一次函数与三角形面积问题

合集下载

一次函数与反比例函数求三角形面积

一次函数与反比例函数求三角形面积

一次函数与反比例函数求三角形面积
要求三角形的面积,首先要知道三角形的底和高。

对于一次函数,可以表示为y=ax+b。

设两个点的坐标为
(x1,y1)和(x2,y2),则可以通过这两个点求得直线的斜率
a和截距b。

斜率a即为直线的导数,表示直线的倾斜程度。

然后通过求两点间的距离|x2-x1|作为三角形的底d。

反比例函数形式为y=k/x,其中k是一个常数。

对于反比例函
数来说,由于分母x不能为0,所以不能计算出具体的斜率。

在求三角形面积时,我们可以假设x的值很小,可以无限接近于0,此时y的值趋于无穷大。

这时我们可以通过取两个非常
小的点(x1,y1)和(x2,y2)求出直线斜率的极限值,即为0。

我们同样通过|x2-x1|计算出三角形的底d。

对于一次函数和反比例函数,计算出底d之后,我们还需要计算出三角形的高h。

通过已有的函数表达式,可以在直线上取
两个点(x,y1)和(x,y2),计算出点到直线的距离即可,即
为三角形的高h。

最后,根据底d和高h,可以计算出三角形的面积S = 1/2 * d
* h。

一次函数与x轴y轴围成的三角形面积公式

一次函数与x轴y轴围成的三角形面积公式

一次函数与x轴y轴围成的三角形面积公式在咱们学习数学的旅程中,一次函数可是个重要的角色。

今天,咱们就来好好聊聊一次函数与 x 轴、y 轴围成的三角形面积公式这个有趣的话题。

还记得我上初中那会,有一次数学考试,最后一道大题就考到了这个知识点。

当时我拿到试卷,心里还美滋滋的,想着前几天刚认真复习过,这题肯定能拿下。

题目是这样的:已知一次函数 y = 2x + 4 ,求它与 x 轴、y 轴围成的三角形的面积。

我一开始信心满满,先求出了与 x 轴、y 轴的交点坐标。

当 y = 0 时,2x + 4 = 0 ,解得 x = -2 ,所以与 x 轴的交点坐标是(-2,0);当 x = 0 时,y = 4 ,与 y 轴的交点坐标就是(0,4)。

然后我就按照老师教的方法,算出了三角形的底和高。

以与 x 轴的交点到原点的距离为底,长度是 2 ;以与 y 轴的交点到原点的距离为高,长度是 4 。

最后用三角形面积公式 S = 1/2 ×底 ×高,算出面积是4 。

做完这道题,我心里那个得意呀,觉得自己肯定能拿高分。

可等到试卷发下来,我傻眼了,居然因为粗心,计算过程中少写了一个负号,扣了好几分。

那叫一个懊悔啊!好了,言归正传,咱们来说说一次函数与 x 轴、y 轴围成的三角形面积公式到底是怎么回事。

对于一次函数 y = kx + b (k≠0),它与 x 轴的交点坐标为( -b/k ,0 ),与 y 轴的交点坐标为(0,b)。

那这个三角形的底就是与 x 轴交点的横坐标的绝对值,也就是 | -b/k | ;高就是与 y 轴交点的纵坐标的绝对值,即 | b | 。

所以,这个三角形的面积 S 就可以表示为:S = 1/2 × | -b/k | × | b | 。

为了更好地理解这个公式,咱们再来看几个例子。

比如一次函数 y = 3x - 6 ,它与 x 轴的交点,令 y = 0 ,3x - 6 = 0 ,解得 x = 2 ,交点坐标就是(2,0);与 y 轴的交点,令 x = 0 ,y = -6 ,交点坐标是(0,-6)。

一次函数与坐标轴围成的三角形面积公式

一次函数与坐标轴围成的三角形面积公式

一次函数与坐标轴围成的三角形面积公式
在微积分计算中,我们更了解到运用三角形面积公式可以解决许多分段运算的
面积问题,而一次函数与坐标轴围成的三角形面积公式便是利用这种方法的一个用例。

一次函数与坐标轴围成的三角形的面积公式为:S=y(x2-x1)/2 。

公式中,
S表示面积,y为所求三角形的另外两个顶点与y轴之间的距离或高度,x2表示该
三角形另外两个顶点的横坐标,x1表示该三角形最低点的横坐标。

因此,我们可以利用一次函数与坐标轴围成的三角形面积公式来解决各种被一
次函数围成的三角形的面积问题。

特别是在微积分课程中,大学生们可以利用这个公式来解决许多常见的分段积分问题,事半功倍。

此外,这个公式也可以解决高校考试中经常出现的“求某一段函数的积分面积”类型的试题,从而帮助考生了解到其可视化后图像所围成的三角形的线性特性,让考生更清晰地理解它们之间的联系以达成有效的求解。

总之,通过掌握一次函数与坐标轴围成的三角形面积公式,大学生们可以更加
熟练地解决分段函数的面积问题,且可以更进一步地加深理解这些函数间的关系,从而更好地应对学业中各种考据。

一次函数中的三角形面积问题.docx

一次函数中的三角形面积问题.docx

北京师范大学出版社八年级上册小专题一次函数中的三角形面积问题数学组周琼2016.11.23一.教学目标:1.通过本节课的学习,了解一次函数中与三角形面积有关的常见的基本图形,掌握在一次函数中求三角形面积的解题策略、基本方法.2.指导学生进一步利用图形直观,学会观察、分析,利用“割补法”有意识地将平面直角坐标系内一般的斜三角形的面积问题转化成“有一边在坐标轴上或平行于坐标轴的三角形”,或将图形补成一个矩形或梯形并通过有关计算解决问题,进一步体会数形结合思想、建模思想、割补法等数学思想方法.3.通过学生的合作、交流、展示、分享,进一步激发学生学习数学的兴趣和积极性,享受学习的过程,感受成功的快乐,增强学习的自信心与合作学习意识.二.教学重点:教学重点:建模以及“割补法”的灵活运用.教学难点:对较难的图形进行合理的割补,选择最佳解题途径.四.教法与学法学法:自主探究、合作交流、成果分享教法:老师指导下以学生探究学习为主的分享交流、总结提升五.课前准备收集整理周末学生《好题集锦》、多媒体课件、学案.六.教学过程设计教学 教师活动学生活动设计意图环节分享 (板书课题)学生代表 展示学习成 展示1. 图片引入新课,四个学生展示周末自主学习成果,提炼出四 投影并讲 果,培养学生种常见图形.(白板板书,图略)解.能力 .2. 引导学生观察图形特征,总结解题思路3. 过手练习如图,直线 y2 x 2 与坐标轴交于 A 、B 两点,直线 y1x 32总 与 x 轴和 y 轴分别交于点 C ,点 D ,与直线 y2x2 相交于结点 E (-10,-14) y33提(1)S AOBB升 ( 2)S ACEAOC, x变( 3)过 A 做 AF//y 轴交 EC 于 F ,DF则 SE式AFE探究4. 挑战自我(一题多解,选择最优解题途径板书解题过程)如图,直线 y2 x 2 与坐标轴交于 A 、B 两点,直线 y1x 32与 x 轴和 y 轴分别交于点 C ,点 D ,与直线 y 2x 2 相交于点1014)33独立思考,检查基础过自主完成,关情况,了解交流评价。

一次函数动点中的三角形全等以及面积

一次函数动点中的三角形全等以及面积

A B C O y 2y1x yP例1、如图,在平面直角坐标系xOy 中,一次函数1223y x =-+与x 轴、y 轴分别相交于点A 和点B ,直线2 (0)y kx b k =+≠经过点C (1,0)且与线段AB 交于点P ,并把△ABO 分成两部分. (1)求△ABO 的面积;(2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式。

例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。

①直线y=43x-83经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,③若直线1l 经过点F ⎪⎭⎫⎝⎛-0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位交x 轴于点M ,交直线1l 于点N ,求NMF ∆的面积.例2、如图,矩形OABC 在平面直角坐标系内(O 为坐标原点),点A 在x 轴上,点C在y 轴上,点B 的坐标为(-2,32),点E 是BC 的中点,点H 在OA 上,且AH=21,过点H 且平行于y 轴的HG 与EB 交于点G,现将矩形折叠,使顶点C 落在HG 上 ,并与HG 上的点D 重合,折痕为EF,点F 为折痕与y 轴的交点.(1)求∠CEF 的度数和点D 的坐标;(3分) (2)求折痕EF 所在直线的函数表达式;(2分)(3)若点P 在直线EF 上,当△PFD 为等腰三角形时,试问满足条件的点P 有几个,请求出点P 的坐标,并写出解答过程.(5分)xyF CE B GAHO Dxy FCE B GAH O D2、如图,过A(8,0)、B(0,83)两点的直线与直线x交于点C.平y3行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l分别交线段BC、OC于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线l的运动时间为t(秒).(1)直接写出C点坐标和t的取值范围;(2)求S与t的函数关系式;(3)设直线l与x轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.。

一次函数与三角形面积问题教学设计

一次函数与三角形面积问题教学设计

一次函数与三角形面积问题教学设计本教学设计旨在介绍一次函数与三角形面积问题的重要性和应用背景。

一次函数与三角形面积问题是数学中重要的概念,其应用广泛,能够帮助学生理解和应用数学知识。

一次函数是数学中最简单的一种函数,它的表达式为 y = ax + b,其中 a 和 b 是常数。

一次函数可以描述线性关系,如直线的斜率和截距。

三角形面积问题是几何学中的经典问题,涉及到三角形的面积计算与相关性质。

通过解决三角形面积问题,学生不仅能够掌握计算面积的方法,还能加深对三角形的认识和理解。

在日常生活和实际工作中,一次函数与三角形面积问题有着重要的应用。

例如,建筑师需要计算房屋的地板面积;经济学家需要分析市场的需求曲线;物理学家需要测量三角形形状的物体的面积等等。

因此,通过研究一次函数和三角形面积问题,学生能够培养数学思维和解决实际问题的能力。

接下来,我们将介绍一次函数和三角形面积问题的基本概念,并设计教学活动帮助学生理解和应用这些概念。

教学目标明确学生在研究过程中应达到的目标,例如掌握一次函数与三角形面积问题的基本概念和计算方法。

本教学设计将详细列举教学内容和分步骤的教学方法,包括一次函数的定义、性质和常见例题,以及三角形面积计算公式和实际问题的解决方法。

一次函数的定义和性质一次函数的定义:介绍一次函数的定义,即形如 y = kx + b 的函数,其中 k 和 b 是常数。

一次函数的性质:讲解一次函数的性质,如斜率 k 的含义、截距 b 的含义、函数图像的倾斜方向等。

一次函数的例题演练一次函数的图像绘制:给出几个一次函数的表达式,要求学生绘制出相应的函数图像,并分析图像的特征。

一次函数的斜率计算:给出一些一次函数的表达式,要求学生计算出相应函数的斜率,并解释其意义。

一次函数的解方程:提供一些一次函数的方程,要求学生解出方程的根,并用图像验证结果。

三角形面积的计算三角形面积的计算公式:介绍三角形面积的计算公式,即面积等于底边长乘以高的一半。

一次函数与坐标轴围成的三角形面积

一次函数与坐标轴围成的三角形面积

一次函数与坐标轴围成的三角形面积要计算一次函数与坐标轴围成的三角形的面积,我们首先需要明确一次函数的图像和坐标轴之间的关系。

一次函数的图像是一条直线,而坐标轴是由两条垂直于彼此的直线组成的。

当一次函数与x轴相交时,我们可以找到与x轴相交的两个点,然后通过这两个点和与它们连结的线段来计算三角形的面积。

我们用y = mx + b来表示一次函数的一般形式。

其中,m是斜率,b是y轴截距。

当这个函数与x轴相交时,我们可以将y设置为零,然后解方程来找到交点的x坐标。

假设我们找到了两个相交点(x1, 0)和(x2, 0)。

接下来,我们可以计算通过这两个点的线段的长度。

线段的长度可以通过两点之间的距离公式来计算,即:d=√((x2-x1)²+(y2-y1)²)在我们的情况下,y1和y2都是零,所以这个式子简化为:d=√((x2-x1)²)这个线段的长度就是一次函数与x轴相交的两点之间的水平距离。

现在,我们可以使用海伦公式来计算三角形的面积。

海伦公式是一个用于计算三角形面积的公式,它的形式是:A=√(s(s-a)(s-b)(s-c))其中,a、b、c是三角形的三条边的长度,而s是半周长,s=(a+b+c)/2在我们的情况下,三角形的两条边就是x轴和一次函数的图像,而我们已经计算出了这两条边的长度,记为d。

所以我们可以将这些值代入到海伦公式中来计算三角形的面积:A=√(s(s-d)(s-d)(s-d))由于两边的长度都是d,我们可以简化公式为:A=√((3d/2)(d/2)(d/2)(d/2))A=√((3d/2)(d/2)³)A=√((3d/2)*(d²/4)²)A=√((3d²/8)*d²)A=(d/2)*√(3d²/2)A=(d/2)*√(3)d因此,一次函数与坐标轴围成的三角形的面积是(d/2)*√(3)d。

让我们通过一个具体的例子来计算一下,假设一次函数是y=2x+3、我们可以将y设置为零,然后解方程来找到交点的x坐标:0=2x+32x=-3x=-3/2所以,我们找到了与x轴相交的两个点(-3/2,0)和(0,0)。

一次函数求坐标三角形面积问题

一次函数求坐标三角形面积问题
(1)求S关于x的函数解析式; (2)当点P横坐标为5时, 求△OPA的面积? (3)当S=12时,求P点坐标? y
(0,8)
P
o
6
A
(8,0)x
能力训练
3、点P(x,y)在第一象限,且在直线y=8-x上, 点A(6,0),设△OPA的面积为S.
(1)求S关于x的函数解析式; (2)当点P横坐标为5时, 求△OPA的面积? (3)当S=12时,求P点坐标?
考纲要求:C(掌握) 教学目标: 1.通过复习使学生熟悉直线与坐标轴的交 点坐标的求法,会求出两直线交点坐标, 进一步体会函数、坐标、几何图形之间的 相互转化,在解决函数相关问题中的重要 作用. 2.初步掌握由若干条直线所围成的图形的 面积的计算方法,体会一次函数的有关面 积问题的解决思路.
1、一次函数的图象是一条直线, 如何画出一次函数的 图象? 两点作图法
直线与两条坐标轴所围成的三角形的面积是__8___.
B (2)直线经过点P(3,a),求△OAP的面积?
P(3,1)
如何求△OBP
A
的面积?
二、由面积关系求点坐标
例2.已知直线y=kx+b与y轴交于点A(0,4),与x轴交于 点B,且△OAB的面积为4,求B点坐标。
解:∵直线与y轴交于点A(0,4)
y=2x-4
DA
O
2
x
EC
-4 B
这节课你学到了什么?
1、由一次函数解析式求面积
函数解析式
与坐标轴的 交点坐标
2、由面积关系求点的坐标
线段长
三角形面积
三角形面积 底或高 的长度
与坐标轴的 交点坐标
3.要掌握分类讨论,数形结合,转化的数学思想。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与三角形面积问题 一、课前热身:
1. 一次函数y = - 2x+ 4的图象与x 轴的交点坐标为______;与y 轴的交点坐标为_______;
2. 求过点(1,2)
,(3,0)的直线解析式
二、课堂练习:
❀变式1: 一次函数过点(2,1)和点(3,0)求它与坐标轴围成的三角形的面积.
❀练习1:如图,已知直线1l 经过点(1
0)A ,和点(23)B ,,另一条直线2l 经过点B ,且与x 轴相交于点(0)P m ,
.若APB △的面积为3,求m 的值.
x
y
B A
O
✿练习2:一个一次函数的图象经过点A (-3,0),且和y 轴相交于点B ,当函数图象与坐标轴围成的三角形面积为6时,求点B的坐标.
✿练习3:如图,在平面直角坐标系中,一次函数12
1
+-=x y 的图象与x 轴、y 轴分别交于
A 、
B 两点.
(1)求点A 、B 的坐标; (2)点C 在y 轴上,当2ABC AOB S S ∆∆=时,求点C 的坐标.
三、随堂检测
已知直线3y kx =-经过点M (2,1),且与x 轴交于点A ,与y 轴交于点B .
(1)求k 的值;
(2)求A 、B 两点的坐标;
(3)过点M 作直线MP 与y 轴交于点P ,且△MPB 的面积为2,求点P 的坐标.
四、家庭作业:
已知:如图,在平面直角坐标系xOy 中,一次函数24y x =-+的图象分别与x y 、轴交于点A 、 B ,点P 在x 轴上,若6ABP S ∆=,求直线PB 的函数解析式.。

相关文档
最新文档