos(-3×360°)=a2sin90°+b2tan45°-2ab cos0°=a2+b2-2ab=(a-b)2.(2)-116πcos125π·tan4π=2cos25π·tan0=sinπ6+0=12.四、课堂小结1.三角函数的定义的学习是以后学习一切三角函数知识的基础,要充分理解其内涵,把握住三角函数值只与角的终边所在位置有关,与所选取的点无关这一关键点.2.诱导公式一指的是终边相同角的同名三角函数值相等,反之不一定成立,记忆时可结合三角函数定义进行记忆.3.三角函数值在各象限的符号主要涉及开方,去绝对值计算问题,同时也要注意终边在坐标轴上正弦、余弦的符号问题.五、课堂达标1.思考辨析(1)sinα表示sin与α的乘积.()(2)设角α终边上的点P(x,y),r=|OP|≠0,则sinα=yr,且y越大,sinα的值越大.()(3)终边相同的角的同一三角函数值相等.()(4)终边落在y轴上的角的正切函数值为0.()提示:(1)错误.sinα表示角α的正弦值,是一个“整体”.(2)错误.由任意角的正弦函数的定义知,sinα=yr.但y变化时,sinα是定值.(3)正确.(4)错误.终边落在y轴上的角的正切函数值不存在.答案:(1)×(2)×(3)√(4)×2.已知角α终边过点P(1,-1),则tanα的值为()A.1B.-1C.22D.-22答案:B解析:由三角函数定义知tanα=-11=-1.3.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于x轴对称,若sinα=15,则sinβ=________.答案:-1 5解析:设角α的终边与单位圆相交于点P(x,y),则角β的终边与单位圆相交于点Q(x,-y),由题意知y=sinα=15,所以sinβ=-y=-15.4.求值:(1)sin180°+cos90°+tan0°.(2)cos 25π3+解:(1)sin180°+cos90°+tan0°=0+0+0=0.(2)cos25π3+=4=cos π3+tanπ4=12+1=32.【第2课时】同角三角函数的基本关系【教学目标】【核心素养】1.理解并掌握同角三角函数基本关系式的推导及应用.(重点)1.通过同角三角函数的基本关系进行运算,培养数学运算素养.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.(难点)2.借助数学式子的证明,培养逻辑推理素养.【教学过程】一、新知初探1.平方关系(1)公式:sin 2α+cos 2α=1.(2)语言叙述:同一个角α的正弦、余弦的平方和等于1.2.商数关系(1)公式:sin αcos α=tan α(α≠k π+π2,k ∈Z ).(2)语言叙述:同一个角α的正弦、余弦的商等于角α的正切.思考:对任意的角α,sin 22α+cos 22α=1是否成立?提示:成立.平方关系中强调的同一个角且是任意的,与角的表达形式无关.二、初试身手1.化简1-sin23π5的结果是()A .cos3π5B .sin3π5C .-cos3π5D .-sin 3π5答案:C解析:因为3π5是第二象限角,所以cos3π5<0,所以1-sin23π5=cos23π5=|cos 3π5|=-cos3π5.2.如果α是第二象限的角,下列各式中成立的是()A .tan α=-sin αcos αB .cos α=-1-sin2αC .sin α=-1-cos2αD .tan α=cos αsin α答案:B解析:由商数关系可知A ,D 均不正确.当α为第二象限角时,cos α<0,sin α>0,故B 正确.3.若cos α=35,且α为第四象限角,则tan α=________.答案:-43解析:因为α为第四象限角,且cos α=35,所以sin α=-1-cos2α=-=-45,所以tan α=sin αcosα=-43.三、合作探究直接应用同角三角函数关系求值类型1例1:(1)已知αtan α=2,则cos α=________.(2)已知cos α=-817,求sin α,tan α的值.思路点拨:(1)根据tan α=2和sin 2α+cos 2α=1列方程组求cos α.(2)先由已知条件判断角α是第几象限角,再分类讨论求sin α,tan α.答案:(1)-552,①cos2α=1,②由①得sin α=2cos α代入②得4cos 2α+cos 2α=1,所以cos 2α=15,又αcos α<0,所以cos α=-55.(2)解:∵cos α=-817<0,∴α是第二或第三象限的角.如果α是第二象限角,那么sin α=1-cos2α==1517,tan α=sin αcos α=1517-817=-158.如果α是第三象限角,同理可得sin α=-1-cos2α=-1517,tan α=158.规律方法利用同角三角函数的基本关系解决给值求值问题的方法:1.已知角α的某一种三角函数值,求角α的其余三角函数值,要注意公式的合理选择,一般是先选用平方关系,再用商数关系.2.若角α所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角α所在的象限不确定,应分类讨论,一般有两组结果.提醒:应用平方关系求三角函数值时,要注意有关角终边位置的判断,确定所求值的符号.跟踪训练1.已知sin α+3cos α=0,求sin α,cos α的值.解:∵sin α+3cos α=0,∴sin α=-3cos α.又sin 2α+cos 2α=1,∴(-3cos α)2+cos 2α=1,即10cos 2α=1,∴cos α=±1010.又由sin α=-3cos α,可知sin α与cos α异号,∴角α的终边在第二或第四象限.当角α的终边在第二象限时,cos α=-1010,sin α=31010;当角α的终边在第四象限时,cos α=1010,sin α=-31010.灵活应用同角三角函数关系式求值类型2例2:(1)已知sinα+cosα=713,α∈(0,π),则tanα=________.(2)已知sinα+cosαsinα-cosα=2,计算下列各式的值.①3sinα-cosα2sinα+3cosα;②sin2α-2sinαcosα+1.思路点拨:(1)法一:求sinαcosα→求sinα-cosα→求sinα和cosα→求tanα法二:求sinαcosα→弦化切构建关于tanα的方程→求tanα(2)求tanα→换元或弦化切求值答案:(1)-12 5解析:法一:(构建方程组)因为sinα+cosα=7 13,①所以sin2α+cos2α+2sinαcosα=49 169,即2sinαcosα=-120 169.因为α∈(0,π),所以sinα>0,cosα<0.所以sinα-cosα=(sinα-cosα)2=1-2sinαcosα=17 13.②由①②解得sinα=1213,cosα=-513,所以tanα=sinαcosα=-125.法二:(弦化切)同法一求出sinαcosα=-60169,sinαcosαsin2α+cos2α=-60169,tanαtan2α+1=-60169,整理得60tan2α+169tanα+60=0,解得tanα=-512或tanα=-125.由sinα+cosα=713>0知|sinα|>|cosα|,故tanα=-125.(2)解:由sinα+cosαsinα-cosα=2,化简,得sinα=3cosα,所以tanα=3.①法一(换元)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89.法二(弦化切)原式=3tan α-12tan α+3=3×3-12×3+3=89.②原式=sin2α-2sin αcos αsin2α+cos2α1=tan2α-2tan αtan2α+1+1=32-2×332+1+1=1310.母题探究1.将本例(1)条件“α∈(0,π)”改为“α∈(-π,0)”其他条件不变,结果又如何?解:由例(1)求出2sin αcos α=-120169,因为α∈(-π,0),所以sin α<0,cos α>0,所以sin α-cos α=-(sin α-cos α)2=-1-2sin αcos α=-1713.与sin α+cos α=713联立解得sin α=-513,cos α=1213,所以tan α=sin αcos α=-512.2.将本例(1)的条件“sin α+cos α=713”改为“sin α·cos α=-18”其他条件不变,求cos α-sin α.解:因为sin αcos α=-18<0,所以αcos α-sin α<0,cos α-sin α=-1-2sin αcos α=-=-52.规律方法1.sin α+cos α,sin α-cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α.2.已知tan α=m ,求关于sin α,cos α的齐次式的值解决这类问题需注意以下两点:(1)一定是关于sin α,cos α的齐次式(或能化为齐次式)的三角函数式;(2)因为cos α≠0,所以可除以cos α,这样可将被求式化为关于tan α的表示式,然后代入tan α=m 的值,从而完成被求式的求值.提醒:求sinα+cosα或sinα-cosα的值,要注意根据角的终边位置,利用三角函数线判断它们的符号.应用同角三角函数关系式化简类型3例3:(1)化简2sin2α-11-2cos2α=________.(2)化简sinα1-cosα·tanα-sinαtanα+sinα.(其中α是第三象限角)思路点拨:(1)将cos2α=1-sin2α代入即可化简.(2)首先将tanα化为sinαcosα,然后化简根式,最后约分.答案:(1)1原式=2sin2α-11-21-sin2α=2sin2α-12sin2α-1=1.(2)解:原式=sinα1-cosα·sinαcosα-sinαsinαcosα+sinα=sinα1-cosα·1-cosα1+cosα=sinα1-cosα·(1-cosα)21-cos2α=sinα1-cosα·1-cosα|sinα|.又因为α是第三象限角,所以sinα<0.所以原式=sinα1-cosα·1-cosα-sinα=-1.规律方法三角函数式化简的常用方法1.化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化简的目的.2.对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的.3.对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2α+cos2α=1,以降低函数次数,达到化简的目的.提醒:在应用平方关系式求sinα或cosα时,其正负号是由角α所在的象限决定,不可凭空想象.跟踪训练2.化简tanα1sin2α-1,其中α是第二象限角.解:因为α是第二象限角,所以sinα>0,cosα<0.故tanα1sin2α-1=tanα1-sin2αsin2α=tanαcos2αsin2α=sinαcosα|cosαsinα|=sinαcosα·-cosαsinα=-1.应用同角三角函数关系式证明类型4探究问题1.证明三角恒等式常用哪些方法?提示:(1)从右证到左.(2)从左证到右.(3)证明左右归一.(4)变更命题法.如:欲证明MN=PQ,则可证MQ=NP,或证QN=PM等.2.在证明1+sinα+cosα+2sinαcosα1+sinα+cosα=sinα+cosα时如何巧用“1”的代换.提示:在求证1+sinα+cosα+2sinαcosα1+sinα+cosα=sinα+cosα时,观察等式左边有2sinαcosα,它和1相加应该想到“1”的代换,即1=sin2α+cos2α,所以等式左边=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=sinα+cosα2+sinα+cosα1+sinα+cosα=sinα+cosαsinα+cosα+1sinα+cosα+1=sinα+cosα=右边.例4:求证:tanαsinαtanα-sinα=tanα+sinαtanαsinα.思路点拨:解答本题可由关系式tanα=sinαcosα将两边“切”化“弦”来证明,也可由右至左或由左至右直接证明.证明:法一:(切化弦)左边=sin2αsinα-sinαcosα=sinα1-cosα,右边=sinα+sinαcosαsin2α=1+cosαsinα.因为sin2α=1-cos2α=(1+cosα)(1-cosα),所以sinα1-cosα=1+cosαsinα,所以左边=右边.所以原等式成立.法二:(由右至左)因为右边=tan2α-sin2αtanα-sinαtanαsinα=tan2α-tan2αcos2αtanα-sinαtanαsinα=tan2α1-cos2αtanα-sinαtanαsinα=tan2αsin2αtanα-sinαtanαsinα=tanαsinαtanα-sinα=左边,所以原等式成立.规律方法1.证明恒等式常用的思路是:(1)从一边证到另一边,一般由繁到简;(2)左右开弓,即证左边、右边都等于第三者;(3)比较法(作差,作比法).2.技巧感悟:朝目标奔.常用的技巧有:(1)巧用“1”的代换;(2)化切为弦;(3)多项式运算技巧的应用(分解因式).提醒:解决此类问题要有整体代换思想.跟踪训练3.求证:(1)sinα-cosα+1sinα+cosα-1=1+sinαcosα(2)2(sin6θ+cos6θ)-3(sin4θ+cos4θ)+1=0.证明:(1)左边=sinα-cosα+1sinα+cosα+1 sinα+cosα-1sinα+cosα+1=(sin α+1)2-cos2α(sin α+cos α)2-1=(sin2α+2sin α+1)-(1-sin2α)sin2α+cos2α+2sin αcos α-1=2sin2α+2sin α1+2sin αcos α-1=2sin α(sin α+1)2sin αcos α=1+sin αcos α=右边,∴原等式成立.(2)左边=2[(sin 2θ)3+(cos 2θ)3]-3(sin 4θ+cos 4θ)+1=2(sin 2θ+cos 2θ)(sin 4θ-sin 2θcos 2θ+cos 4θ)-3(sin 4θ+cos 4θ)+1=(2sin 4θ-2sin 2θcos 2θ+2cos 4θ)-(3sin 4θ+3cos 4θ)+1=-(sin 4θ+2sin 2θcos 2θ+cos 4θ)+1=-(sin 2θ+cos 2θ)2+1=-1+1=0=右边,∴原等式成立.四、课堂小结五、当堂达标1.思考辨析(1)对任意角α,sin α2cos α2=tan α2都成立.()(2)因为sin 294π+cos 2π4=1,所以sin 2α+cos 2β=1成立,其中α,β为任意角.()(3)对任意角α,sin α=cos α·tan α都成立.()提示:由同角三角函数的基本关系知(2)错,由正切函数的定义域知α不能取任意角,所以(1)错,(3)错.答案:(1)×(2)×(3)×2.已知tan α=-12,则2sin αcos αsin2α-cos2α的值是()A .43B .3C .-43D .-3答案:A解析:因为tan α=-12,所以2sin αcos αsin2α-cos2α=2tan αtan2α-1=-1=43.3.已知α是第二象限角,tan α=-12,则cos α=________.答案:-255解析:因为sin αcos α=-12,且sin 2α+cos 2α=1,又因为α是第二象限角,所以cos α<0,所以cos α=-255.4.(1)化简sin2α-sin4α,其中α是第二象限角.(2)求证:1+tan 2α=1cos2α.解:(1)因为α是第二象限角,所以sin α>0,cos α<0,所以sin αcos α<0,所以sin2α-sin4α=sin2α(1-sin2α)=sin2αcos2α=-sin αcos α.(2)证明:1+tan 2α=1+sin2αcos2α=cos2α+sin2αcos2α=1cos2α.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教 学 设 计
课题:《任意角的三角函数》
教学目标:
1.掌握任意角的三角函数的定义;
2.任意角的三角函数和锐角的三角函数的联系和区别;
3.理解角的三角函数值与角终边上点的位置无关;
4.正弦函数、余弦函数、正切函数的定义域;
5.已知角α终边上一点,会求角α的各三角函数值。

教学重点:
1. 任意角的三角函数的定义;
2. 运用任意角的三角函数的定义求函数值。

教学难点:
理解角的三角函数值与角终边上点的位置无关;
教学方法:
1. 情境教学法;
2. 问题驱动教学法。

教学过程:
一、 复习引入
(情境1)前面我们学习了角的概念的推广,通过推广,使角动了起来,同时把角的范围也突破了0度和360度的界限,角可为任意大小。

这节课我们要研究的问题是任意角的三角函数。

初中阶段我们学习了锐角的三角函数。

【问题1】在直角三角形中,锐角的三角函数是怎样定义的?(学生回答)
二、 新授知识
【目标一】任意角的三角函数的定义是什么?
【情境二】事实上,锐角的三角函数定义,可以看作是在角的锐角的一边上任取一点,构造一个直角三角形,用直角三角形的边之比来定义。

我们可以看出,取的点不同,所构造的三角形的大小也不一样。

α的各三角函数值与所构造的三角形的大小有关吗?(无关,由三角形相似的性质可以得到。


A C
B α sin B
C AB α=cos AC AB α=tan BC AC α=α
【情境三】角的概念推广之后,角可以是任意大小,把角放在直角三角形中定义它的三角函数显然已经达不到要求,必须寻求一种新的方法!前面我跟同学们暗示过:今后在研究任意角的相关时,我们常常把角放在坐标系里进行研究!
【问题2】任意角在坐标系中是如何放置的?(学生回答)
将角的顶点放在原点,始边与x轴正半轴重合。

角的终边可能会落在某一象限内,也可能在坐标轴上。

出示PPT。

我们在角的终边上任取除顶点以外的一点P,则P有一确定的坐标,(x,y),P点到原点的距离也是确定的,
>0。

在有意义的前提下这样我们可以得到三组
比值:y
r ,x
r
,y
x。

由相似三角形可以得到这些比值和取的点的位置
无关,比值只和终边的位置有关!
定义:y
r 为α的正弦,sinα=y
r
;
x r 为α的余弦,cosα=x
r
;
y x 为α的正切,tanα=y
x。

取以上各比值的倒数,又可相应得到α的另外三个三角函数,即:
cscα=1
sinα=r
y
, secα=1
cosα
=r
x
, cotα=1
tanα
=x
y
课本上没有这三个,作为高中生这也是必须了解的,同学们把它写在书上!
这就是任意三角函数的定义,这种定义的方法称为坐标法,希望同学你们记牢固!
【情境四】根据任意角的三角函数的定义,已知角终边上一点
的坐标,就可以求出α的各个三角函数值。

PPT 出示例1.
例1. 已知角α的终边经过点P (2,--3),求α的正弦,余弦,
正切值。

解:已知x=2,y=--3,则
sin α=y
r
=
=, cos α=x r
=
= tan α=y
x = 32-。

由此可以知道三角函数是可以出现负数的,并且跟这个角终边所在象限有关系,那么接下来,大家请自由讨论分析,这些三角函数跟他们终边所在象限有什么关系呢?(五分钟后邀请学生展示讨论成果)
【情境五】任意角的三角函数的定义是研究三角函数有关知识的很重要的一项工具。

比如,三角函数的定义域。

下面我们来研究这个问题!(引导学生小组讨论,并邀请学生到前面分析展示)
据定义,sin α=y r ,cos α=x r 式子中r>0,由分式的分母不等于0知,α为任意角时,式子总有意义,故sin α,cos α的定义域是R 。

tan α=y x ,要使式子有意义,x ≠0,
即终边上点的横坐标不为0,想想角的终边不能停留在什么位置?(
y 轴上)终边在y 轴上的角怎么表示?α=,2k k z π
+∈,故tan α的定义域为 α,2k k z π
π≠+∈ 。

通过本课学习,你有哪些收获?(随机对学生访问)
1.任意角的三角函数的定义;
2.任意角的三角函数值与终边上点的位置无关,只与角的大小和终边的位置有
关;
3.正弦函数,余弦函数,正切函数的定义域。

【结束语】用任意角的三角函数的定义可以研究三角函数的许多知识,比如三角函数在各象限内的符号下节课我们将继续学习三角函数在各象限内的符号!
四、布置作业:P104.练习5.3.1、。

相关文档
最新文档