23力的合成与分解解读

合集下载

力的合成与分解

力的合成与分解

力的合成与分解力是物体之间相互作用的结果,对物体产生影响并改变其运动状态。

力的合成与分解是力学中基础的概念和计算方法,用于描述多个力的作用效果以及将一个力分解为多个分力的过程。

本文将详细介绍力的合成与分解的原理和应用。

一、力的合成力的合成是指将多个力的作用效果合并为一个力的过程。

当多个力作用于同一个物体时,它们的合力是这些力的矢量和。

矢量和的大小和方向可以通过矢量图形法或矢量分量法来求解。

矢量图形法通过在一个力的作用点上绘制一个向量,然后沿着力的作用方向和大小在图上依次绘制其他力的向量,最后用一条共同的向量表示合力的大小和方向。

图中的箭头代表力的方向,箭头的长度代表力的大小。

矢量分量法是将力分解为两个或多个相互垂直的分力,然后求解各个分力的矢量和。

设一力F1作用于物体上,力的分解即将力F1分解为F1x和F1y两个分力,其中F1x与F1夹角为θ1,F1y与F1夹角为θ2。

分力的求解可以利用三角函数来计算,即F1x = F1 * cos(θ1),F1y = F1 * sin(θ2)。

同样,对于其他力F2、F3等也可以进行相应的分解。

二、力的分解力的分解是指将一个力分解为两个或多个分力的过程。

力的分解可以将一个复杂的力分解为若干个简单的力,方便计算和分析。

通过力的分解,可以将一个斜向上的力分解为水平方向和竖直方向的两个分力。

例如,一个物体受到一个斜向上的力F,其大小为F,夹角为θ。

我们可以将这个力分解为水平方向上的分力F1和竖直方向上的分力F2。

F1 = F * cos(θ)F2 = F * sin(θ)通过力的分解,我们可以更方便地计算力的作用效果,例如物体在倾斜平面上的运动、斜面上物体的压力分析等。

三、力的合成与分解的应用力的合成与分解在物理学和工程学中有着广泛的应用。

在物理学中,力的合成与分解可以用于解决复杂系统中的力学问题。

例如,多个物体受到多个力的作用,我们可以通过力的合成求解合力,进而判断物体的受力情况和运动状态。

力的合成与分解,ppt课件

力的合成与分解,ppt课件

解:小球受到三个力作用处于平衡, T
30°
由平衡条件 F与T的合力跟G等值反向
θ
F
要使F最小,F应该绳垂直,如图示,
∴ θ= 60°
G
15
例4、用轻绳把一个小球悬挂在O点,用力拉小球使 轻绳偏离竖直方向 30°,小球处于静止状态,力F与 竖直方向成角θ,如图示,若要使拉力F取最小值,则
角θ应是 ( B)
力的合成与分 解
1
基本概念
• 1、合力和分力:一个力如果他产生的效果 和几个力产生的效果相同,这个力就叫做 这几个力的合力
• 2、力的合成和分解:求几个力的合力叫做 力的合成,求一个力的分力叫力的分解
• 3、共点力:物体同时受几个力的作用时, 如果几个力都作用在物体的同一点,或者 他们的作用线交与同一点,这几个力叫做 共点力
c. 已知合力及一个分力的大小和方向,求另一分力 的大小和方向
d. 已知合力、一个分力的大小及另一分力的方向求 另一分力的大小—— 可能一解、两解或无解 8
G1
G1 G2
G2
•根据已知力产生的实际作用效果确定两 个分力方向,然后应用平行四边形定则 分解,这是一种很重要的方法。
9
F2
F
F1
10
F G
A. 30° B. 60° C. 90° D. 0°
解:小球受到三个力作用处于平衡, T
30°
由平衡条件 F与T的合力跟G等值反向
θ
F
要使F最小,F应该绳垂直,如图示,
∴ θ= 60°
G
16
例5、在“验证力的平行四边形定则”的实验中, 得到如图示的合力F与两个分力的夹角θ的关系图, 求此合力的变化范围是多少?
当两力的夹角为锐角时,如右图示

力的合成与分解知识点总结

力的合成与分解知识点总结

力的合成与分解知识点总结为了让大家可以更好的学习和总结物理力学相关的知识点,下面由小编为你准备了“力的合成与分解知识点总结”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!力的合成与分解知识点总结标量和矢量:(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题。

(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。

(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等。

力的合成与分解:(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。

(2)共点力的合成:1、共点力几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。

2、力的合成方法求几个已知力的合力叫做力的合成。

①若和在同一条直线上。

a.、同向:合力方向与、的方向一致。

b.、反向:合力,方向与、这两个力中较大的那个力向。

②、互成θ角——用力的平行四边形定则。

平行四边形定则:两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。

求F、的合力公式:(为F1、F2的夹角)注意:(1) 力的合成和分解都均遵从平行四边行法则。

(2) 两个力的合力范围: F1-F2 F F1 +F2。

(3) 合力可以大于分力、也可以小于分力、也可以等于分力。

(4)两个分力成直角时,用勾股定理或三角函数。

注意事项:(1)力的合成与分解,体现了用等效的方法研究物理问题。

(2)合成与分解是为了研究问题的方便而引入的一种方法,用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力,而不能同时考虑合力。

力的合成与分解归纳总结

力的合成与分解归纳总结

力的合成与分解知识要点归纳一、力的合成1.合力与分力:如果几个力共同作用产生的效果与某一个力单独作用时的效果相同,则这一个力为那几个力的,那几个力为这一个力的.2.共点力:几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫做共点力.3.力的合成:求几个力的的过程.4.平行四边形定则:两个力合成时,以表示这两个力的线段为作平行四边形,这两个邻边之间的就表示合力的大小和方向.二、力的分解1.力的分解:求一个力的的过程,力的分解与力的合成互为.2.矢量运算法则:(1)平行四边形定则(2)三角形定则:把两个矢量的首尾顺次连结起来,第一个矢量的首到第二个矢量的尾的为合矢量.3.力的分解的两种方法1)力的效果分解法①根据力的实际作用效果确定两个实际分力的方向;②再根据两个实际分力方向画出平行四边形;③最后由平行四边形和数学知识(如正弦定理、余弦定理、三角形相似等)求出两分力的大小.2)正交分解法①正交分解方法:把一个力分解为互相垂直的两个分力,特别是物体受多个力作用时,把物体受到的各力都分解到互相垂直的两个方向上去,然后分别求出每个方向上力的代数和.②利用正交分解法解题的步骤首先:正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标系的选择应使尽量多的力在坐标轴上.其次:正交分解各力,即分别将各力投影在坐标轴上,然后求各力在x 轴和y 轴上的分力的合力F x 和F y :F x =F 1x +F 2x +F 3x +…,F y =F 1y +F 2y +F 3y +…再次:求合力的大小F =F x 2+F y 2 ,确定合力的方向与x 轴夹角为θ=arctan F y F x. 4.将一个力分解的几种情况:①已知合力和一个分力的大小与方向:有唯一解②已知合力和两个分力的方向:有唯一解③已知合力和两个分力的大小(两分力不平行):当F1+F2<F 时无解;当F1+F2>F 时有两组解④已知一个分力F 1的方向和另一个分力F 2的大小,对力F 进行分解,如图4所示则有三种可能:(F 1与F 的夹角为θ) 当F 2<F sin θ时无解;当F 2=F sin θ或F 2≥F 时有一组解;当F sin θ<F 2<F 时有两组解.5.注意:(1)合力可能大于分力,可能等于分力,也可能小于分力的大小。

力的合成与分解解析力的合成与分解问题的方法

力的合成与分解解析力的合成与分解问题的方法

力的合成与分解解析力的合成与分解问题的方法力的合成与分解是力学中常见的一个重要问题,对于力的分析和计算有着重要的意义。

本文将介绍解析力的合成与分解的方法。

一、力的合成力的合成是指将两个或多个力合成为一个力的过程。

当多个力作用于一个物体时,它们的合力可以表示为力的矢量和。

合力的大小、方向与这些力的大小、方向有关。

方法一:图示法在图示法中,我们将力用箭头表示,箭头的长度表示了力的大小,箭头的方向表示了力的方向。

要得到合力,只需将各个力的箭头首尾相连,然后连接首尾的直线即可。

方法二:正弦定理和余弦定理正弦定理和余弦定理是解析力合成的数学方法。

假设有两个力F1和F2,它们的夹角为θ。

若要计算合力的大小F和方向α,可以使用以下公式:F = √(F1^2 + F2^2 + 2F1F2cosθ)α = arctan(F2sinθ / (F1 + F2cosθ))通过正弦定理和余弦定理,可以较为准确地计算出合力的大小和方向。

这在实际问题中非常常见。

二、力的分解力的分解是指将一个力分解为两个或多个分力的过程。

通过力的分解可以将一个复杂的问题简化为若干个简单的问题。

方法一:图示法与力的合成相反,在图示法中,我们将一个力的箭头按照一定的比例分解为两个或多个力的箭头,各个力的大小和方向可以根据实际问题中的要求确定。

方法二:正弦定理和余弦定理正弦定理和余弦定理同样适用于力的分解问题。

假设有一个力F,我们将其分解为与x轴和y轴方向夹角分别为α和β的两个分力F1和F2。

根据正弦定理和余弦定理,可以得到以下公式:F1 = FcosαF2 = Fcosβ通过力的分解,我们可以得到力的水平方向和垂直方向上的分量,从而更好地进行力的分析和计算。

总结:力的合成与分解是力学中非常重要的概念和方法。

在实际问题中,通过力的合成与分解,我们可以更好地理解和分析力的作用,从而得到准确的结果。

通过图示法和正弦定理、余弦定理,我们可以在解决力的合成与分解的问题时选择合适的方法。

力的合成与分解高考物理中的重要考点

力的合成与分解高考物理中的重要考点

力的合成与分解高考物理中的重要考点力的合成与分解是高考物理中的重要考点力的合成与分解是物理学中一个基本的概念,也是高考物理中的重要考点之一。

理解和掌握这个概念对于解决与力有关的物理问题至关重要。

本文将深入探讨力的合成与分解的概念、原理以及应用,帮助读者全面理解和掌握这一知识点。

一、力的合成力的合成指的是将多个力合成为一个力的过程。

在力的合成中,我们需要了解两个重要的概念:力的大小和方向。

1. 力的大小在合成力的过程中,力的大小是通过矢量相加的方法来计算的。

如果有两个力P1和P2,它们的大小分别为F1和F2,方向分别为θ1和θ2,则合成力的大小可以使用以下公式计算:F = √(F1^2 + F2^2 + 2F1F2cos(θ1 - θ2))其中,F为合成力的大小。

2. 力的方向在合成力的过程中,力的方向是通过矢量相加的方法来确定的。

如果有两个力P1和P2,它们的大小分别为F1和F2,方向分别为θ1和θ2,则合成力的方向可以通过以下公式计算:tanα = (F2sinθ2 + F1sinθ1) /(F2cosθ2 + F1cosθ1)其中,α为合成力与水平方向的夹角。

二、力的分解力的分解是将一个力分解为几个力的过程。

在力的分解中,我们需要了解两个重要的概念:水平分力和垂直分力。

1. 水平分力当一个力斜向上施加在一个物体上时,可以将该力分解为水平方向上的力和垂直方向上的力。

水平分力的计算可以使用以下公式:Fh = Fcosθ其中,Fh为水平分力的大小,F为合成力的大小,θ为合成力与水平方向的夹角。

2. 垂直分力当一个力斜向上施加在一个物体上时,可以将该力分解为水平方向上的力和垂直方向上的力。

垂直分力的计算可以使用以下公式:Fv = Fsinθ其中,Fv为垂直分力的大小,F为合成力的大小,θ为合成力与水平方向的夹角。

三、力的合成与分解的应用力的合成与分解在物理学中有广泛的应用。

以下是力的合成与分解的一些具体应用:1. 航空航天在航空航天领域中,合成力的概念常常用于计算飞机的推力与阻力之间的平衡。

高一物理《力的分解与合成》知识点讲解

高一物理《力的分解与合成》知识点讲解

高一物理《力的分解与合成》知识点讲解力的分解与合成是物理学中一个重要的概念,它有助于我们理解多个力合成为一个力的效果,以及一个力如何分解为多个力的效果。

以下是对该知识点的讲解。

1. 力的分解力的分解是指将一个力分解为多个力的效果。

这样做有助于我们更好地理解和分析力的作用。

在力的分解中,我们常使用正交分解法和图解法。

1.1 正交分解法正交分解法是将一个力分解为两个分力,其中一个与给定方向垂直,另一个与给定方向平行。

这种方法常用于解决斜面问题和倾斜物体问题。

在正交分解时,我们可以根据三角函数关系来计算力的分解分量。

1.2 图解法图解法是通过绘制矢量图来展示力的分解。

我们可以使用比例尺来确定力的大小和方向。

通过观察图示,我们可以清楚地看到力的分解效果。

图解法常用于解决平面力系统和多个力合成问题。

2. 力的合成力的合成是指将多个力合成为一个力的效果。

这有助于我们将多个力简化为一个力进行分析。

力的合成有两种常见方法:向量法和平行四边形法。

2.1 向量法向量法是通过将多个力的矢量相加或相减来求得合成结果。

在向量法中,我们需要将各个力的大小和方向用矢量表示,然后按照矢量相加或相减的规则进行计算。

最终的合成力的大小和方向由向量相加或相减的结果得出。

2.2 平行四边形法平行四边形法是通过构造平行四边形来展示力的合成。

我们可以使用比例尺来确定力的大小和方向,并用图示表达力的合成效果。

通过观察平行四边形的对角线,我们可以得到合成力的大小和方向。

力的分解与合成是物理学中非常实用的技巧。

通过运用这些技巧,我们可以更好地分析和解决力的问题,提高问题解决的效率。

以上是对高一物理《力的分解与合成》知识点的简要讲解。

希望对您的学习有所帮助!。

力的分解和合成详细解释

力的分解和合成详细解释

力的合成 力的分解一、 重点、难点解析:(一)合力与分力当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的效果相同,这个力就叫做那几个力的合力,原来几个力叫做分力。

(二)力的合成1. 定义:求几个力的合力的过程或求合力的方法,叫做力的合成。

2. 平行四边形定则:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。

这个法则叫做平行四边形定则。

对力这种既有大小又有方向的物理量,进行合成运算时,一般不能用代数加法求合力,而必须用平行四边形定则。

(三)共点力如果一个物体受到两个或更多力的作用,有些情况下这些力共同作用在同一点上,或者虽不作用在同一点,但它们的作用线交于一点,这样的一组力叫做共点力。

平行四边形定则只适用于共点力的合成。

(四)讨论:1. 力的合成的意义在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。

力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律,作图法和计算法是运用这一规律进行共点力合成的具体方法。

(1)作图法:要选取统一标度,严格作出力的图示及平行四边形,量出平行四边形的对角线长度(注意是哪一条对角线),根据标度求出合力的大小,再量出对角线与某一分力的夹角,求出合力的方向。

(2)计算法:根据平行四边形定则作出力的示意图,然后利用解三角形的方式求出对角线,即为合力。

2. 力的合成的几种特殊情况:①相互垂直的两个力的合成,如图所示,F =F 与分力F 1的夹角θ的正切为:21tan F Fθ=。

②夹角为θ的两个等大的力的合成,如图所示,作出的平行四边形为菱形,利用其对角线互相垂直的特点可得直角三角形,解直角三角形求得合力2cos 2'θF F =,合力'F 与每一个分力的夹角等于2θ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时力的合成与分解考纲解读 1.会用平行四边形定则、三角形定则进行力的合成与分解.2.会用正交分解法进行力的合成与分解.考点一共点力的合成1.合成的方法(1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.2.运算法则(1)平行四边形定则:求两个互成角度的共点力F1、F2的合力,可以用表示F1、F2的有向线段为邻边作平行四边形,平行四边形的对角线就表示合力的大小和方向,如图1甲所示.(2)三角形定则:求两个互成角度的共点力F1、F2的合力,可以把表示F1、F2的线段首尾顺次相接地画出,把F1、F2的另外两端连接起来,则此连线就表示合力的大小和方向,如图乙所示.图13.重要结论(1)两个分力一定时,夹角θ越大,合力越小.(2)合力一定,两等大分力的夹角越大,两分力越大.(3)合力可以大于分力,等于分力,也可以小于分力.例1一物体受到三个共面共点力F 1、F2、F3的作用,三力的矢量关系如图2所示(小方格边长相等),则下列说法正确的是()图2A.三力的合力有最大值F1+F2+F3,方向不确定B.三力的合力有唯一值3F3,方向与F3同向C.三力的合力有唯一值2F3,方向与F3同向D.由题给条件无法求出合力大小解析根据三力的图示,知F1、F2在竖直方向分力的大小均为3个单位,方向相反,在水平方向的分力分别为6个单位和2个单位,方向与F3方向相同.根据正交分解法求合力的思想知,3个力的合力为12个单位,与F3的方向相同,大小是F3的3倍,即F合=3F3.选项B正确.答案B变式题组1.[二力的合成](2013·上海·18)两个共点力F1、F2大小不同,它们的合力大小为F,则() A.F1、F2同时增大一倍,F也增大一倍B.F1、F2同时增加10 N,F也增加10 NC.F1增加10 N,F2减少10 N,F一定不变D.若F1、F2中的一个增大,F不一定增大答案AD解析F1、F2同时增大一倍,F也增大一倍,选项A正确.F1、F2同时增加10 N,F不一定增加10 N,选项B错误.F1增加10 N,F2减少10 N,F可能变化,选项C错误.若F1、F2中的一个增大,F不一定增大,选项D正确.2.[三力的合成]三个共点力大小分别是F1、F2、F3,关于它们的合力F的大小,下列说法中正确的是()A.F大小的取值范围一定是0≤F≤F1+F2+F3B.F至少比F1、F2、F3中的某一个大C.若F1∶F2∶F3=3∶6∶8,只要适当调整它们之间的夹角,一定能使合力为零D.若F1∶F2∶F3=3∶6∶2,只要适当调整它们之间的夹角,一定能使合力为零答案C合力大小的范围(1)两个共点力的合成|F1-F2|≤F合≤F1+F2,即两个力大小不变时,其合力随夹角的增大而减小.当两力反向时,合力最小,为|F1-F2|;当两力同向时,合力最大,为F1+F2.(2)三个共点力的合成①三个力共线且同向时,其合力最大,为F1+F2+F3.②任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,则合力的最小值为最大的一个力减去另外两个较小力的和的绝对值.考点二力分解的两种常用方法1.力的效果分解法:(1)根据力的实际作用效果确定两个实际分力的方向;(2)再根据两个实际分力的方向画出平行四边形;(3)最后由平行四边形和数学知识求出两分力的大小.2.正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:以少分解力和容易分解力为原则(即尽量多的力在坐标轴上).例2如图3所示,A、B两物体叠放在水平地面上,已知A、B的质量分别为m A=10 kg,m B=20 kg,A、B之间、B与地面之间的动摩擦因数均为μ=0.5.一轻绳一端系住物体A,另一端系于墙上,绳与竖直方向的夹角为37°,现欲用外力将物体B匀速向右拉出,求所加水平力F的大小,并画出A、B的受力分析图.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)图3解析A、B的受力分析如图所示.对A应用平衡条件得F T sin 37°=F f1=μF N1①F T cos 37°+F N1=m A g②联立①、②两式可得:F N1=3m A g 4μ+3=60 N F f1=μF N1=30 N对B 应用平衡条件得F =F f1′+F f2=F f1′+μF N2=F f1+μ(F N1+m B g )=2F f1+μm B g =160 N.答案 160 N 受力分析图见解析图递进题组3.[力的效果分解法]如图4所示,起重机将重为G 的重物匀速吊起,此时四条钢索与竖直方向的夹角均为60°,则每根钢索中弹力的大小为( )图4A.G 4B.3G 6C.3G 4D.G 2答案 D解析 设每根钢索中弹力的大小为F T ,将重力分解如图所示,由平衡条件知,F T =14G cos 60°=G 2,故D 正确. 4.[力的正交分解法]如图5所示,质量为M 的正方形空木箱放置在粗糙水平面上,沿空木箱对角线有一光滑细轨道,轨道与水平方向间的夹角为45°.轨道上有一质量为m 的物体沿轨道自由下滑,木箱始终静止在水平面上,求物体下滑的过程中,图5(1)轨道对物体的弹力的大小;(2)地面对木箱的摩擦力的大小和方向.答案(1)22mg(2)12mg,方向水平向左解析(1)以物体为研究对象,垂直轨道方向有F N=mg cos 45°解得轨道对物体的弹力的大小为F N=22mg(2)以木箱为研究对象,受力如图所示.由牛顿第三定律有F N′=F N在水平方向上有F f=F N′sin 45°解得F f=12mg,方向水平向左.力的合成与分解方法的选择技巧力的效果分解法、正交分解法、合成法都是常见的解题方法.一般情况下,物体只受三个力的情形下,力的效果分解法、合成法解题较为简单,在三角形中找几何关系,利用几何关系或三角形相似求解;而物体受三个以上力的情况多用正交分解法,但也要视题目具体情况而定.考点三力的合成与分解方法在实际问题中的应用把力按实际效果分解的一般思路:例3某压榨机的结构示意图如图6所示,其中B为固定铰链,若在A铰链处作用一垂直于墙壁的力F,则由于力F的作用,使滑块C压紧物体D,设C与D光滑接触,杆的重力及滑块C的重力不计,图中a=0.5 m,b=0.05 m,则物体D所受压力的大小与力F的比值为()图6 A.4 B.5C.10 D.1解析按力F的作用效果沿AC、AB杆方向分解为图甲所示的F1、F2,则F1=F2=F2cos θ,由几何知识得tan θ=ab=10,再按F1的作用效果将F1沿水平向左和竖直向下分解为图乙所示的F3、F4,则F4=F1sin θ,联立得F4=5F,即物体D所受压力的大小与力F的比值为5,B对.甲乙答案B递进题组5.[实际问题分析]假期里,一位同学在厨房里帮助妈妈做菜,对菜刀发生了兴趣.他发现菜刀的刀刃前部和后部的厚薄不一样,刀刃前部的顶角小,后部的顶角大,如图7所示,他先后作出过几个猜想,其中合理的是()图7A.刀刃前部和后部厚薄不匀,仅是为了打造方便,外形美观,跟使用功能无关B.在刀背上加上同样的压力时,分开其他物体的力跟刀刃厚薄无关C.在刀背上加上同样的压力时,顶角越大,分开其他物体的力越大D.在刀背上加上同样的压力时,顶角越小,分开其他物体的力越大答案D解析把刀刃部分抽象后,可简化成一个等腰三角形劈,设顶角为2θ,背宽为d,侧面长为l,如图所示.当在刀背施加压力F后,产生垂直侧面的两个分力F1、F2,使用中依靠着这两个分力分开被加工的其他物体.由对称性知,这两个分力大小相等(F1=F2),因此画出力分解的平行四边形,实为菱形,如图所示,在这个力的平行四边形中,取其四分之一考虑(图中阴影部分).根据它跟半个劈的直角三角形的相似关系,有关系式F1F2=ld2=1sin θ,得F1=F2=F2sin θ.由此可见,刀背上加上一定的压力F时,侧面分开其他物体的力跟顶角的大小有关,顶角越小,sin θ的值越小,F1和F2的值越大,故D正确.6.[实际问题分析]图8为庆祝新年时某教室里悬挂灯笼的一种方式,三段轻绳ac、cd、bd 长度相等,a、b两点等高,c、d为结点且两点等高,三段轻绳的拉力大小分别为F ac、F cd、F bd,两灯笼受到的重力分别为G c和G d,下列表述正确的是()图8A.F ac与F bd大小一定相等B.F ac一定小于F cdC.G c和G d一定相等D.F ac与F bd的大小之和等于G c与G d的大小之和答案AC解析根据题述的对称性,F ac与F bd大小一定相等,G c和G d一定相等,选项A、C正确;因F ac>G c,F bd>G d,故F ac与F bd的大小之和一定大于G c与G d的大小之和,选项D错误;又F ac的水平分力与F cd大小相等,故F ac一定大于F cd,B错误.7.[利用对称性分析实际问题]电梯修理员或牵引专家常常需要监测金属绳中的张力,但不能到绳的自由端去直接测量.某公司制造出一种能测量绳中张力的仪器,工作原理如图9所示,将相距为L的两根固定支柱A、B(图中的小圆圈表示支柱的横截面)垂直于金属绳水平放置,在A、B的中点用一可动支柱C向上推动金属绳,使绳在垂直于A、B的方向竖直向上发生一个偏移量d(d≪L),这时仪器测得金属绳对支柱C竖直向下的作用力为F.(1)试用L、d、F表示这时金属绳中的张力F T;(2)如果偏移量d =10 mm ,作用力F =400 N ,L =250 mm ,计算金属绳中张力的大小.图9答案 (1)FL 4d(2)2.5×103 N 解析 (1)设C ′点受两边金属绳的张力分别为F T1和F T2,BC 与BC ′的夹角为θ,如图所示.依对称性有:F T1=F T2=F T由力的合成有:F =2F T sin θ根据几何关系有sin θ=d d 2+L 24联立上述二式解得F T =F 2d d 2+L 24因d ≪L ,故F T =FL 4d. (2)将d =10 mm ,F =400 N ,L =250 mm 代入F T =FL 4d解得F T =2.5×103 N ,即金属绳中的张力为2.5×103 N.高考模拟 明确考向1.(2014·海南·5)如图10,一不可伸长的光滑轻绳,其左端固定于O 点,右端跨过位于O ′点的固定光滑轴悬挂一质量为M 的物体;OO ′段水平,长度为L ;绳上套一可沿绳滑动的轻环.现在轻环上悬挂一钩码,平衡后,物体上升L .则钩码的质量为( )图10A.22MB.32M C.2M D.3M答案 D解析 假设平衡后轻环的位置为P ,平衡后,物体上升L ,说明此时POO ′恰好构成一个边长为L的正三角形,绳中张力处处相等,均为Mg,故钩码的重力恰好与绳PO′段、PO段拉力的合力等大反向,由三角函数关系可知,钩码的重力为3Mg,故其质量为3M,选D.2.(2013·重庆·1)如图11所示,某人静躺在椅子上,椅子的靠背与水平面之间有固定倾斜角θ.若此人所受重力为G,则椅子各部分对他的作用力的合力大小为()图11A.G B.G sin θC.G cos θD.G tan θ答案A解析椅子各部分对人的作用力的合力与重力G是平衡力,因此选项A正确.3.(2012·上海·6)已知两个共点力的合力的大小为50 N,分力F1的方向与合力F的方向成30°角,分力F2的大小为30 N.则()A.F1的大小是唯一的B.F2的方向是唯一的C.F2有两个可能的方向D.F2可取任意方向答案C解析由F1、F2和F的矢量三角形图可以看出:当F2=F20=25 N时,F1的大小才是唯一的,F2的方向也是唯一的.因F2=30 N>F20=25 N,所以F1的大小有两个,即F1′和F1″,F2的方向有两个,即F2′的方向和F2″的方向,故选项A、B、D错误,选项C正确.4.风洞是进行空气动力学实验的一种重要设备.一次检验飞机性能的风洞实验示意图如图12所示,AB代表飞机模型的截面,OL是拉住飞机模型的绳.已知飞机模型重为G,当飞机模型静止在空中时,绳恰好水平,此时飞机模型截面与水平面的夹角为θ,则作用于飞机模型上的风力大小为()图12A.Gcos θB.G cos θC.Gsin θD.G sin θ答案A解析作用于飞机模型上的风力F垂直于AB向上,风力F的竖直分力等于飞机模型的重力,即F cos θ=G,解得F=Gcos θ,A正确.。

相关文档
最新文档