超声波传感器原理以及液位测量的完整实例讲解含原理图
超声波液位传感器及其开发分析

超声波液位传感器及其开发分析超声波液位传感器是一种常用于测量液体或固体的无接触式检测装置,由于其精度高、稳定性好、适用范围广等特点,被广泛应用于工业自动化控制、环保监测、水利水电等领域。
本文将对超声波液位传感器的原理、特点和开发分析进行探讨。
一、超声波液位传感器的原理超声波液位传感器通过发射超声波脉冲到液体或固体表面,经过反射后接收回波,并通过计算回波的时间来确定目标物体与传感器的距离,从而实现对液位的测量。
其原理如图1所示。
超声波传感器主要由发射器、接收器、信号处理器和显示器等组成。
发射器负责发射超声波脉冲,接收器负责接收回波信号,信号处理器对接收到的信号进行处理,计算出目标物体与传感器的距离并输出相应的信号,显示器则用于显示液位数据。
1. 非接触式测量:超声波液位传感器无需直接接触液体或固体表面,避免了传统接触式传感器可能受到介质腐蚀、污染等因素的影响,从而保证了测量的准确性和稳定性。
2. 高精度测量:超声波传感器采用超声波脉冲测距原理,测量精度高,可以实现对液体或固体的精准测量。
3. 适用范围广:超声波液位传感器适用于多种介质的液位测量,包括水、油、化工液体等,且适用于高温、高压等复杂环境。
4. 反应速度快:超声波传感器测量速度快,能够实时监测液位变化,对于需要快速响应的应用场景非常适用。
5. 安装维护方便:超声波传感器体积小、重量轻,安装方便,且无需额外的维护工作,降低了使用成本。
超声波液位传感器的开发是一个涉及多个学科知识的综合性工作,包括声学、电子技术、信号处理、材料工程等。
在传感器的设计和开发过程中,需要考虑以下几个关键因素:1. 传感器结构设计:传感器的结构设计直接影响了其测量性能和可靠性,包括发射器和接收器的布置方式、声波传播路径的设计等。
2. 超声波发射与接收技术:超声波的发射与接收技术是传感器性能的关键,需要针对测量介质的特性选择合适的超声波频率和发射接收装置。
3. 信号处理算法:对接收到的超声波回波信号进行精确的信号处理和计算是实现测量精度的关键,需要设计合适的信号处理算法。
超声波传感器详解PPT课件

振荡器产生的高频电压通过耦合电容CP供给超声波振子MA40S2S。CC4049的
H1和H2产生与超声波频率相对应的高频电压信号, H3~H6进行功率放大,再
经过耦合电容CP
MA40S2S。超声波振子若长时间加直流电
压,会使传感器特性明显变差, 因此,一般用交流电压通过耦合电容CP 供
b超声波在空气中传播2a2a19第7章超声波传感器20液位测量储油罐分选第7章超声波传感器21超声波液位计第7章超声波传感器22mdarse型室外保安机器人多个超声波传感器组成线阵或面阵形成多传感器第7章超声波传感器23为计数或安全目的进行人员探测第7章超声波传感器24堆置高度控制厚度测量第7章超声波传感器25脉冲回波法检测厚度工作原理超声波测厚第7章超声波传感器图910超声波测厚1双晶直探头2引线电缆3入射波4反射波5试件6测厚显示器图是超声波测厚示意图
α——衰减系数,单位为Np/cm(奈培/厘米)。
声波衰减原因: 扩散衰减:随声波传播距离增加而引起声能的减弱。 散射衰减:超声波在介质中传播时,固体介质中颗粒界面或流体介质中悬浮
粒子使声波产生散射,一部分声能不再沿原来传播方向运动,而 形成散射。 吸收衰减:由于介质粘滞性,使超声波在介质中传播时造成质点间的内摩 擦,从而使一部分声能转换为热能,通过热传导进行热交换,导 致声能的损耗。
第7章 超声波传感器
超声波液位计
第20页/共40页
第7章 超声波传感器 多个超声波传感器组成线阵或面阵形成多传感器
MDARS-E型室外保安机器人
第21页/共40页
第7章 超声波传感器
为计数或安全目的,进行人员探测
第22页/共40页
第7章 超声波传感器 堆置高度控制
超声波传感器ppt课件

第10章 波与射线传感器
10.1 超声波传感器 10.1.2 超声波传感器
传感器原理及应用
超声波探头结构 动画演示
第10章 波与射线传感器 10.1 超声波传感器
传感器原理及应用
其它应用
当超声发射器与接收器分别置于被测物两侧时,这 种类型称为透射型; 透射型可用于遥控器、防盗报警器、接近开关等。 超声发射器与接收器置于同侧的属于反射型; 反射型可用于接近开关、测距、测液位或物位、金 属探伤以及测厚等。
超声波传感器应用举例
超声波传感器应用举例(续)
超声波传感器应用举例(续)
象,类似于光波。
便携式超声波 探鱼器
超声波在医学检查中的应用
胎儿的 B超影像
超声波清洗器
气泡 波浪
清洗物
超声换能器
超声波物理基础
频率高于20kHz的机械振动波称为超声波。 它的指向性很好,能量集中,因此穿透本 领大,能穿透几米厚的钢板,而能量损失 不大。在遇到两种介质的分界面(例如钢 板与空气的交界面)时,能产生明显的反 射和折射现象,超声波的频率越高,其声 场指向性就愈好。
第10章 超声波传感器 传感器原理及应用
第10章 超声波传感器 传感器原理及应用
在流体中设置两个超声波传感器, 它们可以发 射超声波又可以接收超声波, 一个装在上游, 一 个装在下游, 其距离为L。 如设顺流方向的传输时间为t1, 逆流方向的传输 时间为t2, 流体静止时的超声波传输速度为c, 流体流动速度为v,
2.可闻声波 美妙的音乐可使人陶醉。
超声波传感器测液位

第一章超声波测油罐液位的总体方案1.1 超声波测液位原理我们一般把声波频率超过20kHz的声波称为超声波,超声波是机械波的一种,即是机械振动在弹性介质中的一种传播过程,它的特征是频率高、波长短、绕射现象小,另外方向性好,能够成为射线而定向传播。
超声波在液体、固体中衰减很小,因而穿透能力强,尤其是在对光不透明的固体中,超声波可穿透几十米的长度,碰到杂质或界面就会有显著的反射,超声波测量物位就是利用了它的这一特征。
超声波测液位的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。
实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。
此次设计采用反射波方式。
测距仪的分辨率取决于对超声波传感器的选择。
超声波传感器是一种采用压电效应的传感器,常用的材料是压电陶瓷。
由于超声波在空气中传播时会有相当的衰减,衰减的程度与频率的高低成正比;而频率高分辨率也高,故短距离测量时应选择频率高的传感器,而长距离的测量时应用低频率的传感器。
在超声波检测技术中,不管那种超声波仪器,都必须把电能转换超声波发射出去,再接收回来变换成电信号,完成这项功能的装置就叫超声波换能器,也称探头。
将超声波换能器置于被测液体上方,向下发射超声波,超声波穿过空气介质,在遇到水面时被反射回来,又被换能器所接收并转换为电信号,电子检测部分检测到这一信号后将其变成液位信号进行显示并输出。
由超声波在介质中传播原理可知,若介质压力、温度、密度、湿度等条件一定,则超声波在该介质中传播速度是一个常数。
因此,当测出超声波由发射到遇到液面反射被接收所需要的时间,则可换算出超声波通过的路程,即得到了液位的数据。
发射器发出的超声波以速度υ在空气中传播,在到达液面时被反射返回,由接收器接收,其往返时间为t,传感器距油罐底的距离为h,由公式:s-=h*tv2/即可算出油罐液位高度。
超声波液位计原理

超声波液位计测量原理前言:近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。
基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为流量测量工作的首选工具。
超声波流量计是20世纪70年代随着IC(集成电路)技术迅速发展才开始得到实际应用的一种非接触式仪表,相对于传统的流量计而言,它具有下列主要特点:(1)解决了大管径、大流量及各类明渠、暗渠测量困难的问题。
因为一般流量计随着管径的增加会带来制造和运输上的困难,不少流量计只适用于圆形管道,而且造价提高,能耗加大,安装不便,这些问题,超声波流量计都可以避免,这样就提高了流量测量仪表的性能价格比。
(2)对介质几乎无要求。
超声波流量计不仅可以测量液体、气体,甚至对双相介质(主要是应用多普勒法)的流体流量也可以测量,由于可制成非接触式的测量仪表,所以不破坏流体的流场,没有压力损失,并且可以解决其它类型流量计难以测量的强腐蚀性、非导电性、放射性的流量问题。
(3)超声波流量计的流量测量准确度几乎不受被测流体温度、压力、密度、粘度等参数的影响。
(4)超声波流量计的测量范围度宽,一般可达到20:1。
关键词:超声波流量计原理流量一、超声波的基本性质声波是一种传递信息的媒体,它与机械振动密切相关,可以由物体的撞击、运动所产生的机械振动以波的形式向外传播。
根据振动所产生波的频率高低分为可闻声波、次声波和超声波,高于20KHz的声波称为超声波。
超声波具有类似光线的一些物理性质:(1)超声波的传播类似于光线,遵循几何光学的规律,具有反射、折射现象,也能聚焦,因此可以利用这些性质进行测量、定位、探伤和加工处理等。
在传播中,超声波的速度与声波相同;(2)超声波的波长很短,与发射器、接收器的几何尺寸相当,由发射器发射出来的超声波不向四面八方发散,而成为方向性很强的波束,波长愈短方向性愈强,因此超声用于探伤、水下探测,有很高的分辨能力,能分辨出非常微小的缺陷或物体;(3)能够产生窄的脉冲,为了提高探测精度和分辨率。
超声波传感器-PPT课件.ppt

原理简述
超声波传感器是利用超声波的特性研制而成的传感 器。超声波是一种振动频 率高于声波的机械波,由换能 晶片在电压的激励下发生振动产生的,它具有频率高、波 长短、绕射现象小,特别是方向性好、能够成为射线而定 向传播等特点。超声波对液体、固体的穿透本领很大,尤 其是在阳光不透明的固体中,它可穿透几十米的深度。超 声波碰到杂质或分界面会产生显著反射形成反射成回波, 碰到活动物体能产生多普勒效应。
超声波传感器主要采用直接反射式的检测模式。位于传 感器前面的被检测物通过将发射的声波部分地发射回传感 器的接收器,从而使传感器检测到被测物。
在工业方面,超声波的典型应用是对金属的无损探伤和 超声波测厚两种。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
压电式超声波接收器是有时就用同一个换能兼做发生和 接受器两种用途。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
压电陶瓷芯片
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
超 声 波 流 量 计 现 场 使 用
石料测量
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
水位传感器原理及应用ppt课件

12
绝对式光电编码器工作原理
挡光板 发光管
光敏二级管 码盘
13
格雷码特点
格雷码是一种数字排序系 统,其中的所有相邻整数 在它们的数字表示中只有 一个数字不同。它在任意 两个相邻的数之间转换时, 只有一个数位发生变化。 大大地减少了由一个状态 到下一个状态时逻辑的混 淆。
十进制数 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N
N
拔锁定到位 松闸时间未到
抜锁定、 开始延时
24
闸门控制PLC程序框图(部分)
闸门上、下限判断及故障判断(一)
计算开度测量和上限差值
Y 清开、关命令 电机故障
计算开度测量和下限差值
N 返回
N 到上限?
Y
和上限差值在 许可范围内?
到下限?
Y 上限标志
Y
A
B
下限标志 和下限差值在
许可范围内?
Y
N
N
传感器故障
下限位 上限位 远方/就地
接触器 输 及热继电器 出 控 制 软启动装置
空开
停止
交 流 电 源
三相异步电机
上升
状态反馈
急停 故障复归
触摸屏
下降
通信输出到计算机监控系统
S7-200PLC IO
扩 数据线 展
模 块
指示灯
开度测量12位
AD
绝对式编码器
4~20mA
模
电量变送器
22
块
闸门控制PLC程序框图(部分)
水位测量位置及作用
测量的位置:
1、水库水位; 2、尾水水位; 3、集水井水位; 4. 。。。
测量水位的作用:
超声波液位计测量原理

超声波液位计测量原理
超声波液位计是利用超声波测量液体高度、罐体高度、物料位置的监测仪表。
适合各种腐蚀性、化工类场合,精度高,远传信号输出,PLC系统监控。
工作原理
超声波液位计的工作原理是由探头(换能器)发出高频超声波脉冲遇到被测介质表面被反射回来,部分反射回波被同一换能器接收,转换成电信号,并由声波的发射和接收之间的时间来计算传感器到被测液体表面的距离。
由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。
计算公式:
此距离值S与声速C和传输时间T之间的关系可以用公式表示: S=C×T/2
其中:S为距离值
C为声速
T为发射与接收之间的时间
由于发射的超声波脉冲有一定的宽度,使得距离换能器较近的小段区域内的反射波与发射波重迭,无法识别,不能测量其距离值。
这个区域称为测量盲区。
超声波液位计的安装
超声波液位计的安装一般有法兰和螺纹两种方式。
不推荐使用吊装。
安装时需要考虑盲区的影响,为了避开盲区,用加长导管安装的
时候,必须注意探头辐射面两端与导管断面两端形成的夹角要大于换能器的锐度角。
超声波液位计的特点
1、安装方便,测量精度高价格低廉;
2、对温度、粉尘、蒸汽、压力的影响较为敏感;
3、周围有强电压,强电流,强电磁干扰,尽量避免高电压,高电流及强电磁干扰、大风和太阳直晒、强震动的情况下测量值有较大误差。
化工小鱼塘编辑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、超声波传感器
1、相关知识:
超声波传感器是利用超声波的特性研制而成的传感器。
超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
因此超声波检测广泛应用在工业、国防、生物医学等方面。
1、工作原理:
超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。
这里主要分析一下压电晶体材料的超声波传感器,压电晶体材料的超声波传感器主要应用了某些特殊材料的压电效应和
逆压电效应的特性,也就是超声波传感器的发送器和接收器两部分,发送时,在压电晶体端通上高压500V以上的高压脉冲,利用逆压电效应的特性,使晶片发射出一束频率落在超声波范围内、持续时间很短的超声振动波,超声振动波到达被测物体底部后,超声波绝大多数
所以液位H为:
H=H2-H1
通过如上的简单计算即可测得液位的高度。
4、超声波传感器的常见分类:
一、根据使用方法:可分为收发一体型、收发分体型(收发各一
只);
二、根据结构来分:可分为开放型、防水型、高频型等;
三、根据使用环境:可分为空气中和水声换能器;等等。