国赛建模论文模板
数学建模国赛范文

从博弈论角度看大学生竞赛的优胜劣汰与参赛策略摘 要本文给出了在大学扩招背景下,大学生竞赛纵向发展及横向胜汰的模型,并从博弈论角度建立大学生参赛策略模型——尤其讨论其他高校参赛策略可预测情形下哈工大(威海)的最佳参赛对策。
同时,从各大院校科技创新水平给出科技类大学生竞赛对创新性培养的相关数学模型。
本文从搜集有关各大高校历年各种竞赛参加及获奖人数的数据开始,从竞赛规模的发展趋势和学生对竞赛的参加策略两个主要方面出发,分别通过对这两个方面的深入研究从而制定出各自有关大学生竞赛的前景的数学期望,最后再利用纳什均衡的伯川德模型综合考虑这两个主要因素,进一步深入并细化,从而求得最优策略。
模块Ⅰ中,我们将焦点锁定在从竞赛规模的逐年发展趋势预测其前景。
我们从选取的数据和相关资料出发,利用动态模型分析的动力系统综合考虑参赛院校、参赛队伍数量特征和变化趋势,并结合遗传算法推测各个竞赛的竞争态势和发展前景。
然后,我们随机选取了同一年份不同竞赛,并根据表达式计算这些竞赛的规模比重,结果发现跨专业程度相对较高,获奖几率相对高,保研加分比重大的竞赛,如全国大学生数学建模大赛,参赛人数占所有竞赛比例范围常年较高,且维持稳定年均增长率:专业性特征明显,获奖比例相对低,保研加分比重小的竞赛,如机械创新设计大赛,参赛人数占所有竞赛比例相当为低,且呈增长凝滞乃至下降状态。
在模块II 中,我们从学生对竞赛的参加策略出发,利用回归分析,权衡跨专业程度、竞赛规模、题目难度、获奖情况、保研加分政策与学生参赛策略的关系,发现下年参赛人数与前期竞赛规模、获奖比重、保研加分偏重成正相关,与上年题目难度、专业特殊性成负相关。
对此产生的数据验证分析符合标准。
然后,再根据专业相关系数来确定参赛策略的标准。
从而,得到了学生参赛策略的收益预期。
在模块III 中,为了获取哈工大(威海)在其他高校采取可预期的参赛策略的情形下有选择投入竞赛的最优策略,我们综合了前面两个模块所制定的收益指标,并分别给予不同权系数,得到最终策略收益的纳什均衡表达式12i i C ay by =+。
数学建模优秀论文模板(全国一等奖模板)

Haozl觉得数学建模论文格式这么样设置版权归郝竹林所有,材料仅学习参考版权:郝竹林备注☆※§等等字符都可以作为问题重述左边的。
一级标题所有段落一级标题设置成段落前后间距13磅二级标题设置成段落间距前0.5行后0.25行图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体Excel中画出的折线表字体采用默认格式宋体正文10号图标题在图上方段落间距前0.25行后0行表标题在表下方段落间距前0行后0.25行行距均使用单倍行距所有段落均把4个勾去掉注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前Dsffaf所有软件名字第一个字母大写比如E xcel所有公式和字母均使用MathType编写公式编号采用MathType编号格式自己定义公式编号在右边显示农业化肥公司的生产与销售优化方案摘 要 要求总分总本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。
针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。
针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。
并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-⨯,这充分说明残差波动不大。
数学建模国赛国家二等奖优秀论文

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.刘冲2.3.指导教师或指导教师组负责人(打印并签名)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的研究摘要本文就交通事故对通行能力的影响进行分析研究,主要对实际通行能力的变化、排队长度、事故持续时间、交通流量等问题建立相应的数学模型,并运用、等软件工具对模型求解。
SPSS MATLAB针对问题一,首先对视频一进行数据采集和提取,利用插值法对缺失数据进行补充。
然后以基本通行能力、可能通行能力为基础,综合考虑外界动态因素,构建出“合流难度系数”模型,进而得出实际通行能力的函数式,由此详细地描述出事故横断面处实际通行能力的变化过程。
针对问题二,首先应用配对样本t检验法得出所占车道不同对通行能力的确存在显著性差异的结论。
数学建模优秀论文模板(新)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他我赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)内容要点:1、研究目的:本文研究……问题。
2、建立模型思路、:首先,本文……。
然后针对第一问……问题,本文建立……模型:在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型3、求解思路,使用的方法、程序针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。
4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验等)5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性6、最后,本文通过改变,得出什么模型。
关键词:结合问题、方法、理论、概念等一、问题重述(第二页起黑四号)内容要点:1、问题背景:结合时代、社会、民生等2、需要解决的问题问题一:问题二:问题三:二、问题分析内容要点:什么问题、需要建立什么样的模型、用什么方法来求解三、模型假设与约定内容要点:1、根据题目中条件作出假设2、根据题目中要求作出假设写作要求:细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。
将一些问题理想化、简单化。
1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考3、假设应验证其合理性。
全国大学生数学建模竞赛优秀论文

5.1 问题 1 的分析与求解 5.1.1 绝对瓦斯涌出量与相对瓦斯涌出量的计算公式
由问题的分析,鉴定矿井是属于“低瓦斯矿井”还是“高瓦斯矿井”,需算出该矿的绝对瓦斯量 与相对瓦斯涌出量值,与分类标准值进行鉴别。由绝对瓦斯涌出量与相对瓦斯涌出量的定义,结合 相关的符号约定,可知
风量为风速在 1 分钟传播的距离乘以相应巷道横断面面积,公式为:
得出最佳总通风量为1415.062m3 / min ,采煤工作面 的风量为 476.1359m3 / min ,采煤工作面
的风量为 548.5541m3 / min ,局部通风机的额定风量 331.8158m3 / min 。
同时,本文还作了误差分析,对模型进行了评价及推广,并在做出相应简化假设情况下,对模 型作了进一步的改进。
需根据《煤矿安全规程》第一百三十三条的分类标准,鉴别该矿是属于“低瓦斯矿井”还是“高 瓦斯矿井”。由分类标准可知,须考察出该矿的相对瓦斯涌出量和绝对瓦斯涌出量的值,与其分类标 准值进行鉴别。由附表 2 所给监测值,可根据绝对瓦斯涌出量与相对瓦斯涌出量的计算公式,算出 各监测点的绝对瓦斯涌出量与相对瓦斯涌出量。如果经考察出的监测点的相对瓦斯量有小于或等于
二、问题的分析
2.1 背景的分析 煤矿安全生产是目前社会重点关注的热点问题之一,尤其是在能源紧张,对煤碳的需求量不断
增加的情况下,煤矿的安全生产问题更是值得我们关注,这也是建设平安和谐社会的重要组成部分。 根据统计资料,可知大部分煤矿事故的罪魁祸首都是瓦斯或煤尘爆炸。因此,矿井下的瓦斯和煤尘 对煤矿的安全生产构成了重大威胁,做好井下瓦斯和煤尘的监测与控制是实现煤矿安全生产的关键 环节。 2.2 基本预备知识 2.2.1 《煤矿安全规程》第一百三十三条中,矿井瓦斯等级根据矿井相对瓦斯涌出量和矿井绝对瓦 斯涌出量划分为:
全国大学生数学建模竞赛论文超级模板

第三部分 模型的假设…………………………………………………………()
第四部分 定义与符号说明……………………………… …………………()
第五部分 模型的建立与求解………………………………… ……………()
1.问题1的模型………………………………………………………………()
第三部分:问题2的。。。个模型(4号宋体)
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
第四部分:问题3的。。。个模型(4号宋体)
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
六、模型评价与推广
对本文中的模型给出比较客观的评价,必须实事求是,有根据,以便评卷人参考。
(数学建模论文书写基本框架,仅供参考)
题目(黑体不加粗三号居中)
摘要(黑体不加粗四号居中)
(摘要正文小4号,写法如下)
(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点我们对问题1用。。。。。。。。的方法解决;对问题2用。。。。。。。。的方法解决;对问题3用。。。。。。。。的方法解决。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
三、模型假设(4号黑体)
(以下小4号)
1.假设题目所给的数据真实可靠;
2.
3.
4.
5.
6.
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
注意:假设对整篇文章具有指导性,有时决定问题的难易。一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。注意罗列要工整。
2022年研究生数模国赛B题论文模板

2022年研究生数模国赛B题论文模板2022年研究生数模国赛B题论文模板方形件组批优化问题数学模型摘要方形件组批优化问题本是本文要解决的数学问题,为了明确方形件组批优化问题,本文针对方形件组批优化问题进行了分析建模,对方形件组批优化问题进行了参考文献研究,建立了方形件组批优化问题的相应模型,推导出方形件组批优化问题的计算公式,编写了方形件组批优化问题的计算程序,经过程序运行,得到方形件组批优化问题程序计算结果。
具体有:对于问题一,这是方形件组批优化问题最重要的问题,根据题目,对问题一进行了分析,参考已有的资料,建立了方形件组批优化问题一的数学模型,推导出问题一的计算公式,编写出方形件组批优化问题一的计算程序。
求出了方形件组批优化问题一的计算结果。
对于问题二,方形件组批优化问题二比问题一复杂的,是方形件组批优化问题的核心,分析的内容多,计算机的东西也多。
在方形件组批优化问题一的基础上,根据方形件组批优化问题,对问题二进行了分析,参考已有的资料,建立了方形件组批优化问题二的数学模型,推导出问题二的计算公式,编写出方形件组批优化问题二的计算程序。
求出了问题二的计算结果,并以图表形式表达结果。
对于问题三,方形件组批优化问题三是问题一和问题二的深入。
在问题一和问题二的基础上,根据方形件组批优化问题,对问题三进行了分析,参考已有的资料,建立了问题三的数学模型,推导出方形件组批优化问题三的计算公式,编写出方形件组批优化问题三的计算程序。
求出了方形件组批优化问题三的计算结果,并以图表形式表达结果,并且进行了分析讨论。
对于问题4,方形件组批优化问题4是问题一、问题二和问题三的扩展。
在问题一、问题二和问题三的基础上,根据方形件组批优化问题,对方形件组批优化问题4进行了分析,参考已有的资料,建立了方形件组批优化问题数学模型,推导出方形件组批优化问题4的计算公式,编写出问题4的计算程序。
求出了问题4的计算结果,并以图表形式表达结果,并且进行了分析讨论。
全国大学生数学建模竞赛论文范例

全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的研究,建立了相应的数学模型,并运用具体方法进行求解和分析。
通过对结果的讨论,得出了具有一定实际意义的结论和建议。
一、问题重述详细阐述所给定的问题,明确问题的背景、条件和要求。
二、问题分析(一)对问题的初步理解对问题进行初步的思考和分析,明确问题的关键所在和需要解决的核心问题。
(二)可能用到的方法和模型根据问题的特点,探讨可能适用的数学方法和模型,如线性规划、微分方程、概率统计等。
三、模型假设(一)假设的合理性说明所做假设的依据和合理性,确保假设不会对问题的解决产生过大的偏差。
(二)具体假设内容列举出主要的假设条件,如忽略某些次要因素、变量之间的关系等。
四、符号说明对文中使用的主要符号进行清晰的定义和说明,以便读者理解。
五、模型建立与求解(一)模型的建立详细阐述模型的构建过程,包括数学公式的推导和逻辑关系的建立。
(二)模型的求解运用适当的数学软件或方法对模型进行求解,给出求解的步骤和结果。
六、结果分析(一)结果的合理性对求解得到的结果进行合理性分析,判断其是否符合实际情况。
(二)结果的敏感性分析探讨模型中某些参数或条件的变化对结果的影响。
七、模型的评价与改进(一)模型的优点总结模型的优点,如准确性、简洁性、实用性等。
(二)模型的不足分析模型存在的不足之处,如局限性、假设的不合理性等。
(三)改进的方向针对模型的不足,提出可能的改进方向和方法。
八、结论与建议(一)结论总结问题的解决结果,明确回答问题的核心要点。
(二)建议根据结论,提出具有实际意义的建议和措施,为相关决策提供参考。
以下是一个具体的示例,假设我们要解决一个关于交通流量优化的问题。
问题重述在某城市的一个交通路口,每天早晚高峰时段都会出现严重的交通拥堵。
现需要建立数学模型,优化信号灯的设置时间,以提高交通流量,减少拥堵。
问题分析首先,我们需要收集该路口的交通流量数据,包括不同时间段各个方向的车辆数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名):
参赛队员(打印并签名) :1.
2.
3.
指导教师或指导教师组负责人(打印并签名):
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)
日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):
论文总标题(标题1,三号黑体字,段前后可空18磅)*摘要(标题1,四号黑体字,段前后可空12磅)
本文针对×××××问题,对相关数据进行如何的处理,使×××、×××、×××、×××等方法,分别建立了×××、×××、×××、×××等模型,使用×××、×××、×××、×××等软件编程计算方法,得到关于什么问题的哪几个具体方面×××、×××、×××、×××结果,最后本文还做了误差分析及灵敏度分析。
针对问题一,详细交待一下问题的具体内容,使×××、×××、×××、×××等方法,建立了×××、×××模型,使用×××、×××等软件编程计算方法,得到关于什么问题的哪一个或几个具体方面×××、×××、×××、×××的结果,并分析了结果如何。
针对问题二,详细交待一下问题的具体内容,使×××、×××、×××、×××等方法,建立了×××、×××模型,使用×××、×××等软件编程计算方法,得到关于什么问题的哪一个或几个具体方面×××、×××、×××、×××的结果,并分析了结果如何。
针对问题三,详细交待一下问题的具体内容,使×××、×××、×××、×××等方法,建立了×××、×××模型,使用×××、×××等软件编程计算方法,得到关于什么问题的哪一个或几个具体方面×××、×××、×××、×××的结果,并分析了结果如何。
针对问题四,详细交待一下问题的具体内容,使×××、×××、×××、×××等方法,建立了×××、×××模型,使用×××、×××等软件编程计算方法,得到关于什么问题的哪一个或几个具体方面×××、×××、×××、×××的结果,并分析了结果如何。
针对问题五,详细交待一下问题的具体内容,使×××、×××、×××、×××等方法,建立了×××、×××模型,使用×××、×××等软件编程计算方法,得到关于什么问题的哪一个或几个具体方面×××、×××、×××、×××的结果,并分析了结果如何。
最后,交待一下论文的特色和闪光点在何处,还做了哪些具体的工作。
比如一篇报告,论文的客观评价,模向和纵向的推广,结果的分析,论文的价值所在等。
关键词:标题或问题;方法1、方法2、模型、软件名、误差分析或灵敏度分析
§1 问题的重述
一、背景知识
二、相关数据
三、要解决的问题
§2 问题的分析
一、对问题的总体分析
二、对具体问题的分析
1.对问题一的分析
问题请根据所给各月需求量预测未来一年中各地区每月的产品需求量;
2.对问题二的分析
根据所给工资标准及运输价格等条件确定各加工厂的生产规模;
3.对问题三的分析
若允许重新设定新厂位置,请根据相关条件为新厂选址并给做出评价。
§3 模型的分析
1.
2.
3.
§4 名词解释与符号说明
一、名词解释
二、符号说明
§5 模型的建立与求解
一、问题一的分析与求解
1.问题的分析
2.模型的准备
3.模型的建立
4.模型的求解
二、问题二的分析与求解
1.问题的分析
2.模型的准备
3.模型的建立
4.模型的求解
三、问题三的分析与求解
1.问题的分析
2.模型的准备
3.模型的建立
4.模型的求解
§6 模型的检验与分析
一、模型的检验
二、模型的检验的误差分析
三、模型的灵敏度分析
§7 模型的进一步讨论
§8 模型的评价与推广
一、模型的评价
1.优点:
2.缺点:
二、模型的推广
1.模向推广:
2.纵向推广
参考文献
附录。