通风系统风量 风压的测量

合集下载

管道风压、风速、风量测定

管道风压、风速、风量测定
仪器的测量部分采用电子放大线路和运算放大器,并用 数字显示测量结果。测量的范围为0.05~19.0m/s(必要时 可扩大至40m/s)
仪器中还设有P-N结温度测头,可以在测量风速的同时, 测定气流的温度。这种仪器适用于气流稳定输送清洁空 气,流速小于4m/s的场合。
管道风压、风速、风量测定
四、风道内流量的计算
天竹夭的店
2020年6月27日
管道风压、风速、风量测定
管道风压、风速、风量测定
一、测定位置和测定点
(一) 通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的
真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对 测量结果的影响很大。
测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形 部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。
1 在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同 心环。 对于圆形风道,测点越多,测量精度越高。
2 矩形风道 可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小 矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。
管道风压、风速、风量测定
当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。 当测试现场难于满足要求时,为减少误差可适当增加测点。 但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5
管道风压、风速、风量测定
一、测定位置和测定点
(一)
测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面 不宜作为测定断面。
如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面 (检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这

通风管道风压、风速、风量测定

通风管道风压、风速、风量测定

第八节通风管道风压、风速、风量测定〔p235〕〔熟悉〕一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。

测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。

测量断面应尽量选择在气流平稳的直管段上。

测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些..部件的距离应大于2.倍.管道直径。

当测量断面设在上述部件时,距这些部件的距离应大于4.~.5.倍.管道直径。

测量后面..断面位置示意图见p235图2.8-1。

当测试现场难于满足要求时,为减少误差可适当增加测点。

但是,测量断面位置距异形部件的最小距离至少是管道直径的。

测定动压时如发现任何一个测点出现零值或负值,说明气流不稳定,该断面不宜作为测定断面。

如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。

选择测量断面,还应考虑测定操作的方便和安全。

(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。

因此,必须在同一断面上多点测量,然后求出该断面的平均值。

1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,同心环的划分环数按〔236〕表2.8-1确定。

—2。

测点越多,测量精度越高。

图2.8-2是划分为三个同心环的风管的测点布置图,其他同心环的测点可参照布置。

2矩形风道可将风道断面划分为假设干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,如〔p236〕图2.8-3矩形风道测点布置图所示。

圆风管测点与管壁距离系数(以管径为基数) 表2.8-2 二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。

测试中需测定气体的静压、动压和全压。

风量风压风速的计算方法

风量风压风速的计算方法

风量风压风速的计算方法风量、风压和风速是风力工程中常用的几个重要参数,它们之间的关系和计算方法对于风力工程设计、建筑通风和空调系统设计等领域都非常重要。

下面将详细介绍风量、风压和风速的计算方法。

1.风量计算方法:风量是指单位时间内通过风道或风口的空气量,通常用立方米每小时(m3/h)表示。

计算风量的方法主要有以下几种:a.风量计直接测量法:使用风量计器直接测量风量。

常用的风量计器有热线式风量计、翼片式风量计、旋翼式风量计等。

b.风量计算公式法:根据风道或风口的几何尺寸和空气速度计算风量。

如矩形风道的风量计算公式为:风量=风道的面积×风速。

c.实验室测试法:在实验室中通过建立模型进行风洞实验,测量模型上方或模型周围的风量,然后进行比例计算得到实际工程中的风量。

2.风压计算方法:风压是指风力作用于单位面积上的压力,通常用帕斯卡(Pa)或牛顿每平方米(N/m2)表示。

计算风压的方法主要有以下几种:a.风压计直接测量法:使用风压计直接测量风压。

常用的风压计有静压传感器、动压传感器、静压管等。

b.风压计算公式法:根据气流速度和管道形状等因素,使用相关的公式计算风压。

如圆管道风压计算公式为:风压=0.5×空气密度×风速的平方。

c.风洞实验法:通过模型在风洞中进行试验,测量模型表面的风压,然后进行比例计算得到实际工程中的风压。

3.风速计算方法:风速是指空气运动的速度,通常用米每秒(m/s)表示。

计算风速的方法主要有以下几种:a.风速计直接测量法:使用风速计直接测量风速。

常用的风速计有热线风速计、旋转风速计、风速计索等。

b.风速计算公式法:根据风压、风量等参数的关系,使用相关的公式计算风速。

如根据风量和风道面积计算风速的公式为:风速=风量/风道的面积。

c.等速线法:利用等速线的特性,在风速图上找到实际工况点的风速。

需要注意的是,以上计算方法是基于一些理想假设和模型推导得到的,并且在实际应用中还需要考虑实际工程环境、空气密度、局部阻力等因素的影响。

风量风压风速的计算方法

风量风压风速的计算方法

风量风压风速的计算方法一、测定点位置的选择:通风管道内风速及风量的测定,是通过测量压力再换算取得的。

要得到管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面,减少气流扰动对测量结果的影响,也很重要。

测量断面应选择在气流平稳的直管段上。

由于速度分布的不均匀性,压力分布也是不均匀的,因此必须在同一断面上多点测量,然后求出平均值。

圆形风道在同一断面设两个互相垂直的测孔,并将管道断面分成一定数量的等面积同心环。

矩形风道可将风道断面分成若干等面积的小矩形,测点布置在每个小矩形的中心。

二、风道内压力的测定。

测试中需测定气体的静压、动压和全压。

测全压的孔应迎着气流的方向,测静压的孔应垂直于气流的方向,全压和静压之差即为动压。

气体压力的测量通常是用插入风道中的测压管将压力信号取出,常用的仪器是皮托管和压力计。

标准皮托管是一个弯成90°的双层同心圆管。

压力计有U形压力计和倾斜式微型压力计。

皮托管和压力计相配合测出压力。

三、风速的测定。

常用的测定管道内风速的方法有间接式和直读式。

间接式先测得管内某点动压,再算出该点风速。

此法虽然繁琐,由于精度高,在通风测试系统中得到广泛应用。

直读式测速仪是热球式热电风速仪,测头会受到周围空气流速的影响,根据温升的大小即可测出气流的速度。

四、局部吸排风口风速的测定:1,匀速移动法:使用叶轮式风速仪,沿风口断面匀速移动,测得风口平均风速。

2,定点测定法:使用热球式热电风速仪,按风口断面大小,分成若干面积相等的小方块,在小方块的中心测定风速,取其平均值。

五、局部吸排风口风量的测定:1,用动压法测定断面动压,计算出风速,算出风量。

2,用动压法不易找到稳定的测压断面时,使用静压法求得风量。

新风风量测试标准

新风风量测试标准

新风风量测试标准引言新风风量是指新风系统在单位时间内向室内送风的体积,是评价新风系统工作效果的重要指标之一。

为了确保新风系统的正常运行和室内空气质量的改善,需要对新风风量进行准确的测试和评估。

本文将介绍新风风量测试的标准及相关内容。

一、新风风量测试的目的新风风量测试的目的是为了评估新风系统的送风效果,确保室内空气质量达标。

通过测试,可以判断新风系统的工作状态是否正常,是否满足设计要求,并提供评价和改进的依据。

二、新风风量测试的方法1. 风量测试仪器新风风量测试需要使用专业的测试仪器,常用的有烟雾仪、风速仪和风压仪等。

烟雾仪可以用于可视化观察风流的分布情况,风速仪可以测量风速,风压仪可以测量风压。

2. 测试点位选择在进行新风风量测试时,需要选择合适的测试点位。

一般来说,应选择室内外气流交换明显的位置进行测试,如门、窗、通风口等。

3. 测试步骤(1)准备工作:确认测试仪器的准确性和可靠性,保证测试的准确性。

(2)测试点位设置:根据实际情况选择测试点位,并标记出来。

(3)测试仪器配置:根据测试需要,配置相应的测试仪器。

(4)测试操作:依次对每个测试点位进行测试,记录相应的测试数据,并确保测试过程中无干扰因素。

(5)测试结果分析:根据测试数据进行分析,评估新风系统的送风效果,并判断是否达到设计要求。

三、新风风量测试的标准1. 新风风量的计算公式新风风量的计算公式为:Q=V×n其中,Q为新风风量,单位为m³/h;V为送风口面积,单位为m²;n 为送风口平均风速,单位为m/s。

2. 新风风量的评价标准根据不同的场所和使用需求,新风风量的评价标准也有所不同。

一般来说,新风风量应满足国家相关标准或设计要求,以确保室内空气质量符合相关规定。

3. 新风风量测试的频率新风风量测试应定期进行,以确保新风系统的长期稳定运行。

一般建议每年进行一次全面的测试,同时可以根据实际情况进行临时测试。

四、新风风量测试的意义1. 保障室内空气质量新风风量测试可以评估新风系统的送风效果,确保室内空气质量符合相关标准,为人们提供一个舒适、健康的室内环境。

风扇的风量与风压关系

风扇的风量与风压关系

风扇的风量与风压关系风量与风压的测试方法有两种,一是用风洞仪测试,另一种是用双箱法测。

但对于一般用户而言,没有这样的设备。

只能根据厂家提供的数据作为参考,最终要看降温效果。

*风量:风量是指风扇通风面积平面速度之积。

通风面积是出口面积减去涡舌处的投影面积。

平面速度是气流通过整个平面的气体运动速度,单位是m3/s 。

平面速度一定时,扇叶叶轮外径越大,通风面积越大,风量则越大。

平面速度由转子的转速和风压决定。

通风面积一定时,平面速度越大,风量越大。

风量越大,空气吸热量则越大,空气流动转移时能够带周能带走更多的热量,扇热效果越明显*风压:为进行正常通风,需要克服风扇通风行程内的阻力,风扇必须产生克服送风阻力的压力,测量到的压力的变化值称为静压,即最大静压与大气压的差压。

它是气体对平行于物体表面作用的压力,静压是通过垂直于其表面的孔测量出来的。

把气体流动中所需要动能转化为压力形式称为动压。

为实现送风的目的,需要有静压和动压。

全压为静压与动压的代数和,全压是指由风扇所给定的的全压增加量,即风扇的出口和进口之间的全压之差。

在实际应用中,标称的最大风量值并不是实际扇热片得到的送风量,风量大,并不代表通风能力强。

因空气流动时,气流在其流动路径会遇上扇热稽片或元件的阻扰,其阻抗会限制空气自由流通。

即风量增大时,风压会减小。

因此必须有一个最佳操作工作点,即风扇性能曲线与风阻曲线的交点。

在工作点,风扇特性曲线之斜率为最小,而系统特性曲线之变化率为最低。

注意此时的风扇静态效率(风量×风压÷耗电)为最佳。

当然有时为了能减少系统阻抗,甚至选用尺寸较小的风扇,也可以获得相同的风量。

通风管道风压、风速、风量测定(精)

通风管道风压、风速、风量测定(精)

第八节通风管道风压、风速、风量测定(p235)(熟悉)一、测定位置和测定点(一测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。

测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。

测量断面应尽量选择在气流平稳的直管段上。

测量断面设在弯头、三通等异形部件前面(相对气流流动方向时,距这些部件的距离应大于2倍管道直径。

当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。

测量断面位置示意图见p235图2.8-1。

当测试现场难于满足要求时,为减少误差可适当增加测点。

但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。

测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。

如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角。

选择测量断面,还应考虑测定操作的方便和安全。

(二测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。

因此,必须在同一断面上多点测量,然后求出该断面的平均值。

1 圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,同心环的划分环数按(236)表2.8-1确定。

对于圆形风道,同心环上各测点距风道内壁距离列于表2.8—2。

测点越多,测量精度越高。

图2.8-2是划分为三个同心环的风管的测点布置图,其他同心环的测点可参照布置。

2 矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,如(p236)图2.8-3矩形风道测点布置图所示。

圆风管测点与管壁距离系数(以管径为基数表2.8-2 二、风道内压力的测定(一原理测量风道中气体的压力应在气流比较平稳的管段进行。

通风管道风压风速风量测定DOC

通风管道风压风速风量测定DOC

通风管道风压风速风量测定通风管道在工业生产和建筑物中起着重要的作用。

为确保通风管道的安全和有效,需要对通风管道进行风压、风速、风量测定。

以下是一些测量通风管道的基本方法。

一、风压测量仪器•喜马拉雅差压计•数字多功能仪表步骤1.在通风管道的两边墙壁上钻孔,使孔之间的距离相等。

2.将差压计连接在通风管道上,调整读数到设置零点。

3.打开通风机,记录差压计的读数。

如果差压计涉及到密封效应,需要进行更多调整以得到更准确的读数。

如果机器噪音太大,可以考虑将差压计放置在远离机器的地方。

计算通风管道的压强等于差压计的读数。

使用以下公式计算通风管道的风速: •风速(m/s)= 差压计的读数 * (角度系数 / 因素系数)•风速(英尺/分钟)= 差压计的读数 * (角度系数 / 因素系数) * 196.85其中,角度系数和因素系数根据差压计的型号而异。

二、风速测量仪器•热线风速仪•热膜风速仪步骤1.在通风管道上安装风速仪器。

尽量远离通风系统的进口和出口,以避免干扰。

2.打开通风机,等待五到十分钟,直到温度和湿度稳定。

3.风速仪器将记录并显示当前风速。

计算通风管道的风量等于风速和扇叶面积的乘积。

使用以下公式计算通风管道的风速:•风量(立方米/小时)= 风速 (米/秒) × 扇叶面积 (平方米) × 3600•风量(立方英尺/分钟)= 风速 (英尺/分钟) × 扇叶面积 (平方英尺) ×60三、风量测量仪器•平衡法风量计•流量计步骤1.在通风管道上安装风量计。

平衡法风量计需要根据通风管道的直径进行调整。

2.打开通风机,将通风管道进行平衡,直到读数稳定。

3.查看风量计上的读数。

计算无需计算。

风量计上的读数已经是通风管道的实际风量。

四、对于工业生产和建筑物中的通风管道,测量其风压、风速、风量是十分重要的。

使用合适的仪器和正确的测量方法,可确保通风管道的安全和有效。

不同的测量方法有不同的精度和调整要求,需要选择合适的测量方法和仪器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一风管风压、风速、风量的测定一、实验目的在通风除尘工程中,需要对系统中风压、风速及风量进行测定调整,使系统能在正常运行工况下工作。

测量风压、风速及风量的方法有许多种,现场测定一般采用毕托测压管和不同种类的微压计或U型管来进行测量。

通过实验,使学生掌握风管截面的测点布置方法,熟悉风压、风速及风量测量仪表的结构及工作原理,掌握风压、风速及风量的测量方法和计算公式,为专业测试打下基础。

二、实验装置通风系统综合测定实验装置如图1-1所示,该装置由风管、风机及测量箱组成。

图1-1 通风系统综合测定实验装置实验系统的正压管段与负压管段均设有测压孔,可用毕托管直接在测量断面上进行测量。

在风机入口,出口侧各安装有测量风量的测量箱,在箱内安装有标准空气流量喷嘴,为了使测量段的空气流速场较为均匀、在喷咀前后各设有整流板,其穿孔率约为40%,测量箱断面尺寸按空气流速不大于O.76m/s考虑。

I号测量箱,安装有标准喷嘴计3个,其规格为:D100 2个 D50 1个实验系统风量可通过调节多叶调节阀来改变其大小。

三、实验原理及实验方法(一) 毕托管与微压计测量风压、风速及风量空气在风管中流动时,管内空气与管外空气存在有压力差,这个压力差是直接由风管管壁来承受的,称为静压P j ,就空气某一质点来说,所承受的静压的方向为四面八方。

由于空气在风管内流动,形成一定的动压d P ,即为气流的动能。

动压数学表达式 22ρν=d P (Pa )或 gP d 22γν='P (O mmH 2)动压的方向为空气流动的方向。

静压与动压之和称为总压,数学表达式为d j q P P P +=(Pa )在毕托管上有测量总压、静压的测孔,与微压计配合使用,就可测出流体的静压、总压与动压。

静压和总压有正负之分,动压只为正值。

在测量总压和静压时,如数值超过微压计的量程,则采用U 型管压力计。

测出空气动压值后,即可求得相应的空气流速。

空气流速 ρdP v 2=(m/s )或 γd P g v '=2(m/s )测出测量断面面积F 及计算出空气的平均流速v 后即可计算空气体积流量L 。

v F L ⋅=(s m /3)或 v F L ⋅='3600(h m /3)空气的质量流量 ρρ⋅⋅==v F L G (s kg /)或 ρ⋅⋅='v F G 3600(h kg /) 式中:d P — 空气的动压(Pa ); v — 空气的流速(m/s); v — 空气的平均流速(m/s); ρ — 测量断面上空气密度(kg/m 3); γ — 测量断面上空气比重(kgf/m 3);d P ' — 用工程单位表示的空气动压(O mmH 2); G — 重力加速度,g=9.807(m/s 2);j P — 空气的静压(Pa); q P — 空气的总压(Pa);L / — 用工程单位表示的空气体积流量(m 3/h);G / — 用工程单位表示的空气质量流量 (kg/h)。

在现场测定时,测量断面的选择是很重要的。

测点应选择在气流比较平直、扰动较少的直管段上。

如有弯头或三通等部件,则测点应选在这些部件之前大于2倍管道直径处;如在这些部件之后,应距这些部件大于4~5倍管道直径。

在调节阀前后应避免布置测点。

管内静压的测定,除用毕托管外,也可直接在管壁上开一个小孔,焊接一测压短管测得。

小孔径直径应小于2mm ,钻孔应与管壁垂直,而且孔口内壁不应有毛刺。

在测定风压时,毕托管与微压计的连接方法应视测点位置是处于正压段还是负压段而定。

当测点在通风机前的吸入段时,其总压及静压为负值,故其接管应与微压计的倾斜管的一端连接。

当测点在通风机后的压出段时,其总压为正值,而静压视情况而定,一般情况下为正值。

对于动压值,则不管测点在压出段或吸入段,其值永远是正值。

毕托管与微压计的接管,可参照图1-2所示,图中毕托管的总压端用“+”表示,静压端用“-”表示。

图1-2 毕托管与微压计的接管示意图由于气流速度在管道断面上的分布是不均匀的,因此,在同一断面上必须进行多点测量,然后求出该断面的平均流速。

1、对于矩形管道,可将管道断面划分若干个等面积的小矩形,测点布置在每个小矩形的中心。

小矩形每边的长度为200mm 左右,使其面积不大于O.05m 2,但其数目应不小于9个,如图1-3所示。

图1-3 矩形风管测点布置图 图1-4 圆形断面测点布置图2、对于圆形管道,可将管道断面划分为若干个等面积的同心环,然后在环上的水平及垂直向布置测点,如图1-4所示。

同心环的环数如下表1-1。

同心环上各测点距中心的距离按下式计算:mi R R i 2120-= 式中: 0R — 风管的半径(mm );i R — 风管中心到第i 点的距离(mm ); i — 从风管中心算起的同心环顺序号;M — 风管断面上划分的同心环数。

实际上在测定时,应求出各环测点至管壁的距离。

各环测点至管壁的距离为: 31R R l -= 22R R l -=13R R l -= 14R R l +=25R R l += 36R R l +=各环测点至管壁的距离如图1-5所示。

图1-5 圆环测点布置图各环测点至管壁的距离i l 也可直接用表1-2求得。

按上面的方法测得断面上各点动压后,应按下式求其平均动压:221⎪⎪⎭⎫⎝⎛+⋅⋅⋅++=n P P P P dn d d d 式中: n —测点数目。

取两轴线的动压平均值,即2bd a d pd P P P +=⋅。

在现场测量中,若测点处受涡流影响,使动压的某些读值为负值或零时,在计算中可视该点的读值为零。

管道内的平均总压可按下式求之:nP P P P qnq q d +⋅⋅⋅++=21。

(二) 标准空气流量喷嘴测量风量根据节流原理,流体流经节流装置时产生压差,而且流过的流量愈大,在节流装置前后所产生的压差也就愈大。

故通过测量压差,即可计算出流量。

对于不可压缩流体,通过单个喷嘴的风量接下式计算:ραPF L ∆=20(m 3/s)ρα⋅∆⋅=P F G 20 (kg/s)式中: L — 通过单个喷嘴的空气体积流量(m 3/s);G — 通过单个喷嘴的空气质量流量(kg/s); α — 喷嘴流量系数,根据表1-3查得;F 0 — 喷嘴的开孔面积(m 2);△P — 喷嘴前后的静压差或喷嘴喉道处的动压(Pa);ρ — 喷嘴进口处的湿空气密度,可近似取相同状态的干空气密度(kg /m 3)。

在工程上为简化计算,流量单位常采用m 3/h 或kg/h ,喷嘴开孔直径单位常采用mm ,压力、压差单位常采用mmH 2O(kg /m 2),所以,对上述流量基本方程式进行处理后,得实用流量方程式,即为:γαP d L '∆=201252.0 (m 3/h)或 γαP d G '∆=201252.0 (kg/h ) 式中:g 2410360001252.06⨯⨯⨯=-π;D — 喷嘴的开孔直径(mm );△P / — 喷嘴前后的静压差或喷嘴喉道处的动压(mmH 2O )。

表中: νVdR e =V — 喷嘴喉部空气流速,测量时要求15≤V ≤35.5(m /s);D — 喷嘴喉部即开孔直径(m);ν 一 空气的运动粘性系数(m 2/s)。

当使用一个以上的喷嘴时,总风量为通过各单个喷嘴风量的总和。

(三) 用进口流量管测量风量(扩展)进口流量管安装在系统风管的入口处,根据节流原理,流体被吸进流量管后,沿着渐缩的型面逐步加速,而静压降低。

而且压差与流量有关。

进口流量管的进口线型光洁,流体通过时流场均匀,阻力较小,而且结构简单、计算方便。

进口流量管见图1-6所示。

图1-6 进口流量管列端面0—0和断面I —I 之间的伯努利方程为:22221V V P B ρξρ++=得 )(2111P B V -+=ρξ由于 j P B P +=1故流速公式又为:ρξρξjj P P B B V 211)(211+=--+=式中:B — 大气压力(Pa);P 1 — 测定断面空气的绝对压力(Pa);j P — 测定断面上静压测孔所测得的静压,即真空度(Pa);ξ — 进口流量管的阻力系数;ρ — 空气密度(kg/m 3)。

令ξα+=11为流速系数,经实验测定本系统安装的流量管流速系数为99.0=α。

因此,通过流量管的风量:ραjP FVF L 2== (m 3/s )其中:24D F π=(m 2)。

在应用进口流量管时,在其入口前一定不得有障碍物,以免流速发生扰动。

一般要求在风管轴线方向的10 D 范围内,以及在垂直风管轴线方向4D 范围内不应有障碍物,以免引起测量误差。

(四)用测压十字架简易测量风量(扩展)在经常需测量的通风系统中,为了能使测量简单迅速,可在风管中安装测量平均全压的测压十字架(笛形管),测孔数及位置是根据风管尺寸大小而定;若在测压断面上再焊接一个测静压短管,即可配合微压计测出平均动压。

因测压十字架并非是标准测压管,在使用之前必须用标准毕托管进行校正,其校正系数为:ddnP P K =式中:dn P — 在风管中标准毕托管测得的平均动压值(Pa ); P d — 测压十字架测得的动压值(Pa )。

校正K 值时应在不同的风量下进行。

由此,用测压十字架测得的平均风速为ρdP KV 2= (m/s )静压管风 管P d总压管十字架图1-7 测压十字架测量风量(五)利用管路弯头流量计简易测量风量(扩展)气体通过弯管时,由于离心力的作用,在弯管内、外侧壁面上产生了静压差。

对于一定形状的弯头,在其弯曲中心最远和最近位置上所测得的静压差与通过的流体的体积成正比。

对于圆形90o 弯头,其通过的流量为:ρπαPD R D L ∆⋅⋅=2242(m 3/s ) 式中:α — 流量系数,当DR>l 时,α≈; R — 弯头的曲率半径(m); D — 弯头的内径(m);P ∆ — 在弯头对称(45o )断面上从两侧取压口测得的静压差(Pa ); ρ — 空气密度( kg/m 3)。

如要求测量精度高于5%,则需用毕托管对其计算公式进行校正,确定流量系数。

同时,也需对弯头的曲率半径及弯头内径D 进行较精确的测量。

因弯头流量计可直接安装在风管管路的转弯处,所以,利用弯头对风量进行测定时,没有造成附加压力损失(如采用孔板流量计,则会产生一定的压力损失)。

此外,安装简易且廉价,在相同风量下测定,产生的压差数值大于毕托管所测定的动压值。

测量弯头之前应有尽可能长的直管段,即进入弯头时断面上的气流速度能较为均匀,这样能使测量的压差较为稳定,波动小。

如弯头置于前25D、后10D内无局部阻力处,则测定的结果将更加精确。

四、实验内容与要求1、运行通风系统,用各种方法(由实验教师指定)对系统风量进行测定。

相关文档
最新文档