精馏塔精馏段温度比值控制方案设计

合集下载

精馏塔温度控制系统设计

精馏塔温度控制系统设计

精馏塔温度控制系统设计精馏塔是一种常见的化工设备,用于分离液体混合物中的成分。

精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。

下面将详细介绍精馏塔温度控制系统的设计原理和步骤。

精馏塔温度控制系统的设计原理是根据精馏塔内部的物料性质和工艺要求,通过控制介质的流量和温度来实现温度的稳定控制。

精馏塔内部通常分为多个段落,每个段落都有一个特定的温度要求。

温度的控制涉及到对塔釜的加热和冷却以及介质的流量调节。

1.确定控制目标:根据工艺要求和产品规格,确定需要控制的温度范围和偏差,以及控制精度要求。

2.确定控制方法:根据工艺特点和实际情况,选择适合的控制方法。

常见的控制方法包括比例控制、比例积分控制、比例积分微分控制等。

3.确定传感器:选择合适的温度传感器,用于测量精馏塔内部的温度。

常见的温度传感器包括热电偶、热敏电阻等。

4.确定执行器:根据控制目标和方法,选择合适的执行器。

常见的执行器包括电动调节阀、蒸汽控制阀等。

5.设计控制回路:根据控制方法和控制器的性能,设计控制回路。

控制回路包括传感器、控制器和执行器。

6.参数整定:根据实际情况和反馈调整,优化控制回路的参数。

参数整定通常包括比例增益、积分时间和微分时间等。

7.验证和优化:通过实际运行验证控制系统的性能,并根据实际情况进行反馈调整和优化。

总之,精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。

设计步骤包括确定控制目标、控制方法、传感器和执行器的选择、设计控制回路、参数整定以及验证和优化。

合理的设计能够使温度控制更加稳定和可靠。

精馏塔塔底温度控制方案

精馏塔塔底温度控制方案

精馏塔塔底温度控制方案精馏塔是化工生产中常用的一种分离设备,主要用于将混合物中的各组分按照其沸点的不同进行分离。

在精馏过程中,塔底温度的控制是非常重要的,因为它直接影响到产品的纯度和收率。

本文将对精馏塔塔底温度控制方案进行详细的介绍。

一、精馏塔塔底温度控制的重要性1. 保证产品质量:精馏塔塔底温度的稳定与否直接关系到产品的质量。

如果塔底温度过高,会导致产品中轻组分的损失,降低产品的纯度;反之,如果塔底温度过低,会导致产品中重组分的残留,影响产品的性能。

2. 提高生产效率:合理的塔底温度控制可以提高精馏过程的效率,减少能源消耗,降低生产成本。

3. 保证生产安全:精馏塔塔底温度的波动可能导致操作不稳定,甚至引发安全事故。

因此,对塔底温度进行有效的控制是非常必要的。

二、精馏塔塔底温度控制方案1. 串级控制方案串级控制是一种常见的温度控制方案,它通过将主控制器的输出作为副控制器的设定值,实现对温度的精确控制。

具体实施步骤如下:(1)选择主控制器和副控制器:根据精馏塔的特点和工艺要求,选择合适的控制器类型,如PID控制器、模糊控制器等。

(2)设定主控制器的参数:根据工艺要求和实际操作经验,设定主控制器的比例、积分和微分参数。

(3)设定副控制器的参数:根据主控制器的输出和塔底温度的变化趋势,设定副控制器的比例、积分和微分参数。

(4)实施串级控制:将主控制器的输出作为副控制器的设定值,实现对塔底温度的精确控制。

2. 前馈控制方案前馈控制是一种基于模型的控制方案,它通过预测塔底温度的变化趋势,提前调整控制参数,以实现对塔底温度的快速响应。

具体实施步骤如下:(1)建立精馏塔的温度模型:根据精馏塔的工作原理和操作条件,建立精馏塔的温度模型。

(2)设计前馈控制器:根据温度模型,设计前馈控制器,实现对塔底温度的预测和控制。

(3)实施前馈控制:将前馈控制器的输出与主控制器的输出相结合,实现对塔底温度的快速响应和精确控制。

精馏塔的温度控制

精馏塔的温度控制

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计院(系):专业班级:学号:学生姓名:指导教师:(签字)起止时间:摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。

采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。

将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。

所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。

由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。

影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。

采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。

使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。

关键词:提馏段;温度;串级控制;超驰控制目录第1章绪论 .................................................................................... 错误!未定义书签。

第2章课程设计的方案 ................................................................ 错误!未定义书签。

概述......................................................................................... 错误!未定义书签。

物料平衡关系 ................................................................. 错误!未定义书签。

课程设计---精馏塔提馏段温度控制系统设计 精品

课程设计---精馏塔提馏段温度控制系统设计 精品

过程控制系统课程设计(论文)题目:精馏塔提馏段温度控制系统设计院(系):电气工程学院专业班级:自动化082学号: 080302051学生姓名:指导教师:起止时间:2011.06.27-2011.07.04课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。

采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。

将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。

所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。

由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。

影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。

采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。

使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。

关键词:提馏段温度串级控制超驰控制目录第1章绪论 (1)第2章控制方案 (2)2.1 基本原理 (2)2.1.1物料平衡关系 (2)2.2设计方案 (3)2.2.1控制方案类型 (3)2.2.2控制方案的选择 (4)第3章系统各仪表选择 (8)3.1 检测变送器的原理 (8)3.1.1 温度变送器的选择 (8)3.1.2 流量变送器的选择 (9)3.1.3 液位变送器的选择 (10)3.2 执行器的选择 (10)3.3 调节器的选择 (10)3.4 调节器与执行器、检测变送器的选型 (12)第4章系统仿真 (13)4.1串级控制系统matlab仿真分析 (13)4.2液位控制系统仿真分析 (14)第5章课程设计总结 (16)参考文献 (17)第1章绪论精馏塔是化工生产中分离互溶液体混合物的典型分离设备。

精馏塔提馏段的温度控制设计

精馏塔提馏段的温度控制设计

成绩过程控制仪表课程设计设计题目精馏塔提馏段的温度控制系统学生姓名 XX 专业班级自动化X X X X班学号 XXXXXXXXXXX 指导老师 XXX2019年XX月XX日《过程控制仪表》课程设计评分标准表姓名:XX 学号:XXXXXXXXX课程设计的最终成绩采取“优秀”、“良好”、“中等”、“及格”和“不及格”五级记分。

100-90分(优秀)、89-80(良好)、79-70(中等)、69-60(及格)、低于60(不及格)《过程控制仪表课程设计》任务书目录1.设计任务与要求 (1)1.1 设计任务 (1)1.2 设计要求 (1)2.系统简介 (1)3.设计方案及仪表选型 (2)3.1控制方案的确定 (2)3.2系统原理及方框图 (3)3.3仪表选型 (4)4.系统仿真分析 (10)5.控制系统仪表配接图及说明 (13)6.仪表型号清单 (13)7.总结 (14)参考文献 (14)1.设计任务与要求1.1 设计任务过程控制仪表课程设计,是《自动化仪表与装置》课程中的后续课程,实践教学环节,也是一次全面的专业知识的运用和实践。

⑴巩固和深化所学课程的知识:通过课程设计,要求学生初步学会运用本门课程和其它相关课程的基本知识和方法,来解决工程实际中的具体的设计问题,检验学生对本门课程及相关课程内容的掌握的程度,以进一步巩固和深化所学课程的知识。

⑵培养学生的设计、实践能力:通过课程设计,从方案选择、设计计算到绘制图纸、编写设计说明书,可以培养学生对工程设计的独立工作能力,树立正确的设计思想,掌握自动控制系统中各环节使用仪表的基本方法和步骤,为以后从事工程设计打下良好的基础。

⑶使学生能熟悉和运用设计资料,学会查阅相关文献,如有关国家标准、手册、图册等,以完成作为工程技术人员在工程设计方面所必须的基本训练。

1.2 设计要求(1)编写过程控制仪表设计说明书。

内容包括:控制系统的简单介绍,工艺流程分析;各环节仪表的选型、仪表的工作原理及性能指标;控制系统的仿真分析;仪表间的配接说明。

精馏塔的比值控制系统设计(毕业设计)

精馏塔的比值控制系统设计(毕业设计)

精馏塔控制系统课程设计摘要在石化工业中,许多原料、中间产品或粗成品往往是由若干组分形成的混合物,需要通过精馏过程进行分离。

精馏是利用混合液中不同组分挥发温度的差异将各组分分离的过程。

精馏塔是精馏过程的关键设备。

统计资料表明,在石化工业中,40%~50%的能量消耗在精馏设备中,精馏塔是过程控制的重要控制对象,一直受到控制领域的关注。

精馏塔由多级塔盘组成,内在工作机理复杂。

在精馏过程中,工作参数对控制作用的响应缓慢,不同变量之间存在相互关联,因此,精馏塔是一个多参数的被控过程;不同工艺要求的精馏塔结构不同,工艺参数、变量之间存在多种组合,控制方案繁多;另外,精馏工艺控制要求较高,控制相对困难。

只有对生产工艺进行深入分析,才可能控制出合理的控制系统。

本次设计中,通过对合成甲醇精馏过程的模拟,我们具体了解和掌握比值控制系统的工作原理。

关键词:精馏;精馏塔;多参数控制;定值控制;合成甲醇精馏太原理工大学现代科技学院过程控制系统课程设计目录摘要 (1)1 精馏塔控制系统介绍 (1)1.1 精馏塔原理 (1)1.2 精馏塔的控制要求及主要干扰因素 (1)1.2.1 精馏塔的控制要求 (1)1.2.2 精馏塔的干扰因素特性 (2)2 精馏塔控制方式的选择与论证 (3)3 定值控制系统 (4)3.1 定值控制系统简介 (4)3.2 定值控制系统的设计 (4)4 甲醇精馏的比值控制系统 (6)5 系统各器件选型 (7)5.1检测转换元件的选择 (7)5.2 调节阀气开气关式选择 (9)6 小结与体会 (10)参考文献 (11)1太原理工大学现代科技学院过程控制系统课程设计精馏塔的定值控制系统设计1 精馏塔控制系统介绍1.1 精馏塔原理精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸汽中转移,蒸汽中的难挥发(高沸点)组分不断地向下降液中转移,蒸汽愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。

基于经典控制的精馏塔温度控制系统设计

基于经典控制的精馏塔温度控制系统设计

基于经典控制的精馏塔温度控制系统设计
精馏塔温度控制系统是用于控制精馏塔内的温度,以确保塔内的操作温度保持在期望的设定值上的一种系统。

在这个系统中,温度传感器测量塔内的温度,并将测量值反馈给控制器。

控制器根据测量值与设定值之间的误差,通过调节加热或冷却装置的输出来控制塔内的温度。

设计一个基于经典控制的精馏塔温度控制系统需要以下几个步骤:
1. 系统建模:首先,需要对精馏塔温度控制系统进行建模,以了解系统的动态特性和行为。

这可以通过分析物理方程和系统传递函数来完成。

2. 控制器选择:根据系统的特性和要求,选择合适的经典控制器。

常见的经典控制器包括比例(P)、积分(I)和微分(D)控制器,以及它们的组合形式,如PID控制器。

3. 控制器参数调整:对选择的控制器进行参数调整,以确保系统的稳定性和性能。

参数调整的目标是使系统的响应快速而稳定,同时尽量减小超调和振荡。

4. 控制器实现:将调整好的控制器实现在硬件或软件上,使其能够读取温度传感器的测量值,并根据设定值和测量值之间的误差来控制加热或冷却装置的输出。

5. 系统测试和优化:对控制系统进行实际测试,并根据测试结果进行优化。

通过观察系统的响应,调整控制器的参数,以达到更好的控制效果。

总结起来,设计一个基于经典控制的精馏塔温度控制系统需要进行系统建模、控制器选择、参数调整、实现和系统测试等步骤。

通过这些步骤,可以设计出一个能够准确控制精馏塔温度的控制系统,并满足系统性能要求。

精馏塔提留段温度单回路控制

精馏塔提留段温度单回路控制

精馏原理以及工业流程精馏操作分为连续精馏和间歇精馏,本设计的研究对象是连续精馏的过程。

连续精馏的流程装置如下图所示,其操作过程是:原料液经预热加热到一定温度后,进入精馏塔中的进料板,料液在进料板上与自塔上部下降的回流液体汇合后,在逐板下流,最后流入塔底再沸器中,液体在逐板下降的同时,它与上升的蒸汽在每层塔板上相互接触,同时进行部分汽化和部分冷凝的质量和能量的传递过程。

操作时,连续从再沸器中取出的部分液体作为塔底产品,部分液体汽化产生上升蒸汽,从塔底回流入塔内出塔顶蒸汽进入冷凝器中被冷凝成液体,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品。

图连续精馏装置工艺流程图精馏塔的特性精馏塔的特性分为静态特性和动态特性,以二元简单精馏过程为例,说明精馏塔的基本关系。

1.2.1精馏塔的静态特性一个精馏塔,进料与出料应保持物料平衡,即总物料量以及任一组分都符合物料平衡关系。

图所示的精馏过程,其物料平衡关系为:总物料平衡 B D F += () 轻组分平衡BD f x B x D z F ⋅+⋅=⋅ ()由式()和()联立可得:B B f D x x z D Fx +-=)(B D fD x x z x F D --= ()式中 F 、D 、B ——分别为进料、顶馏出液和底馏出液流量;fz 、D x 、B x ——分别为进料、顶馏出液和底馏出液中轻组分含量。

从上述关系可看出:当F D 增加时将引起顶、底馏出液中轻组分含量减少,即D x 、B x 下降。

而当F B 增加时将引起顶、底馏出液中轻组分含量增加。

即D x 、B x 上升。

然而,在F D (或F B )一定,且f z一定的条件下并不能完全确定D x 、B x 的数值,只能确定D x 与Bx 之间的比例关系,也就是一个方程只能确定一个未知数。

要确定D x 与B x 两个因数,必须建立另一个关系式:能量平衡关系。

在建立能量平衡关系时,首先要了解一个分离度的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1. 精馏塔控制系统介绍 (1)1.1精馏塔原理 (1)2. 精馏塔精馏段控制分析 (2)2.1精馏塔精馏段的控制要求 (2)2.2精馏塔精馏段的扰动分析 (3)2.3精馏塔被控变量的选择 (6)3. 比值控制系统 (7)3.1 比值控制系统简介 (7)3.2 比值控制系统的设计 (7)4. 精馏塔精馏段温度比值控制系统设计 (9)4.1精馏塔精馏段比值控制系统参数的选择 (9)4.2控制参数的确定 (9)4.3现场仪表选型,编制有关仪表信息的设计文件 (9)4.4系统方块图 (10)5. 分析被控对象特性,选择控制算法(调节器控制规律的确定) (11)5.1比值系数的确定 (11)6. 精馏塔精馏段温度控制分析 (12)7. 系统仿真与参数整定 (14)7.1 控制系统的Simulink仿真框图 (14)7.2 PID参数整定 (14)8. 课程设计总结 (18)9. 参考文献 (19)1.精馏塔控制系统介绍1.1精馏塔原理精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔和填料塔两种主要类型。

根据操作方式又可分为连续精馏塔和间歇精馏塔。

蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发组分不断地向蒸汽中转移,蒸汽中的难会发组分不断地向下降液中转移,蒸汽越接近塔顶,其易挥发组分浓度越高,而下降液越接近塔底,其难挥发组分则越富集,达到组分分离的目的。

由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。

蒸馏的基本原理是将液体混合物部分气化,利用其中各组分挥发度不同的特性,实现分离目的的单元操作。

蒸馏按照其操作方式可分为:简单蒸馏,闪蒸,精馏,特殊精馏等。

1.2精馏装置的作用(1)精馏段的作用加料版以上的塔段为精馏段,其作用是逐板增加上升气相中的易挥发组分的浓度。

(2)提馏段的作用包括加料版在内的以下塔板为提馏段,其作用是逐板提取下降的液相中易挥发组分。

(3)塔板的作用塔板是供气液两相进行传质和传热的场所。

每一块塔板上气液两相进行双向传质,只要有足够的塔板数,就可以将混合液分离成两个较纯净的组分。

(4)再沸器的作用其作用是提供一定流量的上升蒸气流。

(5)冷凝器的作用其作用是提供塔顶液相产品并保证有适当的液相回流。

回流主要补充塔板上易挥发组分的浓度,是精馏连续定态进行的必要条件。

精馏是一种利用回流使混合液得到高纯度分离的蒸馏方法。

2.精馏塔精馏段控制分析2.1精馏塔精馏段的控制要求精馏塔的控制目标是,在保证产品质量合格的前提下,使塔的总收益(利润)最大或总成本最小。

具体对一个精馏塔来说,需从四个方面考虑,设置必要的控制系统。

(1)产品质量控制塔顶产品合乎规定的纯度,塔底成品维持在规定的范围内。

所谓产品的纯度,就二元精馏来说,其质量指标是指塔顶产品中轻组分(或重组分)含量和塔底产品中重组分(轻组分)含分,塔顶产品的关键组分是易挥发的,称为轻关键组分,塔底产品是不易挥发的关键组分,称为重关键组分。

(2)物料平衡控制进出物料平衡,即塔顶采出量应和进料量相平衡,维持塔的正常平稳操作,以及上下工序的协调工作。

物料平衡的控制是以回流罐与介于规定的上、下限之间为目标的。

(3)能量平衡控制精馏塔精馏段的输入、输出能量应平衡,使塔内的操作压力维持稳定。

(4)约束条件控制为保证精馏塔的正常、安全操作,必须使某些操作参数限制在约束条件之内。

常用的精馏塔限制条件为液泛限、漏液限、压力限及临界温差限等。

所谓液泛限,也称气相速度限,即塔内气相速度过高时,雾沫夹带十分严重,实际上液相将从下面塔板倒流到上面塔板,产生液泛,破坏正常操作。

漏液限也称最小气相速度限,当气相速度小于某一值时,将产生塔板漏液,板效率下降。

防止液泛和漏液,可以塔压降和压差来监视气相速度。

压力限是指塔的操作压力的限制,一般是最大操作压力限,即塔操作压力不能过大,否则会影响塔内的气液平衡,严重越限甚至会影响安全生产。

临界温差限主要是指再沸器两侧间的温差,当这一温差低于临界温差时,给热系数急剧下降,传热量也随之下降,不能保证塔的正常传热的需要。

2.2精馏塔精馏段的扰动分析精馏塔精馏段的操作就是按照塔顶产品的组成要求来对这几个影响因素进行调节。

精馏操作过程的影响因素有以下几方面:1.塔的温度和压力;2.进料量;3.进料组分;4.进料温度;5.回流量;6.塔顶冷剂量;7.塔顶采出量等.在精馏塔精馏段操作过程中要克服各种影响因素的变化,防止对塔顶产品的数量和组成的影响。

(1)精馏塔操作压力的变化对精馏塔精馏段操作的影响塔的设计和操作都是基于一定的塔压下进行的,因此一般精馏塔总是首先要保持压力的恒定。

塔压波动对塔的操作将产生如下的影响。

①影响产品质量和物料平衡改变操作压力,将使每块塔板上汽液平衡的组成发生改变。

压力升高,则气相中重组分减少,相应地提高了气相中轻组分的浓度;液相中轻组分含量较前增加,同时也改变了气液相的重量比,使液相量增加,气相量减少。

总的结果是:塔顶馏分中轻组分浓度增加,但数量却相对减少;釜液中的轻组分浓度增加,釜液量增加。

同理,压力降低,塔顶馏分的数量增加,轻组分浓度降低;釜液量减少,轻组分浓度减少。

正常操作中,应保持恒定的压力,但若因操作不正常,引起塔顶产品中重组分浓度增加时,则可采用适当提高压力的办法,使产品质量合格,但此时釜液中的轻组分损失增加。

②改变组份间的相对挥发度压力增加,组份间的相对挥发度降低,分离效率下降,反之,组份间的相对挥发度增加,分离效率提高。

③改变塔的生产能力压力增加,组份的重度增大,塔的处理能力增大。

④塔压的波动这将引起温度和组成间对应关系的混乱。

我们在操作中经常以温度作为衡量产品质量的间接标准,但这只有在塔压恒定的前提下才是正确的。

当塔压改变时,混合物的泡点、露点发生变化,引起全塔的温度发生改变,温度和产品质量的对应关系也将发生改变。

从以上分析可看出,改变操作压力,将改变整个塔的操作情况,因此在正常操作中应维持恒定的压力(工艺指标),只有在塔的正常操作受到破坏时,才可根据以上的分析,在工艺指标允许的范围内,对塔的压力进行适当的调节。

应该指出,在精馏操作过程中,进料量、进料组成和进料温度的改变,塔釜加热蒸汽量的改变,回流量、回流温度和冷剂压力(对内回流塔而言)的改变以及塔的堵塞等,都可能引起塔压的波动,此时应首先分析引起塔压波动的原因,及时处理,使操作恢复正常。

(2)进料量的变化对精馏塔精馏段操作的影响进料流量是上工序的出料,因此,通常不可控但可测,当进料流量较大时,对精馏塔的操作会造成很大的影响。

进料流量影响物料平衡,也影响能量平衡。

因此,控制策略应保持流量的基本恒定。

进料成分影响物料平衡和能量平衡,但进料成分通常不可控,多数情况下也难于测量。

因此,控制策略是尽量控制上一工序的操作,从外围着手,使进料成分能够保持恒定,减小其变化对精馏塔操作的影响。

(3)进料组份的变化对精馏塔精馏段操作的影响进料组份的变化直接影响精馏塔精馏段的操作,当进料中重组份的浓度增加时,精馏段的负荷增加。

对于固定了精馏段塔板数的塔来说,将造成重组份带到塔顶,使塔顶产品质量不合格。

若进料中轻组份的浓度增加时,此时精馏段的负荷增加。

对于固定了提馏段塔板数的塔来说,将造成提馏段轻组份蒸出不完全,釜液中轻组份的损失加大。

同时,进料组成的变化还将引起全塔物料平衡和工艺条件的变化。

组份变轻,则塔顶馏份增加,釜液排出量减少。

此时,全塔温度下降,塔压升高。

组成变重,情况相反。

进料组成变化时,可采取如下措施:①改进料口组成变重时,进料口往下改;组成变轻时,进料口往上改。

②改变回流比组成变重时,加大回流比;组成变轻时,减少回流比。

③调节冷剂和热剂量根据组成的变动情况,相应地调节塔顶冷凝器的冷剂和塔釜热剂量,维持塔顶及塔底产品质量不变。

(4)进料温度的变化对精馏塔精馏段操作的影响进料温度的变化对精馏操作的影响是很大的。

总的来讲,进料温度降低,将增加塔底蒸发釜的热负荷,减少塔顶冷凝器的冷负荷;进料温度升高,则增加塔顶冷凝器的冷负荷,减少塔底蒸发釜的热负荷。

当进料温度的变化幅度过大时,通常会影响整个塔身的温度,从而改变汽液平衡组成。

例如:在进料温度过低,塔釜的加热蒸汽量没有富裕的情况下,将会使塔底馏分中轻组分含量增加。

进料温度的的改变,意味着进料状态的改变,而进料状态的改变将影响精馏段、提馏段负荷的改变,进而产品质量、物料平衡都将发生改变。

因此,进料温度是影响精馏塔操作的重要因素之一。

(5)回流比的大小对精馏塔精馏段操作的影响操作中以改变回流比的大小来保证产品的质量。

当塔顶馏分中重组份含量增加时,常采用加大回流比的方法将重组份压下去,以使产品质量合格。

当精馏段的轻组份下到提馏段造成塔下部温度降低时,可以用适当减少回流比的办法以使塔下部温度提起来。

增加回流比,对从塔顶得到产品的精馏塔来说,可以提高产品质量,但是却要降低塔的生产能力,增加水、电、汽的消耗。

回流比过大,将会造成塔内物料的循环量过大,甚至能导致液泛,破坏塔的正常操作。

(6)塔顶冷剂量的大小对精馏塔精馏段操作的影响对采用内回流操作的塔,其冷剂量的大小,对精馏操作的影响比较显著;同时也是影响回流量波动的主要因素。

对于采用外回流的塔,同样会由于冷剂量的波动,在不同程度上影响精馏塔的操作。

例如,冷剂量减少,将使冷凝器的作用变差,冷凝液量减少,而在塔顶产品的液相采出量作定值调节时,回流量势必减少。

假如冷凝器还有过冷作用(即通常所称的冷凝冷却器)时,则冷剂量的减少,还会引起回流液温度的升高。

这些都会使精馏塔的顶温升高,塔顶产品中重组份含量增多,质量下降。

(7)塔顶采出量的大小对精馏塔精馏段操作的影响塔顶采出量的大小和该塔进料量的大小有着相互对应关系,进料量增大,采出量应增大。

众所周知,采出量只有随进料量变化时,才能保持塔内固定的回流比,维持塔的正常操作,否则将会破坏塔内的气液平衡。

例如,当进料量不变时,对采用内回流的塔,若塔顶采出量增大,则回流比势必减少,引起各板上的回流液量减少,气液接触不好,传质效率下降;同时操作压力也将下降,各板上的气液相组成发生变化。

结果是重组分被带到塔顶,塔顶产品的质量不合格。

在强制回流的操作中,如果进料量不变,塔顶采出量突然增大,则易造成回流液槽抽空。

回流液一中断,顶温就升高,这同样也会影响塔顶产品质量下降。

如果进料量加大,但塔顶采出量不变,其后果是回流比增大,塔内物料增多,上升蒸汽速度增大,塔顶与塔釜的压差增大,严重时会引起液泛。

由上述分析可以看出,精馏塔的主要干扰因素为进料状态,即进料流量、进料组分、进料温度。

相关文档
最新文档