导数和微分的概念产生的历史
苏教版高中数学选修2-2 微积分建立的时代背景和历史意义

微积分建立的时代背景和历史意义微积分是研究函数的微分、积分以及有关概念和应用的数学分支.微积分的产生和发展被誉为“近代技术文明产生的关键事件之一”.微积分的建立,无论是对数学还是对其他科学以至于技术的发展都产生了巨大的影响,充分显示了人类的数学知识对于人的认识发展和改造世界的能力的巨大促进作用. 积分的思想产生得很早,公元前200多年,希腊科学泰斗阿基米德(Archimedes ,约公元前287~前212)就用积分的观点求得球体积公式34π3V r =他用球体“薄片”的叠加与球的外切圆柱及相关圆锥“薄片”的叠加,并用杠杆原理得到球体积公式.公元5世纪,中国数学家祖冲之、祖日恒 父子提出了“缘幂势既同,则积不容异”,也是积分概念的雏形.微分观念的发生比积分大概迟了2000年.公元16世纪,伽利略发现了自由落体的运动规律212S gt =,落体的瞬时速度近似于()()S t t S t gt t +∆-≈∆. 当t ∆很小时,这个比值接近于时刻t 的瞬时速度,这是导数的启蒙.同时,在探求曲线的切线的时候,人们发现,切线是割线的近似,割线的斜率是()()y f x x f x x x ∆+∆-=∆∆,当x ∆很小时,y x∆∆应该是切线斜率的近似,求瞬时速度及切线斜率,是产生导数观念的直接动因.17世纪,法国数学家笛卡儿(Descartes ,1596~1650)建立了坐标系,使几何图形能够用函数来表示,从而为研究函数及其变化率提供了有力的工具. 在17世纪后半叶,牛顿和莱布尼茨总结了诸多数学家的工作之后,分别独立建立了微积分学.牛顿和莱布尼茨对微积分学最突出的贡献是建立了微积分基本定理()()()ba F x dx Fb F a '=-⎰,它把原以为不相干的两个事物紧密联系在一起,揭示了微分和积分的逆运算关系.所不同的是,牛顿(Newton ,1642~1727)创立的微积分有深刻的力学背景,他更多的是从运动变化的观点考虑问题,把力学问题归结为数学问题,而莱布尼茨(Leibniz ,1646~1716)主要是从几何学的角度考虑,他创建的微积分的符号以及微积分的基本法则,对以后微积分的发展有极大的影响.19世纪,法国数学家柯西(Cauchy ,1789~1857)和德国数学家魏尔斯特拉斯(Weierstrass ,1815~1897)为微积分学奠定了坚实的基础,使微积分学成为一套完整的、严谨的理论体系.微积分的建立充分说明,数学来源于实践,又反过来作用于实践.数学的内容、思想、方法和语言已成为现代文化的重要组成部分.。
微积分产生的背景

微积分的创立者是牛顿和莱布尼兹严格微积分的奠基者是柯西和威尔斯特拉斯关于微积分的故事,曾经一度迷惑着我,今天有幸弄清其中原委,以消心中疑云。
微积分的萌芽可以追溯到古代的希腊、中国和印度,酝酿于17世纪的欧洲。
1.牛顿和莱布尼兹创立了微积分1.1 牛顿的“流数术”牛顿(I.Newton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。
1661年牛顿进入剑桥大学三一学院,受教于巴罗。
笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。
牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。
1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。
在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。
这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。
正是在这种意义下,牛顿创立了微积分。
牛顿对于发表自己的科学著作持非常谨慎的态度。
1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。
而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。
1.2 莱布尼茨的微积分工作莱布尼茨(W.Leibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。
1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。
这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。
微积分的起源与发展

微积分的起源与发展主要内容:一、微积分为什么会产生二、中国古代数学对微积分创立的贡献三、对微积分理论有重要影响的重要科学家四、微积分的现代发展一、微积分为什么会产生微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期.公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述.比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭"。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。
困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化.例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。
但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的.第二类问题是求曲线的切线的问题.这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。
困难在于:曲线的“切线"的定义本身就是一个没有解决的问题。
微积分概念发展史

微积分概念发展史微积分真正成为一门数学学科,是在十七世纪,然而在此这前微积分已经一步一步地跟随人类历史的脚步缓慢发展着。
着眼于微积分的整个发展历史,在此分为四个时期:1.早期萌芽时期。
2.建立成型时期。
3.成熟完善时期。
4.现代发展时期。
早期萌芽时期:1、古西方萌芽时期:公元前七世纪,泰勒斯对图形的面积、体积与的长度的研究就含有早期微积分的思想,尽管不是很明显。
公元前三世纪,伟大的全能科学家阿基米德利用穷竭法推算出了抛物线弓形、螺线、圆的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的公式,其穷竭法就类似于现在的微积分中的求极限。
此外,他还计算出Π的近似值,阿基米德对于微积分的发展起到了一定的引导作用。
2、古中国萌芽时期:三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。
“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。
”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。
另外在南朝时期杰出的祖氏父子更将圆周率计算到小数点后七位数,他们的精神值得我们学习。
此外祖暅之提出了祖暅原理:“幂势即同,则积不容异”,即界于两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等,比欧洲的卡瓦列利原理早十个世纪。
祖暅之利用牟合方盖(牟合方盖与其内切球的体积比为4:Π)计算出了球的体积,纠正了刘徽的《九章算术注》中的错误的球体积公式。
建立成型时期:1.十七世纪上半叶:这一时期,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。
天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。
意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式,此外,卡瓦列利还证明了吉尔丁定理(一个平面图形绕某一轴旋转所得立体图形体积等于该平面图形的重心所形成的圆的周长与平面图形面积的乘积。
微积分

玛利亚·阿涅西
基础[编辑]
在微积分中,“基础”意味将一个科目从公理和定义中严格地推导出来。早期微积分所使用的无穷小被认为是不严谨的,遭到了一系列作者的严厉批评,特别是米歇尔·罗尔和乔治·贝克莱主教。贝克莱因在他1734年出版的《论分析》中将无穷小描述为“偏激的妖怪数量”而著名。最近的分析认为莱布尼茨版微积分更加严密,经得住贝克莱的经验主义的攻击。[9] 为微积分的严密论证奠基成为数学家们在牛顿、莱布尼茨之后几世纪的重要工作,直至今日仍是研究的热点领域。
现代[编辑]
发展现代微积分理论的一个动力是为了解决“切线问题”,另一个是“面积问题”。
文艺复兴之后,基于实际的需要及理论的探讨,积分技巧有了进一步的发展。譬如为了航海的方便,杰拉杜斯·麦卡托发明了所谓的麦卡托投影法,使得地图上的直线就是航海时保持定向的斜驶线。在欧洲,基础性的论证来自博纳文图拉·卡瓦列里,他认为体积和面积应该用求无穷小横截面的总量来计算。他的想法类似于阿基米德的《方法论》,但是卡瓦列里的手稿丢失了,直到20世纪初期再被找到。卡瓦列里的努力没有得到认可,因为他的方法的误差巨大,而且在当时无穷小也不受重视。
其中L就是极限的值。例如当 x_n = {1 \over 2n} 时,它的极限为L=0。就是说n越大(越往前延伸),这个值越趋近于0。
微积分是在做一些较小数的计算时发展形成的。历史上,一开始是用无穷小量来做。无穷小量可以被看作是一个数,但是从某种意义上来说,它“无穷小”。一个无穷小数\mathrm{d}x能够比0都大,但是小于数列1,\frac{1}{2},\frac{1}{3},??任一个数,以及小于任何正实数。任何整数倍数的无穷小还是无穷小,换句话说,无穷小不满足阿基米德性质。从这一点来看,微积分是一组处理无穷小的方法,这种方法失宠于19世纪,因为无穷小的概念不够精确。但是,这个概念在20世纪由于非标准分析以及光滑无穷小分析的引进被重新提及,非标准分析为无穷小的操作提供了坚实的基础。在19世纪,无穷小被极限取代,极限描述的是与函数在某一点附近的值有关的值。它们描述了函数在某处附近的行为,类似无穷小,但是使用了普通的实数系统。在这种理论下,微积分是一组处理极限的方法。无穷小被很小的数代替,函数无穷小附近的行为是通过取距离越来越小时的极限来找到的。极限是提供微积分严格的基础最简单的方式,基于这个原因,它们是标准的做法。
2023大学_微积分学(吴迪光张彬著)课后答案

2023微积分学(吴迪光张彬著)课后答案微积分学历史背景早期思想早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。
古希腊数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。
中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。
在3世纪,中国数学家刘徽创立的割圆术用圆内接正九十六边形的面积近似代替圆面积,求出圆周率的近似值3.141024,并指出:“割之弥细,所失弥少,割之又割,以至不可割,则与圆合体而无所失矣”。
刘徽对面积的深刻认识和他的割圆术方法,正是极限思想的具体体现。
数列极限是函数极限的基础,一个数列an如果当n无限增大时,an与某一实数无限接近,就称之为收敛数列,a为数列的极限,记作liman=a例如an=1/n,数列的极限为0。
微分学微分学的基本概念是导数。
导数是从速度问题和切线问题抽象出来的数学概念。
牛顿从苹果下落时越落越快的现象受到启发,希望用数学工具来刻画这一事实。
若用s=s(t)表示物体的运动规律,即物体运动中所走路程s与时间t的关系,那么物体在t=t0时的瞬时速度为v(t0),并记v(t0)=s(t0),并称之为路程s关于时间t的导数或变化率,也可记v(t0)=()|t=t0。
而物体运动的加速度a(t)=v(t)=s(t)=()。
导数作为一个数学工具无论在理论上还是实际应用中,都起着基础而重要的作用。
例如在求极大、极小值问题中的应用。
积分学积分学的基本概念是一元函数的不定积分和定积分。
主要内容包括积分的性质、计算,以及在理论和实际中的应用。
不定积分概念是为解决求导和微分的逆运算而提出来的。
如果对每一xI ,有f(x)=F(x),则称F(x)为f(x)的一个原函数,f(x)的全体原函数叫做不定积分,记为,因此,如果F(x)是 f(x)的一个原函数,则=F(x)+C,其中C为任意常数。
微积分的发展历史

微积分的产生——划时代的成就.1 微积分思想的萌芽1.1 古希腊罗马——微分、积分思想的发源地原子论朴素的微分和积分思想.古希腊的原子论者具有朴素的微分和积分思想,该学派的创始人是留基伯(Leucippcus of Miletus),代表人物则是百科全书式的学者德漠克利特(Democritus of Abdera).原子论者把宇宙间的万物看成由不可再分的原子构成,以及原子虽然不能再分但仍有内部结构的思想,表现在数学上就是对于表示有限的长度、面积和体积的量x ,进行了一次微分(dx)和二次微分(dx 2). 德漠克利特曾用原子论思想第一次算出圆锥和棱锥的体积分别等于和它们同底同高的圆柱和棱柱体积的三分之一.极限法的早期形式穷竭法.为了计算曲边形的面积和体积,欧多克斯(Eudoxus of Cnidos )曾提出了一个计算方法,这个方法在17世纪时被人称为“穷竭法”.用现代的符号表示就是:如果对于任意的正整数n ,等式k b a nn =(常数)成立,且当n →∞时,A a n →,B b n →,则有k BA =.他用这个方法证明了德漠克利特已得出的求圆锥和棱锥体积的公式.阿基米德(Archimedes)对穷竭法也作出了重要贡献,他在《圆的度量》、《论圆柱和球》、《抛物线求积》、《论螺线》等著作中,应用了穷竭法,并引用了近似现代微积分中的“大和”与“小和”概念.并且他用这种方法计算出了球的体积和表面积、抛物线弓形的面积以及一些旋转体的体积等数学问题.芝诺的拟难.芝诺(Zero of Elea)是古希腊爱利亚学派的代表人,他虽然不是一个科学家,更谈不上是一位数学家,但他提出的四个拟难——二分法、阿基里斯追龟、飞箭、运动场,客观上把微积分中的离散和连续的对立统一惹人注目地摆了出来,对微积分发展有一定的影响.其中“二分法”和“阿基里斯追龟”涉及无穷运算问题,比如,收敛的无穷级数,虽有无穷多项,但其和仍为有限的;“飞箭”则是一个典型的导数问题,运动的物体在每一时刻不仅有速度,而且还有加速度等;“运动场”明显地同运动的两个相反的方向即正负概念有关.1.2 阿拉伯和欧洲中世纪——无限和运动的研究在整个中世纪,希腊文化遗产在某种程度上是由逐渐缩小的、以君士坦丁堡为中心的拜占庭帝国保存下来的.但是,在黑暗时代的几个世纪中,有效地利用这些遗产,并且最后把它们输送到西欧去的,却是地中海地区的阿拉伯政权.代数和三角学的确立.从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表,集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯人”的工作才得以保存下来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流的桥梁,今天通行的“印度—阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展,阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角学的确立就是他们对数学所做出的贡献.对无限和运动的研究.这一时期,除了“印度—阿拉伯数码”的逐渐普及,代数和三角学已经确立以及数学符号化已有端倪外,对无限的讨论以及对运动和速度的研究已成为数学家们注意的中心.例如德国的红衣主教库萨的尼古拉,把圆与三角形分别看成边数最多和边数最少的多边形,把无限大和零分别看成自然数的上界和下界.他还说尽管“世界不是无限的,但毕竟不能认为它是有限的,因为世界没有一条把它包围起来的界限”,这表明了他把无限看作一个过程的潜无限思想.14世纪英国很有声誉的数学家苏依塞斯的重要著作《算术》中,已有变量、极大和极小概念的原始形式,预示了变数和导数即将进入数学领域.他所使用的“流数”、“流量”等概念,被300年后的牛顿所采用.在无限问题上他指出,要解决所有关于无限的诡辩,只要认识到有限和无限不能有它们的比就行了,这是关于对有限和无限应有不同的论证的最早认识.1.3 古代中国——面积、体积与极限思想的丰富简单几何图形面积和体积的计算.在微积分的发展历史上,对任意封闭的平面曲线围成图形面积的计算,和任意封闭的空间曲线包围立体图形体积的计算,是产生积分概念的主要途径之一.计算面积和体积可以追溯到原始农业社会,根据我国甲骨文记载,约在300年以前的殷代,就把耕种的土地分成方形小块以求面积.积分概念就是在初等几何计算面积和体积的基础上逐渐形成的.《庄子》和《墨经》中的极限思想.极限概念是微积分区别于初等数学的特有概念,没有极限概念就没有现代的微积分.战国时代的《庄子·天下篇》中,有不少极限思想,其中最脍炙人口的一句话是:“一尺之椎,日取其半,万世不竭.”可以理解为无穷无尽、永远达不到极限的潜无限思想.无穷或无限概念,是极限概念的特殊情况,是微积分的重要概念.《墨经》也是战国时代的重要著作之一,该书对有穷和无穷作了明确的区分.该书说,“穷,或有前,不容尺也”,意思是有穷就是有边界的区域,用尺沿一个方向去量它一定能量完;“穷,或不容尺,有穷;莫不容尺,无穷也”,即有穷就是能量尽这个区域,如果量不尽,就是无穷.与此同时《墨经》也有丰富的微分思想,比如:“端,体之无厚而最前者也”;“端,无间也”;“非半则不动,说在端”.第一句话就是说,“端”就是不可度量且位于物体的最前面的东西.第二和第三句是说,如果没有空隙、也不能再进行分割的就是端.这是对构成物质的最基本的元素相当精确的定义,实际上就是对物体经“化整为零”后的微分概念.极限思想的运用——割圆术.我国三国时的数学家刘徽提出的“割圆术”,他从圆内接正六边形做起,令边数成倍地增加,逐步推求圆内接正12边形,正24边形,……,直到正3072边形,用这个正3072边形面积来逼近圆面积,就得到π的较精确的值3.1416,“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣.”这就包含着微积分中“无限细分,无限求和”的思想方法.另外,古代与中世纪中国学者在天文历法研究中曾涉及到天体运动的不均匀性及有关的极大、极小值问题,如郭守敬《授时历》中求“月离迟疾”(月亮运行的最快点和最慢点)、求月亮白赤道交点与黄赤道交点距离的极值(郭守敬甚至称之为“极数”)等问题,但东方学者以惯用的数值手段(“招差术”,即有限差分计算)来处理,从而回避了连续变化率.总之,在17世纪以前,真正意义上的微分学研究的例子可以说是较少的.2微积分孕育的半个世纪在历史上,积分概念和方法的产生先于微分.积分的原理,溯源于古希腊人所创造的计算面积、体积和弧长相联系的求和方法,在古代的穷竭法中就已萌芽.微分思想虽然可追溯到古希腊,但它的概念和法则几乎是16世纪下半叶后与近代力学同时产生和发展起来的.微分思想和积分思想起初互不相干,基本上是平行而又独立地发展着,都是对具体问题采取具体的方法,尽管在思想上有某些相似之处,但毕竟没有形成统一的方法.这两个统一方法形成后建立起其间联系又晚一些.直至17世纪上半叶,以力学为中心的一系列问题向数学提出了挑战,迫使数学家探索新的数学思想和方法来解决求曲线的长度、曲线围成的面积和体积、物体的重心、变化率和切线、函数的极值、物体在任意时刻的速度和加速度等大量生产、科研实践中提出的数学问题.对上述问题的研究以及对二项式定理和级数的讨论所形成的数学思想和方法的成熟和发展,孕育了微积分的诞生.2.1积分学概念和方法的产生在积分概念和方法的形成过程中,最有代表性的工作主要有:2.1.1 开普勒的同维无穷小方法开普勒(Johannes Kepler,1571-1630)是德国著名天文学家、力学家和数学家,在大学学习时曾接触到哥白尼学说,他的思想受毕达哥拉斯和柏拉图的影响较大,认为宇宙是上帝安排的和谐的体系,但他不象前人那样盲目相信,而是尊重事实.他寻求宇宙是和谐体系的显著成绩是先后总结出行星运动三定律,其中第一定律认为行星绕日运动并非是匀速运动,其轨道也不是圆而是椭圆.这就从根本上打破了传统的、权威的观念,是对哥白尼的天文学的重大发展. 图5-1 开普勒开普勒的父亲好喝酒,以开酒馆为业,少年时期的开普勒常帮父亲营业.他发现当时酒商求奥地利酒桶容积的方法不精确,经过研究在1615年发表《测量酒桶的新立体几何》,该书分为三个部分,第一部分是阿基米德式的空间几何,其中大约有90个旋转体的体积是阿基米德没有研究过的;第二部分重点是研究酒桶体积的求法;第三部分是这一方法的应用.在该书中,开普勒对古希腊的原子论方法作了发展——用无数个同维小元素之和来确定曲边形的面积及旋转体的体积.例如,把圆当作无限多个边的正多边形从而把无限多个以圆心为顶点的等腰三角形面积之和计为圆面积,于是得到圆面积等于周长乘半径之半. []n S S S A ∆++∆+∆=2121 221r rs π== 图 5-2他还认为球的体积是无数个小圆锥的体积之和,这些圆锥的顶点在球心,底面则是球面的一部分;将圆锥看成是极薄的圆盘之和,并由此计算出它的体积,然后进一步证明球的体积是半径乘以球面面积的三分之一⎪⎭⎫ ⎝⎛⨯⨯=3142R R V π.开普勒还用类似的方法算出了圆柱、圆环以及苹果形、柠檬形等的体积.开普勒的方法并不严格.比如,当圆分解为其底为一点之等腰三角形时,无异于说这时的三角形是一个线段,圆的面积是无数条线段(即半径)之和.在一些问题中,开普勒也确认面积就是直线之和.用无数个同维无穷小之和计算面积和体积是开普勒的基本思想,虽然还不严格,但确有合理之处,这也是开普勒方法的精华,他化曲为直和微小元求和的思想,对积分学很富有启发性. 2.1.2卡瓦列里和托里拆利的不可分量法“不可分元”并无严格的定义,费尔马、帕斯卡和罗伯瓦尔等都有类似思想,但是以卡瓦列里的思想最典型. 卡瓦列里(BonaventuraCavalieri,1598-1647)是意大利的牧师,也是伽俐略的学生.他的积分思想同古代原子论一脉相承,但比开普勒的方法更普遍,称之为“不可rS i O分元法”.这一思想集中体现在他的《用新方法促进的连续不可分量的几何学》(1635)和《六个几何问题》中两部著作之中.卡瓦列里认为线是由无限多个点组成,就象链条由珠子穿成的一样;面是由无限多条平行线段组成,就象布是由线织成的一样;立体则是由无限多个平行平面组成,就象书是由每一页积累成的一样;不过它们都是对无穷多个组成部分来说的.换句话说,他把几何图形看成是比它低一维的几何元素构成的:线是点的总和,平面是直线的总和, 图5-3 卡瓦列里立体是平面的总和,他分别把这些元素叫做线、面和体的“不可分量”.他建立了一条关于这些不可分量的普遍原理,后以“卡瓦列里原理”著称:两个等高的立体,如果它们的平行于底面且离开底面有相等距离的截面面积之间总有给定的比,那么这两个立体的体积之间也有同样的比.卡瓦列里利用这条原理计算出许多立体图形的体积,然而他对积分学创立最重要的贡献还在于证明了:如果两线段之比为2:1,则其平方和之比为3:1,立方和之比为4:1,直到九次方和之比为10:1,实际上已相当于今天的积分式⎰++=an n a n dx x 0111 (n 为自然数) 使早期的积分学突破了体积计算的现实原型而向一般算法过渡.卡瓦列里的不可分量方法比他的前人包括开普勒所使用的方法更接近于普遍的积分学算法,开普勒曾向同行们提出一个挑战问题:求抛物线弓形绕弦旋转而成的旋转体体积.卡瓦列里用自己的方法解决了开普勒的问题.人们认为,以卡瓦列里为代表的不可分量法就是17世纪初期的积分法,也是牛顿和莱布尼茨以前积分思想发展的高峰.卡瓦列里虽然克服了开普勒用各自不同的直线图形表示不同的曲边图形对应的不可分量之间的关系,而非每个面积中的不可分量全体,这就避免了无限的概念,自然就造成了理论上的不可克服的矛盾.同时,卡瓦列里求积法还具有不注意代数和算术的纯几何缺点.对卡瓦列里不可分量法作出重要修正的是他的朋友、伽利略的学生、意大利的托里拆利(E.Torricelli,1608-1647).1646年卡瓦列里发表《关于无限抛物线》中批评说:“把不可分元看成是相等的,即把点与点在长度上、线与线在宽度上、面与面在厚度上看成相等的说法纯属空话,它既难以证明,又无直观基础.”他以圆和三角形的不可分元为例说明二者的不可分元并不相同:一个是具有极小中心角的扇形,一个是具 图 5-4有微小宽度的带状体.所以他用开普勒的同维无穷小去代替卡瓦列利的不可分量,同时又保留了不可分量法在求积上的有效性,不但取得了曲线求积问题的许多成果,而且在理论上向近代积分靠近了一步.2.1.2 费马、帕斯卡和沃里斯等人的推进费马于1636年提出了一个相当于近代定积分的积分法,用统一的矩形条分割曲线形;用矩形面积近似地代替曲边形面积;利用曲线方程求出矩形面积,并以其构成的几何级数之和近似地得到曲线面积;对和式取极限使近似值转化为精确值.而帕斯卡则采取等分x 轴上的区间和略去无穷序列之和的高阶差的方法,这对牛顿、莱布尼茨产生了很大的影响.费马还将其积分法用于求弧长,他把曲线长视为微小线段长之和,再把线段长度之和转化为求曲线围成的面积来获得结果.英国数学家沃里斯1656年发表《无穷的算术》,使卡瓦列里、费马的不可分法得到系统的推广.他用数的语言把几何方法算术化,使无限的概念以解析的形式出现,开辟了用级数表示函数的道路,使得无限算术代替了有限算术,这对确立微积分奠定了重要的思想基础.沃里斯还利用微分三角形,给出了近代意义的弧微分概念和计算公式:22dy dx ds +=,但未能给出弧长的计算方法.到17世纪60年代,求积法已取得十分丰富的成果,发展得相当完善了.2.2微分学概念和法则的发展以上介绍的微积分准备阶段的工作,主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况.解析几何的两位创始人笛卡儿和费马,都是将坐标方法引入微分学问题研究的前锋.2.2.1费马借助微小增量作切线费马在1637年发表了《求最大值和最小值的方法》,记述了一个求曲线切线的方法,这个方法的大意如下:设PT 是曲线在P 点的切线(如图5-5),TQ 叫次切线,只要知其长,就可确定T 点,再连接PT 就可以了.为了确定TQ ,设QQ 1为TQ 的微小增量,其长为E (即今之△x ), ∵△TQP ∽△PRT 1 ∴1RT PRQP TQ = 费马认为,当E(=PR)很小时,RT 1同RP 1几乎相等,因此有QPP Q E RP E QP TQ -==111 图 5-5 用现在的符号,把QP 写成)(x f ,于是有)()()(x f E x f E x f TQ -+= 即 )()()(x f E x f x f E TQ -+⋅=这时,费马先用E 除分子和分母,然后再让E=0就得到TQ 的数值(即今之)()(x f x f TQ '=).费马用这个方法解决了许多难题,应当说,这是微分方法的第一个真正值得注意的先驱工作.但是,他没有通过割线移动来决定切线,也没有通过计算斜率的极限来求切线.割线移动决定切线的思想,是笛卡儿1638年提出来的.2.2.2笛卡儿“圆法”求曲线)(x f y =过点))(,(x f x P 的切线,笛卡儿的方法是首先确定曲线在点P 处的法线与x 轴的焦点C 的位置,然后作该法线的过点P 的垂线,便可得到所求的切线.如图5-6,过C 点作半径r=CP 的圆,因CP 是曲线)(x f y =在P 点处的法线,那么点P 应是该曲线与圆222)(r v x y =-+的“重交点”(在一般情况下所作圆与曲线还会相交于P 点附近的另一点).如果[]2)(x f 是多项式,有垂交点就相当于方程 222)()]([r x v x f =-+ P T 1P 1RT Q Q 1将以P 点的横坐标x 为重根.但具有重根e x =的多项式的形式必须是∑⋅-i i x c e x 2)(,笛卡儿把上述方程有重根 的条件写成: ∑-=--+i i x c e x r x v x f 2222)()()]([, 图 5-6然后用比较系数法求得v 与e 的关系.带入x e =,就得到用x 表示的v ,这样过点P 的切线的斜率就是)(x f x v -. 以抛物线kx y =2为例,kx x f y ==)(,方程22)(r x v kx =-+有重根的条件为: 222)()(e x r x v kx -=--+令x 的系数相等,得e v k 22-=-,即k e v 21+=.代入x e =,于是次法距k x v 21=-,求出抛物线过点()kx x ,的切线斜率是xk kx k x f x v 212/)(==-. 笛卡儿的代数方法在推动微积分的早期发展方面有很大的影响,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分的道路的.笛卡儿圆法在确定重根时会导致极繁复的代数计算,1658年荷兰数学家胡德(J.Hudde)提出了一套构造曲线切线的形式法则,称为“胡德法则”.胡德法则为确定笛卡儿圆法所需的重根提供了机械的算法,可以完成求任何代数曲线的切线斜率时所要进行的计算.2.2.3费马求极值的方法用代数方法求函数的极大值和极小值,是产生微分学的重要途径之一.记载费马求极大值与极小值方法这份手稿,实际上是他写给梅森(M.Mersenne)的一封信,梅森是当时欧洲科学界领头任务伽利略、费马、笛卡儿、帕斯卡等人之间保持书信交往的中心.费马的方法用现在的符号表示大意如下:设)(x f 是x (x 就是费马的A )的某个多项式,现在讨论)(x f y =的极大值.如果)(x f 在x 点达到极大值,则对充分小的E>0必有:)(E x f +<)(x f 和)(E x f -<)(x f将此二不等式之左边展开则有:+++=+2)()()()()(E x Q x E x P x f E x f <)(x f-+-=-2)()()()()(E x Q x E x P x f E x f <)(x f消去这两个不等式两边的共同项,再用E 除则分别给出下面两个不等式:++E x Q x P )()(<0-+-E x Q x P )()(<0当E 充分小时,此二式左边的符号完全由)(x P 确定.可见,当)(x P 0≠时,此二式不可能有同一的符号,因此必须)(x P =0,从此式解出x 就是所求的极大值.同理可以求出极小值.费马的方法实际上就是,当计算有理整函数)(x f 的极值时,先计算它的导数x x f x x f x f x ∆-∆+='→∆)()(lim )(0,再令0)(='x f ,解之就是极值点. 不难看出,费马的方法尚有不足之处:第一,费马没有引入无穷小概念,我们在解释他的E 时设为“充分小”,是为了同今天的思想相一致,但费马并没有如此表述;第二,正如他自己所说,把求极值的方法普遍化问题尚缺乏证明;第三,令0)(=x P ,只是求出极值的必要条件,而不是充分条件.尽管费马求极值方法尚有不足之处,但已接近今天之形式,他已经看到了求切线和求极值有相同的数学结构.可以认为,在微分学的先驱工作中,费马是比较成熟的一个,无论是求切线还是求极值,他的方法在当时的影响都比较大.2.3微积分系统理论探索的前夜这里将要介绍的是帕斯卡、沃里斯和巴罗等人的工作,他们的工作对牛顿和莱布尼茨的微积分的产生有着直接的关系,如过把卡瓦列利和费马等人看作微积分先驱的杰出代表,则这几个人的工作是向牛顿和莱布尼茨微积分的过渡.2.3.1帕斯卡等的无穷小方法布莱斯·帕斯卡(Pascal Blaise,1623-1662)的一生,虽然只有39岁,而他的一段黄金时期(30-35岁)又专门研究神学,但是他在数学上的成就却很大.他是世界上第一架计算机的设计者,是概率论和射影几何的奠基人之一,提出了西方数学史所谓的“帕斯卡三角形”,他也是一位哲学家,并很有写作才能.他同罗伯瓦尔和费马一起,被称为当时法国数学界的三巨头.帕斯卡在积分学方面做的工作,是以他名字命名的三角形有 图5-7 帕斯卡一定关系.因为用这个三角形可以比较容易地求出自然数幂的二项式的展开式,不过帕斯卡是用文字表述的.他凭借这个结果并引入无穷小概念,算出了以曲线n x y =为一边的曲边梯形的面积.他把无穷小概念也应用于微分学,在他的《四分之一圆的正弦论》(1659)这部著作中,有一幅被称之为“微分三角形”的图形(图5-8).他说,当区间(即图中的RR=EK)很小时,则“弧可以代替切线”.通过“微分三角形”说明可以用直线代替,并进一步作出切线.把无穷小概念引入数学,是微积分发展史上的重要事件.以无穷小作基础才能把曲线看成直线.有人认为,如果帕斯卡能在无穷小的基础上寄兴趣于算术的考虑并致力于切线的求法,那么他就有可能比牛顿和莱布尼茨更早地击中微积 图 5-8分的要害.事实上,帕斯卡的工作对莱布尼茨的微积分产生了直接的影响. 2.3.2沃里斯的算术化英国的沃里斯(J.Wallis,1616-1703)是一位牧师的儿子,受过良好的古典教育.在剑桥大学学习期间专攻神学,以后对数学感兴趣.从1649年B AR I D KR E E C起任牛津大学的“沙维教授”,是17世纪时的英国仅次于牛顿的著名数学家.在微积分的先驱者中,沃斯里的算术化工作很有意义,可以说,没有算术化就没有牛顿的微积分.沃里斯接受了韦达、笛卡儿和费马等前辈们的思想——应用代数研究几何问题,他试图使算术完全脱离几何表示.另外在求积问题上,他 图5-9 沃里斯接受卡瓦列利的不可分元思想和流行的略去无穷小方法,并且应用尚不精确的无穷大和无穷小概念.他在数学史上第一次用符号∞表示无穷大,用∞1表示无穷小或零量,并把它们和有限数同样看待,一起参加运算.沃里斯在他的重要著作《无穷算术》(1655)一书中用算术方法得到如下的定理:“若有一无穷数列,从0开始按任意指数不断增加,那么,这些数之和与各数均等于其最大数的同样数目之和的比值为该指数+11.”用今天的符号表示就是⎰+=1011n dx x n (n 是整数或分数),这表明卡瓦列利和帕斯卡等所确定的关系⎰++=a n n a n dx x 0111 (n 为正整数),当n 为分数时仍然成立. 2.3.3巴罗的求切线和求积的互逆性 英国的伊萨克·巴罗(Isaac Barrow,1630-1677)是微积分发展史上最重要的人物之一,他本人也是神学家,精通希腊文和阿拉伯文,所以对希腊古典著作很有造诣;曾任剑桥大学教授、副校长,是牛顿的老师,1669年即牛顿26岁的那年,他主动宣布牛顿的学识已超过自己,并把“卢卡斯教授”职位让给牛顿,成了数学史上的佳话.他的主要著作是《光学和几何讲义》.巴罗的数学观基本上与希腊人相同,认为只有几何才是数学,而代数他认为不应该看成数学,应包括到逻辑中去.尽管他偏爱几何,但对 图5-10 巴罗 即将临产的微积分也有深刻的理解.巴罗曾设想曲线是由所谓的“线元”构成的,而线则是线元之延长,这是不可分元的不同说法,不过巴罗最有意义的贡献是把“求切线”和“求积”作为互逆问题联系起来.比如,他的《几何讲义》第十讲的命题十一和第十一讲的命题十九,用今天的符号表示分别是:(1)如果⎰=xzdx y 0,则zdx dy = (2)如果zdx dy =,则⎰=xy zdx 0 (设x=0时y=0)巴罗还采用帕斯卡二十年代提出而沃里斯正在使用的“微分三角形”思想来求曲线的切线.微分三角形是指由自变量增量x ∆和函数增量y ∆为直角边所构成的直角三角形.他第一个认识到xy ∆∆对于决定切线有重大意义,于是将微分三角形和费马的方法结合起来,从而得到比费马更优越的方法.实际上,巴罗已经接触到了微分的本质,因为x y ∆∆可以用来决定导数. 微积分的先驱们的工作,以费马和巴罗为标志而结束,由于历史的局限性,上述数学家关注的是具体几何特有的解答方法,而未注意大量成果的优越性、创造性和普遍性能够提炼成新的统一的方法构成一门新的学科,也就是需要创立具有普遍意义的抽象概念、具有一般符号和一整套解析形式与规则的可以应用的微积分学.牛顿和莱布尼茨正是在这样的时刻出。
第一节_导数的概念

= lim
Q(t + ∆t ) − Q(t ) ∆t →0 ∆t
∆y lim = ∆x →0 ∆x f ( x + ∆x) − f ( x) lim ∆x →0 ∆x
15
瞬时变化率
微积分
小结
解决与速度变化或变化率相关问题的步骤: (1) 建立一个函数关系 y = f (x) x∈I .
(2) 求函数由 x0 到 x0+ ∆x 的平均变化率:
y
y = f (x)
A
A′
∆y
T
α
O
β
∆x
B
x
14
微积分
实际问题抽象
非恒定电流的电流强度 已知电量Q=Q(t), 求电流强度i(t)
∆Q = Q(t + ∆t ) − Q(t )
变速直线运动的速度 已知路程s=s(t), 求速度v(t)
抽象的数量关系 已知函数y=f(x),求在 x处的变化率
∆s = s (t + ∆t ) − s (t )
x + ∆x ) − x 2 ( ∆y lim = lim = lim ( 2 x + ∆x ) = 2 x ∆x →0 ∆x ∆x →0 ∆x → 0 ∆x
2
其结果表示是x的函数,称之为导函数。 其结果表示是 的函数,称之为导函数。 的函数 导函数
20
微积分
3. 导函数
定义 若 f (x)在区间(a,b)内每一点 皆可导, 则f (x) 在
f ( x ) − f ( x0 ) f ′ ( x 0 ) = lim x → x0 x − x0
用 h 代替 ∆x
差商 导数是函数变 化率的精确描 述,从数量方 面刻画了变化 率的本质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3· 反函数的求导 由一个方程F(x,y)所确定的隐函数的 求导法就是将方程两边分别对x求导,在 求出dx/dy即可 常用的基本初等函数的n阶导数公式有: (x^n)^(n)=n! (e^x)^(n)=e^x (sinx)^(n)=sin(x+nπ/2) 现在新增的求导法则我们小组认 为基本和高中是一致的(仅代表 本小组意见),新增加了隐函数 求导和高阶求导 (cosx)^(n)=cos(x+nπ/2)
返回
牛顿在数学上最卓越的成就是创建微积分。 他超越前人的功绩在於,他将古希腊以来 求解无限小问题的各种特殊技巧统一为两 类普遍的算法--微分和积分,并确立了 这两类运算的互逆关系,如:面积计算可 以看作求切线的逆过程。 那时莱布尼兹刚好亦提出微积分研究报告, 更因此引发了一埸微积分发明专利权的争 论,直到莱氏去世才停熄。而後世己认定 微积是他们同时发明的。 微积分方法上,牛顿所作出的极端重要的 贡献是,他不但清楚地看到,而且大赡地 运用了代数所提供的大大优越於几何的方 法论。他以代数方法取代了卡瓦列里、格 雷哥里、惠更斯和巴罗的几何方法,完成 了积分的代数化。从此,数学逐渐从感觉 的学科转向思维的学科。 微积产生的初期,由於还没有建立起巩固 的理论基础,被有受别有用心者钻空子。 更因此而引发了着名的第二次数学危机。 这个问题直到十九世纪极限理论建立,才 得到解
牛顿和莱布尼茨建立微积分的出发点是直观的无 穷小量,因此这门学科早期也称为无穷小分析, 这正是现在数学中分析学这一大分支名称的来源。 牛顿研究微积分着重于从运动学来考虑,莱布尼 茨却是侧重于几何学来考虑的。 牛顿在1671年 写了《流数法和无穷级数》,这本书直到1736年 才,出版它在这本书里指出,变量是由点、线、 面的连续运动产生的,否定了以前自己认为的变 量是无穷小元素的静止集合。他把连续变量叫做 流动量,把这些流动量的导数叫做流数。牛顿在 流数术中所提出的中心问题是:已知连续运动的 路径,求给定时刻的速度(微分法);已知运动 的速度求给定时间内经过的路程 给定时间内经过的路程(积分法)。 微积分学的创立,极大地推动了数学的发展, 过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分 学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必 定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人 总结完成的。微积分也是这样。
高等数学E上第二次研讨课题
专题 1
专题 2
专题 3
专题 4
专题 5
专题 6
专题 7
成员
导数和微分的概念产生的历史背景
——微积分的产生背景,导数其实就是微商
从微积分成为一门学科来说,是在十七世纪, 但是,微分和积分的思想在古代就已经产生 了。 公元前三世纪,古希腊的阿基米德在 研究解决抛物弓形的面积、球和球冠面积、 螺线下面积和旋转双曲体的体积的问题中, 就隐含着近代积分学的思想。作为微分学基 础的极限理论来说,早在古代以有比较清楚 的论述。比如我国的庄周所著的《庄子》一 书的“天下篇”中,记有“一尺之棰,日取 其半,万世不竭”。三国时期的刘徽在他的 割圆术中提到“割之弥细,所失弥小,割之 又割,以至于不可割,则与圆周和体而无所 失矣。”这些都是朴素的、也是很典型的极 限概念。
4· 隐函数的求导
5· 商阶导数
返回
微 分 的 思 想 是 什 么 ?
基本思想是: 把一样东西无限分割,然后在累加起来
注:在微分学中有
两个基本问题:变化 率问题和增量问题。
函数在点的导数表示该函数在点处的变化率,它 是描述函数变化性态的一个局部概念。 有时我们需要计算函数 ,当自变量在 处有一个 微小改变量时,函数改变量的大小。 往往是的一个较复杂的函数,要精确计算它是困 难的,甚至是不可能的;并且我们在理论研究和 实际应用中,往往只需要了解的近似值就可以了。 因而计算函数改变量的近似值就显得特别重要。 人们把解决上述问题的出路放在将线性化,用的 线性函数来近似代替它,这就是引入微分的基本 想法。
归 结 导 数 和 微 分 概 念 产 生 历 史 背 景
①公元前三世纪,古希腊的阿基米德在研究 解决抛物弓形的面积、球和球冠面积、螺线 下面积和旋转双曲体的体积的问题中,就隐 含着近代积分学的思想。
②到了十七世纪,有许多科学问题需要解决, 这些问题也就成了促使微积分产生的因素。 许多著名的数学家、天文学家、物理学家等 为解决这些问题提出许多很有建树的理论。 为微积分的创立做出了贡献。 ③十七世纪下半叶,英国大科学家牛顿和德 国数学家莱布尼茨分别在自己的国度里独自 研究和完成了微积分的创立工作,把两个貌 似毫不相关的问题联系在一起,一个是切线 问题(微分学的中心问题),一个是求积问 题(积分学的中心问题)。 ④19世纪初,以柯西为首的法国科学家们, 对微积分的理论进行了研究,建立了极限理 论,后又经过数学家维尔斯特拉斯进一步的 严格化,使极限理论成为了微积分的坚定基 础。促使微积分进一步发展。 返回
C'=0(C为常数); (x^n)'=nx^(n-1) (n∈Q); (sinx)'=cosx; (cosx)'=-sinx; (e^x)'=e^x;
(a^x)'=a^xIna (ln为自然对数)
(Inx)'=1/x(ln为自然对数)
在大学期间我们所学的求导方法
1· 四则运算 2· 复合函数的求导
①它是自变量增量 的线性函数, ②它与函数增量之差: 是比 更高阶的无穷小。 根据上述两个特点,当 时,就可以用微分 来近似表示增 量 ,即,当越小,其近似程度就越好。这一近似等式是应 用微分思想解决近似计算和误差估计等实际问题的基础。 微分的几何意义:函数 在 点的微 分等于曲线在点处的切线纵坐标的 增量。
什么是导数
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的 极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定 连续。不连续的函数一定不可导。 导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时, f'(x)便是x的一个函数,我们称他为f(x)的导函数(derivative function)(简称导 数)。 y=f(x)的导数有时也记作y',即 f'(x)=y'=limΔx→0[f(x+Δx)-f(x)]/Δx 物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。 如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、 还可以表示经济学中的边际和弹性。 以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。 为了研 究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广 为所谓的“联络”。 有了联络,人们就可以研究大范围的几何问题,这是微分 几何与物理中最重要的基础概念之一。
返回
返回
德国有一位被世人誉为“万能大师”的通才,他就是 莱布尼茨,他在数学、逻辑学、文学、史学和法学等方 面都很有建树。 莱布尼茨生于莱比锡,6岁时丧父,但作为大学伦 理学教授的父亲给他留下了丰富的藏书,引起了他广泛 的学习兴趣。他11岁时自学了拉丁语和希腊语;15岁时 因不满足对古典文学和史学的研究,进入莱比锡大学学 习法律,同时对逻辑学和哲学很感兴趣。莱布尼茨思想 活跃,不盲从,有主见,在20岁时就写出了《论组合的 技巧》的论文,创立了关于“普遍特征”的“通用代 数”,即数理逻辑的新思想。 莱布尼茨还与英国数学家、大物理学家牛顿分别独 立地创立了微积分学。莱布尼茨是从哲学的角度来研究 数学的,他终生奋斗的主要目标是寻求一种可以获得知 识和创造发明的普遍方法,他的许多数学发现就是在这 种目的的驱使下获得的。牛顿建立微积分学主要是从物 理学、运动学的观点出发,而莱布尼茨则从哲学、几何 学的角度去考虑。今天的积分号∫(拉长的字母S)、微分 号d都是莱布尼茨首先使用的。值得一提的是,他发明 了能做乘法、除法的机械式计算机(十进制),并首先系 统研究了二进制记数方法,这对于现代计算机的发明至 关重要。1716年11月14日,莱布尼茨卒于汉诺威。
微分思想的应用
区别导数与微分
两者都是建立在函数极限概念基础上。 导数刻划了函数的瞬时变化率,而微分则表示了函数 的瞬时变化量
导数和微分的定义不同,概念不同,二者有差 别,但也有联系。 (2)导数的定义是函数f(x)的函数增量 △y=△f(x+△x)-f(x)与自变量增量△x的比,当 自变量增量△x趋于零时的极限,它的几何意 义是曲线y=f(x)的切线的斜率,导数的表示法 有dy/dx,也表示为f'(x)。微分的定义是函数 f(x)的函数增量△y=△f(x+△x)-f(x)中的一部分, 指主要线性部分,微分的表示法就是dy。 (3)二者的联系式是,微分dy=(导数) f'(x)*(自变量的增量△x也就是自变量的微 分)dx,这个式子变形一下,就是dy/dx=f'(x), 所以导数也是、也叫微商即微分之商,这就是 你说的“导数的这种表示方法,与微分的关 联”。 (4)如果是在自学,能提出问题就好。以上 只是简答,还有很丰富的内容,努力吧。
我 们 组 员 认 为 导 数 说 白 了 它 其 实 就 是 斜 率
总 之 :
返回
在记忆中我们觉得高中求导基本有 两种方法: 一· 利用limΔ(f(x0+x)-f(x))/Δx 二· 初等函数的求导法则 求导基本公式 (tanx)‘=sec^2x 在记忆中我们觉得高中求导基本有两种方法: 一· 利用limΔ(f(x0+x)-f(x))/Δx (cotx)‘=-csc^2x 二· 初等函数的求导法则 (sec)’=secxtanx ( cscx)’=-cscxcotx (arcsinx)=’1/(1-x^2)^1/2 (arccosx)=’-[1/(1-x^2)^1/2]; (arctanx)’=1/(1+x^2) (arcotx)=’-[1/(1+x^2)] (x^1/2)’=1/(2x^1/2); [f(x)^1/2]=f(x)/[2f(x)^1/2]