信息光学 第二章

合集下载

光信息处理(信息光学)

光信息处理(信息光学)

光信息处理(信息光学)复习提纲第一章线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?2.空间频率分量的定义及表达式?3.平面波的表达式和球面波的表达式?4.相干照明下物函数复振幅的表示式及物理意义?5.非相干照明下物光强分布的表示式及物理意义?6.线性系统的定义7.线性系统的脉冲响应的表示式及其作用8.何谓线性不变系统9.卷积的物理意义10.线性不变系统的传递函数及其意义11.线性不变系统的本征函数第二章标量衍射理论1.衍射的定义2.惠更斯-菲涅耳原理3.衍射的基尔霍夫公式及其线性表示4.菲涅耳衍射公式及其近似条件5.菲涅耳衍射与傅立叶变换的关系6.会聚球面波照明下的菲涅耳衍射7.夫琅和费衍射公式8.夫琅和费衍射的条件及范围9.夫琅和费衍射与傅立叶变换的关系10.矩形孔的夫琅和费衍射11.圆孔的夫琅和费衍射(贝塞尔函数的计算方面不做要求)12.透镜的位相变换函数13.透镜焦距的判别14.物体位于透镜各个部位的变换作用15.几种典型的傅立叶变换光路第三章光学成象系统的传递函数1.透镜的脉冲响应2.相干传递函数与光瞳函数的关系3.会求几种光瞳的截止频率4.强度脉冲响应的定义5.非相干照明系统的物象关系6.光学传递函数的公式及求解方法7.会求几种情况的光学传递函数及截止频率第五章光学全息1.试列出全息照相与普通照相的区别2.简述全息照相的基本原理3.试画出拍摄三维全息的光路图4.基元全息图的分类5.结合试验谈谈做全息实验应注意什么(没做过实验,只谈一些理论性的注意方面)6.全息照相为什么要防震,有那些防震措施,其依据是什么7.如何检测全息系统是否合格8.全息照相的基本公式9.全息中的物像公式及解题(重点)复 习第一章 线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?时间量 空间量22v T πωπ==22K f ππλ== 时间角频率 空间角频率其中:v ----时间频率 其中:f ---空间频率T----时间周期 λ-----空间周期 物理意义:由图1.7.3知:(设光在z x ,平面内传播,0=y )cos xd λα=, 又 ∵ 1x xf d =联立得:cos x f αλ=讨论:① 当090,,<γβα时0,,>z y x f f f ,表示k沿正方向传播;②标量性,当α↗时,αcos ↘→x f ↘→x d ↗当α↘时,αcos ↗→x f ↗→x d ↘ ③标量性与矢量性的联系条纹密x d ↘→x f ↗→α↘→θ↗x x f d 1=λαcos =x f 条纹疏x d ↗→x f ↘→α↗→θ↘2.空间频率分量的定义及表达式?{}γβαcos ,cos ,cos k k ={}z y x r ,,=)cos cos cos (γβαz y x k r k ++=⋅代入复振幅表达式:()()()[]γβαμcos cos cos ex p ,,,,0z y x jk z y x z y x U ++=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x z y ++=λπμ2ex p ,,0式中:λαcos =x f ,λβcos =yf ,λγcos =z f3.平面波的表达式和球面波的表达式?平面波()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x U λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x U z y x ++=πμ2ex p ,,0球面波()1,,jkr a U x y z e γ=()21212212121221⎪⎪⎭⎫ ⎝⎛++=++=z y x z z y x r近轴时()1,,U x y z ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛++=1221021exp z y x jkz r a()⎪⎪⎭⎫ ⎝⎛+⋅≈1221102exp exp z y x jkjkz z a ⎪⎪⎭⎫ ⎝⎛+=12202exp z y x jkU若球面波中心不在坐标原点,上式改为:()1,,U x y z ()()⎥⎥⎦⎤⎢⎢⎣⎡++-=1202002exp z y y x x jk U4.相干照明下物函数复振幅的表示式及物理意义?设()y x f ,为一物函数的复振幅,其傅氏变换对为 ()()(),exp 2x y x y F f f f x y j f x f y dxdyπ∞-∞⎡⎤=-+⎣⎦⎰⎰ ()()(),exp 2x yxyxyf x y F f f j f x f y df dfπ∞-∞⎡⎤=+⎣⎦⎰⎰可见:物函数()y x f ,可以看作由无数振幅不同()x y x y F f f df df 方向不同()cos ,cos xyf f αλβλ==的平面波相干迭加而成。

信息光学第二章

信息光学第二章

U PaPexp jφP
称为单色光场中点的复振幅,它包含了点光振动的振幅和初位相, 仅仅是位置坐标的复值函数,与时间无关
光强可用复振幅表示成 I P U P UU *
4
亥姆霍兹方程
在仅涉及满足叠加原理的线性运算(加、减、积分和微分等)时, 可用复指数函数替代表示光振动的余弦函数形式。在运算的任何一 个阶段对复指数函数取实部,与直接用余弦函数进行运算在同一个 阶段得到的结果是相同的
15
例题
已知一平面波的复振幅表达式为
U x, y, z Aexp j4x 3y 4z
试计算其波长以及沿各方向的空间频率并给出在 z 5mm 的垂直于 z
轴的平面上的复振幅分布( 0.3,1.0 )。
解:由于 2f x 4,
2f y 3,
2f z 4
所以
( 2 )2 cos2 cos2 cos2 42 32 42 41 2 0.98
信息光学
标量衍射理论
1
一 什么是标量衍射理论?
衍射:按照索末菲定义是“不能用反射或折射来解释的光线对直 线光路的任何偏离”
光的标量衍射理论的条件 (1)衍射孔径比波长大很多, (2)观察点离衍射孔不太靠近;
经典的标量衍射理论最初是1678年惠更斯提出的,1818年菲涅耳 引入干涉的概念补充了惠更斯原理,1882年基尔霍夫利用格林定 理,采用球面波作为求解波动方程的格林函数,导出了严格的标 量衍射公式
A( f x , f y , z) U (x, y, z) exp[ j (xf x yf y )]dxdy
由于各个不同空间频率的空间傅里叶分量可看作是沿不同方向传 播的平面波,因此称空间频谱为平面波谱即复振幅分布的角谱
同时有逆变换为

信息光学导论第二章9页word

信息光学导论第二章9页word

第二章信息光学的数学基础◆引言在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。

2.1傅里叶变换◆傅里叶级数首先.让我们回忆周期函数的傅里叶级数展开式,这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量nf x i e2π的幅值.◆频谱的概念频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。

因此,傅立叶分析也称频谱分析。

频谱分为振幅型频谱和相位型频谱。

相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。

为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。

对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。

为了讨论问题方便, 设光栅狭缝总数N 无限大.)(x g 是周期性函数则:上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为这里f 称为空间频率. 0f 是f 的基频.。

周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量.透过率函数也可用复数傅里叶级数表示: 再回到光栅装置.由光栅方程, 在近轴条件下因此透镜后焦面上频率为 当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的. 故傅立叶变换能达到分频的目的。

◆傅里叶变换在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下,上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变),()(md x g x g +=),2,1,( ±±=m ,sin 0λλθnf d n f x =='≈λf x nf f '==0换和逆变换的积分式为 简单地表示为从光学眼光看),(y x g 代表一波前函数,线性相因子)(2y f x f i y x e+π代表—平面波成分,(y x f f ,)代表一空间频率,对应一特定方向的平面波.于是,积分式(******)表明,任一波前可以分解为一系列不同空间频率的平面波前成分的叠加.对于非周期函数,空间频率(y x f f ,)的取值不是离散的,而是连续的,存在于(∞∞-,).因此,在(y x f f ,)一(y y x x df f df f ++,)频率间隔中,平面波成分的振幅系数dA 表示为这给出了谱函数G(y x f f ,)的光学意义一一频率空间中单位频率间隔的振幅系数,即振幅的谱密度函数,简称频谱。

光学信息第二章1-2

光学信息第二章1-2
r
a0 k U( x, y ) exp( jkz1 )exp{ j [( x x0 )2 ( y y0 )2 ]} z1 2z1
( x x0 )2 ( y y0 )2 r z1 2z1
• 说明:分母中 r 直接用z1替代,而指数项中 r 由 于波长λ极小,k 2 很大,上式中第二项不能 省略
coscos平面波的空间频率是信息光学中常用的基本物理量深入理解这个概念的物理含义是很重要的首先研究波矢量位于xz平面内的简单情况考虑cosexpcos复振幅在xy平面上周期分布的空间周期可以用相位差的两相邻等相位线的间距x表示则有x方向的空间频率用表示单位因此y方向的空间频率cos传播方向余弦为cos0的单色平面波在xy平面上的复振幅分布可用xy方向的空间频率来表示


空间频率的概念同样可以描述其它物 理量如光强度的空间周期分布,但它们有 不同的物理含义。 对于非相干照明的平面上的光强分布, 也可以通过傅里叶分析利用空间频率来描 ( f x 不再和单色平面波 , fy) 述。但空间频率 exp j2 ( f x x 也就不再对应沿某一 f y y) 有关, 方向传播的平面波。
U ( x, y ) A exp j 2 ( f x x f y y )
• 代表了一个传播方向余弦为 (cos , cos ) 的单色平面波。 • 我们观察的不是某一个平面上而是整个空间光场分 cos 布,可以类似地定义沿z方向的空间频率 f z 有 U ( x, y, z ) a exp j 2 ( f x x f y y f z z ) • 由 cos2 cos2 cos2 1 有 f 2 f 2 f 2 1 x y z 2
2.2

信息光学导论第二章

信息光学导论第二章

第二章信息光学的数学基础◆引言在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。

2.1傅里叶变换◆傅里叶级数首先.让我们回忆周期函数的傅里叶级数展开式,这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量nf x i e 2π的幅值.◆频谱的概念频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。

因此,傅立叶分析也称频谱分析。

频谱分为振幅型频谱和相位型频谱。

相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。

为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。

对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。

为了讨论问题方便, 设光栅狭缝总数N 无限大.)(x g 是周期性函数则:上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为),()(md x g x g +=),2,1,( ±±=m++-+=)52cos(52)32cos(32)2cos(221)(000x p x f x f x g ππππππ这里f 称为空间频率. 0f 是f 的基频.。

周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量.透过率函数也可用复数傅里叶级数表示:再回到光栅装置.由光栅方程,在近轴条件下因此透镜后焦面上频率为当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的.故傅立叶变换能达到分频的目的。

◆傅里叶变换在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下,上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变换和逆变换的积分式为简单地表示为,5,3,1,dddf =xf i n xf i xf i xf i xp i xf i xf i n eG eeeeeex g 25252323222 )(51)(31)(121)(000000ππππππππππ∑=++++-++=---,sin λθn d =),2,1,0( ±±=n ,sin 0λλθnf dnf x =='≈λf x nf f '==0从光学眼光看),(y x g 代表一波前函数,线性相因子)(2y f x f i y x e+π代表—平面波成分,(y x f f ,)代表一空间频率,对应一特定方向的平面波.于是,积分式(******)表明,任一波前可以分解为一系列不同空间频率的平面波前成分的叠加.对于非周期函数,空间频率(y x f f ,)的取值不是离散的,而是连续的,存在于(∞∞-,).因此,在(y x f f ,)一(y y x x df f df f ++,)频率间隔中,平面波成分的振幅系数dA 表示为这给出了谱函数G(y x f f ,)的光学意义一一频率空间中单位频率间隔的振幅系数,即振幅的谱密度函数,简称频谱。

信息光学教案第二章

信息光学教案第二章

§ 2. 基尔霍夫衍射理论 b.基尔霍夫衍射公式
5.相干光场在观察屏的表述 当观察屏足够远,衍射区相对小时,可得:
cos( n r ) 1 cos( n r0 ) 1
Q
此时:
( x x0 )2 ( y y0 )2 12 r z [1 ] 2 z ( x x0 )2 ( y y0 )2 [( x x0 )2 ( y y0 )2 ] 2 z{ 1 } 2 4 2z 8z
§ 2. 基尔霍夫衍射理论 b.基尔霍夫衍射公式
xx0 yy0 x 2 y 2 x0 y0 r z [1 ] 2 2 2 2z 2z z
5.相干光场在观察屏的表述 2 2
2 2 2
(2)当 z x0 y0

Q
xx0 yy0 r z [1 ] 2 z
§ 2. 基尔霍夫衍射理论 a.惠更斯-菲涅耳原理
K(
0, K K max ):倾斜因子 K ( ) , K 0 2
分析:1.从定性到定量,但仍然基于子波假设。 2.倾斜因子实际上是未知量。
U ( p1 )K ( θ ) dU( p ) exp( jkr )dS r U ( p1 ) K ( θ ) U ( p ) exp( jkr ) dS s r
5.相干光场在观察屏的表述
2 2 2 z ( x x ) ( y y ) (1) 0 0 时

( x x0 )2 ( y y0 )2 r z [1 ] 2 2z
Q
称为旁轴近似条件
§ 2. 基尔霍夫衍射理论 b.基尔霍夫衍射公式
5.相干光场在观察屏的表述

信息光学 第二章 苏显渝版 作者窦柳明

信息光学 第二章 苏显渝版 作者窦柳明

e ikr0
面上产生的球面波光场分布
? n
P
r
K?θ ?? cos?n, r ?? cos?n, r0 ?
2
P0
r0
Σ
Q
?? U ?Q?? 1

Σ
U
0
(
P
)
?K

)
?e
jkr
r
ds
2.1 基尔霍夫衍射理论
基尔霍夫衍射公式适用于任意单色光波照明孔径的情况, 因为总可把任意复杂的光波分解成简单的球面波的线性叠加。
?
n
Pr
P0
r0
Σ
Q
以任何方式改变波面形状,或限制波面范围,或使振幅以 一定分布衰减,也可以是一定的空间分布使相位延迟,或两者 兼有之,都会引起衍射,所以,衍射障碍物除屏上开的小孔外, 还包含具有一定复振幅的透明片;能引起衍射的障碍物统称衍 射屏。
2.1 基尔霍夫衍射理论
2.1.2 惠更斯—菲涅耳原理与叠加积分
2.1 基尔霍夫衍射理论
惠更斯 --菲涅耳原理
设Σ是某光波的波阵面,在其上任一面元ds都可看作是次波
的光源,各子波在空间某点的相干叠加,就决定了该点处光
波的强度。
n
dS ?
P
?? U ?Q?? C
r
Σ
U
0
(
P
)
?K

??e jkr
r
ds
Q
Σ
惠更斯—菲涅耳原理是对光的衍射现象物理规律的认识 。但其数学表达式则不够精确,表达式中的一些参数也不 够严格。基尔霍夫根据惠更斯—菲涅耳原理,利用电磁场 理论推导出了严格的衍射公式。
? ~a

《信息光学第二章》课件

《信息光学第二章》课件

干涉条纹:干涉现象产生的 明暗相间的条纹
光的干涉:光波在传播过程 中相互叠加,形成干涉现象
干涉原理:光的相位差、频 率和振幅对干涉条纹的影响
光的衍射和衍射系统
傅里叶光学基础
傅里叶光学是研究光的传播、干涉、衍射等现象的学科 傅里叶光学的基本原理包括光的波动性、干涉、衍射等 傅里叶光学的应用包括光学成像、光学通信、光学测量等 傅里叶光学的发展对现代光学和光电子学产生了深远影响
量子信息光学:研究量子信息处理和传 输
生物光子学:研究生物系统中的光子学 现象和应用
光子晶体:研究光子晶体的制备和应用
光学成像:研究光学成像技术和应用
光子学:研究光子学器件和系统的设计、 制造和应用
光学通信:研究光学通信技术和应用
信息光学的发展展望
光学技术在信息领域的应用越来 越广泛
光学技术在通信、传感、成像等 领域的发展趋势
1960年代,信息光学理论得到快速发展
1990年代,信息光学在光学通信、光学成像等 领域得到进一步发展
1970年代,信息光学在通信、雷达等领域得到 广泛应用
2000年代,信息光学在光学通信、光学成像等领域得 到广泛应用,并开始向生物医学、环境监测等领域拓展
信息光学的基本原理
光的干涉和干涉系统
干涉系统:由两个或多个光源 组成的系统,可以产生干涉现 象
光学技术在生物医学、环境监测 等领域的应用前景
光学技术在量子信息、人工智能 等领域的发展潜力
感谢您的耐心观看
汇报人:
添加副标题
信息光学第二章
汇报人:
目录
CONTENTS
01 添加目录标题
02 信息光学的基本概 念
03 信息光学的基本原 理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当z足够大时,展开式中第三项可忽略。这种近似称菲涅耳近似或
傍轴近似。
这时指数部分的r取为
rz[1(xx0)2(yy0)2]
.
2z
.
(夫琅和费近似)
+
.
2.2 衍射的角谱理论
孔径平面和观察平面上的光场分布都可以分别看成 是许多不同方向传播的单色平面波分量的线性组合。每 一平面波分量的相对振幅和相位取决于相应的角谱。
x0 y0
U0(x0, y0)
A0(c
os ,
c
os)
z=0
xy
U(x, y)
z A(cos ,cos)
z=z
.
.
.
.
基尔霍夫理论与角谱理论的比较
• (1)基尔霍夫理论和角谱理论是统一的,它们都 证明了光的传播现象可看作线性系统。--共同 的物理基础(标量波动方程)
• (2)基尔霍夫理论是在空域讨论光的传播,是把 孔径平面光场看作点源的集合,观察平面上的场 分布等于它们发出的不同权重的球面波的相干叠 加。球面子波在观察平面上的复振幅分布就是系 统的脉冲响应。角谱理论是在频域讨论光的传播, 是把孔径平面场分布看作许多不同方向传播的平 面波分量的线性组合。观察平面上场分布仍然等 于这些平面波分量的叠加,但每个平面波引入了 相移。相移的大小决定系统的传递函数,它是系 统脉冲响应的傅里叶变换。
一 惠更斯原理 表述:任何时刻的波面上的每 一点都可作为发射子波的波源, 各自发出球面子波。其后任一时刻所有子波波面的包络面形成 整个波动在该时刻的新波面。 优点:① 可以直观描述波的传播并解释衍射产生的原因。
② 可由已知波面求另一时刻的波面。 不足:对衍射仅有定性解释,无法用波长、振幅、位相等基尔霍夫衍射理论 • 衍射的角谱理论 • 菲涅尔衍射和夫琅禾费衍射 • 透镜的傅里叶变换性质
.
2.1 基尔霍夫衍射理论
• 惠更斯-菲涅尔原理与基尔霍夫衍射公式 • 惠更斯-菲涅尔原理与叠加积分 • 相干光场在自由空间传播的平移不变性 • 相干光场在自由空间传播的脉冲响应
.
2.1. 惠更斯—菲涅耳原理与基尔霍夫衍射公式
.
.
孔径输出
A 0 ( c, o c) s o ( c s, o c) s o * T ( c s, o c) s o T ( c s, o c) s o
上式说明通过衍射屏后,由δ函数所表征的入射光 场的角谱变成了孔径函数的傅里叶变换,显然角谱 分量大大增加。
结论:
(1)从空域上看,孔径的作用是限制了入射光波的大 小; (2)从频域上看则是展宽了入射光场的角谱
实际透镜有一孔径,透镜孔径函数(光瞳函数)为
1, 透镜孔径内 P(x, y) 0, 其它
透镜的相位变换因子为
t(x,y)P(x,y)exp j k[(x2y2)] 2f
只要满足傍轴条件,就可以对任意的入射波进行变换。薄透 镜的相位变换特性与入射波无.关,由透镜本身性质决定。
.
夫琅和费近似范围
z21(x02
y02) max
.
.
.
用单位振幅平面波垂直于P1面入射时U1(x,y)=1,P2上的场分布为 U 1 U 1(x,y)t(x,y)ex jp 2 kf[(x2y2)]
正透镜f>0, U 1 是向透镜后方焦点F/会聚的球面波。 负透镜f<0, U 1 是向透镜前方虚焦点F发散的球面波。
表达式很复杂。r可表示为
rz[1(xx0)2(yy0)2]1/2

con ,sr )(1时
(x
x0 z
)2、z( y y0
z
)2
z 都是小量,r可展开为
r z [ 1 ( x x 0 ) 2 2 z ( y y 0 ) 2 [x (x 0 ) 2 8 z ( 4 y y 0 ) 2 ] 2 ]
2.给出了常数C的具体形式 方法:将光场当作标量处理,只考虑电场的一个横向分量的标量
振幅,而假定其它分量也可以用同样的方法处理,忽略电 磁场矢量间的耦合特性,称之为标量衍射理论。 标量衍射理论适用条件: (1)衍射孔径比波长大得多 (2)观察平面远离孔径平面
主要研究问题: 研究光源S发出的球面波照明无限大的不透明屏上的孔,
第二章 标量衍射理论
.
➢ 光波的传播过程就是光波衍射过程

假设与近似

量 (1)整个光波场内光矢量振动方向 量
波 不变,或只考虑光矢量的一个分量。 波
衍 射
(2)衍射屏的最小尺寸远大于波长。 衍 射
理 (3)观察距离远大于波长。

论 (4)折射率与光强无关。

波动光学
波动光学 (基础)
本章讲述标量衍射理论,需要指出的是,在现代衍 射 光学、微光学、二元光学及光子晶体分析中,常利 用矢量波衍射理论。
.
2.3 菲涅耳衍射和夫琅和费衍射
菲涅耳衍射公式
U ( x ,y ) ejx jk ) k p z U z0 ( ( x 0 ,y 0 )ex j( k x p x 0 ) [ 2 2 z (y y 0 ) 2 ] d 0 d x 0y
r展开式中第三项引起的相位变换
2[x (x0)2(yy0)2]2ma x2 8z3
.
二 惠更斯-菲涅耳原理 三 目的:以子波相干叠加的方法对衍射结果进行定量描述。
Z
Q R
r
S
P
Z/
研究方法:单色点光源S发出的球面波波面为,波面半径为R, 光波传播空间内任意一点P的振动应是波面上发出的所有子波 在该点振动的相干叠加。
.
.
三 基尔霍夫衍射公式
基尔霍夫的贡献:1.给出了倾斜因子 K

z3 [(xx0)28 (yy0)2]2max
这是充分条件,但不是必要条件,实际上当z较小不满足 上式,也能观察到菲涅耳衍射。
.
.
由cos ;cos ,传递函数可表示为
.
.
.
.
.
.
2( x0 2 2 y z0 2 ) ma x2 或 z2 1 ( x0 2y0 2 ) max
计算孔径右边空间衍射场中某点P的场值--小孔衍射问题
.
.
.
.
.
.
.
.
.
2.1.4 相干光场在自由空间传播的脉冲响应的近似表达式
1、傍轴近似
脉冲响应表达式为
h ( x 0 ,y 0 ; x ,y ) j 1 e kj x z k z 2 p ( x x [ 0 ) 2 ( y y 0 ) 2 ] h ( x x 0 ,y y 0 )
相关文档
最新文档